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Two sets of lattice field theory talks

Michael Creutz: three talks
Zoltan Fodor: four talks

"computational details ... might be better for Zoltan to cover, i.e. things
like hybrid monte carlo, the hadron spectrum ... g-2" and QCD
thermodynamics.

• Scalar theory, Higgs bound & Monte Carlo

• QCD and hadron spectrum (Wilson)

• QCD thermodynamics (staggered & overlap)
(Krishna: "unless Zoltan is reporting some miracles")

• g-2 of the muon (staggered)
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FLAG review of lattice results Colangelo et al. Eur.Phys.J. C71 (2011) 1695
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PACS-CS 10 P ⋆ ■ ■ ⋆ a 2.78(27) 86.7(2.3)
MILC 10A C • ⋆ ⋆ • − 3.19(4)(5)(16) –
HPQCD 10 A • ⋆ ⋆ ⋆ − 3.39(6)∗ 92.2(1.3)
BMW 10AB P ⋆ ⋆ ⋆ ⋆ b 3.469(47)(48) 95.5(1.1)(1.5)
RBC/UKQCD P • • ⋆ ⋆ c 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum et al. 10 P • ■ • ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
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QCD: need for a systematic non-perturbative method

pressure at high temperatures converges at T=10300 MeV
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Finite temperature QCD
Quantum system partition function: Hamiltonian H at temperature T :

Z = Tr
[
e−H/T

]
=

∫
[dφ] ⟨φ|e−H/T |φ⟩

Path integral representastion with

ZQCD =

∫
[dU] [dψ] [dψ]e−SE(U,ψ,ψ)

=

∫
[dU] [dψ] [dψ] exp

[∫ 1/T

0
dx4

∫
d3x LE(U, ψ, ψ)

]
Commuting bosonic & anticommuting (Grassmann) fermionic fields
Boundary condition in the imaginary time (temperature) direction:
Gluons: periodic whereas Quarks: antiperiodic.

Temperature: T=1/Nta, therefore a → 0 is Nt → ∞

Increase of β
asymptotic
freedom=⇒ decrease of a =⇒ increase of T .
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Nature of the transition: SU(3) & QCD

Nature of the transition: finite-size scaling theory

problem with phase transitions in Monte-Carlo studies
Monte-Carlo applications for pure gauge theories (V = 243 · 4)
existence of a transition between confining and deconfining phases:
Polyakov loop exhibits rapid variation in a narrow range of β

• theoretical prediction: SU(2) second order, SU(3) first order
=⇒ Polyakov loop behavior: SU(2) singular power, SU(3) jump

data do not show such characteristics!
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Nature of the transition: SU(3) & QCD

The nature of the SU(3) & QCD transitions

finite size scaling study of the Polyakov/chiral susceptibilities

χP = N3
s
(
⟨|P|2⟩ − ⟨|P|⟩2) χ = (T/V )∂2 logZ/∂m2

phase transition: finite V analyticity V→ ∞ increasingly singular
(e.g. first order phase transition: height ∝ V, width ∝ 1/V)
for an analytic cross-over χ does not grow with V

two steps (three-five volumes, four-five lattice spacings):
a. fix V and determine χ through a continuum extrapolation
b. using the continuum extrapolated χmax : finite size scaling
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Nature of the transition: SU(3) & QCD

Volume dependence of the susceptibility: SU(3)

continuum extrapolated renormalized Polyakov loop susceptibilities
narrower and higher: rescale it with the volume:
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Nature of the transition: SU(3) & QCD

Approaching the continuum limit: QCD
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Nature of the transition: SU(3) & QCD

The nature of the QCD transition: analytic

• finite size scaling analysis with continuum extrapolated T 4/m2∆χ

the result is consistent with an approximately constant behavior
for a factor of 5 difference within the volume range
chance probability for 1/V is 10−19 for O(4) is 7 · 10−13

continuum result with physical quark masses in staggered QCD:
the QCD transition is a cross-over
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Tc

Literature: discrepancies between Tc

Bielefeld-Brookhaven-Riken-Columbia Collaboration:
M. Cheng et.al, Phys. Rev. D74 (2006) 054507

Tc from χψ̄ψ and Polyakov loop, from both quantities:
Tc=192(7)(4) MeV

Bielefeld-Brookhaven-Riken-Columbia merged with MILC: ‘hotQCD’

Wuppertal-Budapest group: WB
Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

chiral susceptibility: Tc=151(3)(3) MeV
‘chiral Tc ’: ≈40 MeV difference both groups give continuum

extrapolated results with physical mπ

freeze out: 172 MeV → dramatic differences in physics:
need for strongly interacting hadronic matter
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Tc

Discretization errors in the transition region

we always have discretization errors: nothing wrong with it as long as

a. result: close enough to the continuum value (error subdominant)
b. we are in the scaling regime (a2 in staggered)

various types of discretization errors ⇒ we improve on them (costs)

we are speaking about the transition temperature region
interplay between hadronic and quark-gluon plasma physics
smooth cross-over: one of them takes over the other around Tc

both regimes (low T and high T) are equally important
improving for one: T≫Tc , doesn’t mean improving for the other: T<Tc
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Tc

Examples for improvements, consequences

how fast can we reach the continuum pressure at T=∞?

p4 action is essentially designed for this quantity T≫Tc

asqtad designed mostly for T=0 physics (but good at high T, too)

stout-smeared one-link converges slower but in the a2 scaling regime
(e.g. extrapolation from Nt=8,10 provides a result within about 1%)

one can improve on the action (expensive) or observable level
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Tc

Chiral symmetry/pions Wuppertal-Budapest: JHEP 0601 (2006) 089. [hep-lat/0510084]

transition temperature for remnant of the chiral transition:
balance between the f’s of the chirally broken & symmetric sectors
chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: 1 pseudo-Goldstone instead of 3 (taste violation)
staggered lattice artefact ⇒ splitting disappears in the continuum limit
WB: stout-smeared improvement is designed to reduce this artefact
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Tc

Consequences of the non-scaling behaviour

for large ’a’ no proper a2 scaling (e.g. due to large mπ splitting)
how do we monitor it, how to be sure being in the scaling regime?
dimensionless combinations in the a→0 limit:
Tcr0 or Tc/fK for the remnant of the chiral transition0 0.05 0.1
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independently which quantity is taken one obtains the same Tc
signal: extrapolation is safe, we are in the a2 scaling regime
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EoS

Equation of state

Integral method: J. Engels et al., Phys. Lett. B252 (1990) 625

on the lattice the dimensionless pressure is given by

plat(β,mq) = (NtN3
s )

−1 logZ(β,mq)

not accessible using conventional algorithms, only its derivatives

plat(β,mq)−plat(β0,m0
q) = (NtN3

s )
−1

∫ (β,mq)

(β0,m0
q)

(
dβ

∂ logZ
∂β

+ dmq
∂ logZ
∂mq

)
,

first term: gauge action & second term: chiral condensate

the pressure has to be renormalized: subtraction at T=0 (or T>0)
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EoS

Equation of state

(ε-3p)/T4
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EoS

Equation of state: difficulties at high temperatures

lattice results for the EoS perturbative series “converges”
extend upto a few times Tc only at asymptotically high T

applicability ranges of perturbation theory and lattice don’t overlap
it was believed to be “impossible” to extend the range for lattice QCD
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EoS

The standard technique is the integral method

p̄=T/V·log(Z), but Z is difficult
⇒ p̄ integral of (∂log(Z)/∂β,∂log(Z)/∂m)

substract the T=0 term, the pressure is given by: p(T )=p̄(T )-p̄(T = 0)

back of an envelope estimate:

Tc≈150–200 MeV, mπ=135 MeV
try to reach T =20·Tc for Nt=8 (a=0.0075 fm)

⇒Ns > 4/mπ ≈ 6/Tc = 6·20/T = 6·20·Nt ≈ 1000

⇒ completely out of reach
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EoS

Practical solution for the problem

a. substract successively:

p(T)=p̄(T)-p̄(T=0)= [p̄(T)-p̄(T/2)]+[p̄(T/2)-p̄(T/4)]+...

=⇒ for substractions at most twice as large lattices are needed
(physical reason: there are no new UV divergencies at finite T)

b. instead of the integral method calculate:

p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

and introduce an interpolating partition function Z (α)
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EoS

define Z̄ (α)=
∫
DUexp[-αS1b-(1-α)S2b] ⇒ Z2(Nt )=Z̄ (0), Z(2Nt )=Z̄ (1)

one gets directly for p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

T/(2V)
∫ 1

0 dlog[Z̄ (α)]/dα·dα=T/(2V)
∫ 1

0 ⟨S1b-S2b⟩α·dα
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EoS
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EoS

define Z̄ (α)=
∫
DUexp[-αS1b-(1-α)S2b] ⇒ Z2(Nt )=Z̄ (0), Z(2Nt )=Z̄ (1)

one gets directly for p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

T/(2V)
∫ 1

0 dlog[Z̄ (α)]/dα·dα=T/(2V)
∫ 1

0 ⟨S1b-S2b⟩α·dα

long awaited link between lattice thermodynamics and pert. theory

Z. Fodor Quantum Field Theory on the Lattice 30 / 42



EoS

define Z̄ (α)=
∫
DUexp[-αS1b-(1-α)S2b] ⇒ Z2(Nt )=Z̄ (0), Z(2Nt )=Z̄ (1)

one gets directly for p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

T/(2V)
∫ 1

0 dlog[Z̄ (α)]/dα·dα=T/(2V)
∫ 1

0 ⟨S1b-S2b⟩α·dα

“Free at last, free at last”
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EoS

The equation of state

Effective number of degrees of freedom including all SM particles
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π2

30
gρT 4 s =

2π2

45
gsT 3 c =

2π2

15
gcT 3

 0.6

 0.7

 0.8

 0.9

 1
ratios

gs(T)/g
ρ
(T)

gs(T)/gc(T)

 10

 30

 50

 70

 90

 110

10
0

10
1

10
2

10
3

10
4

10
5

g(T)

T[MeV]

g
ρ
(T)

gs(T)

gc(T)

Z. Fodor Quantum Field Theory on the Lattice 32 / 42



Cumulants

Cumulants

Dozens of other (cross-)fluctuations (B,Q,S), up to eight order
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Topology at high T

About costs: quenched case from T=0 (or Tc) to 4Tc

Cost of the conventional algorithm at relative error δχt

costs ∝ 1
(δχt)2χt(T )

relative cost (4Tc)/(1Tc) (our highest T was 4Tc : not enough)

from measured χt(T ) 47.1 ≈ 2 × 104

from measured δχt 105 − 106

quenched χt(T = 0) calculated ∼ 20 years before
Moores law leads to a factor of ∼ 105 in 24 years
⇒ Was just possible to do (dynamical case is probably hard)
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Topology at high T

About costs: dynamical QCD

Dynamic relative cost $(7Tc)/$(1Tc) (7Tc ∼ 1200MeV )

from estimated χt(T ) 77−8 ≈ 106 − 107

increasing τint with T 107 − 109

dynamic χt(T = 0) in 2010, Moore cycles of ∼ 30

⇒ conventional dynamical study not possible (needs 35 years)
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Topology at high T

Unusually large cut-off effects: Nf =2+1+1 with 4-stout
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Topology at high T

Fixed Nt : instanton’s resolution doesn’t change λ0a

0 0.5 1 1.5 2

(10/N
t
)
2

1e-05

0.0001

0.001

0.01

0.1
χ

 (
fm

- 
4
)

standard
ratio
reweight
continuum

Topological susceptibility at T=300 MeV

Z. Fodor Quantum Field Theory on the Lattice 39 / 42



Topology at high T

Determine topological susceptibility/axion potential

Challenge
Determine the blue/red ratio by random pick!

−→ getting very difficult with T −→
Solution

Separate colors and determine the rate of change with T !
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Topology at high T

Fixed topological sector integral (susceptibility)

Instead of waiting for tunneling events,
we make simulations in fixed Q sectors. How to get

Z1/Z0 =?

First calculate derivative of logZ1/Z0:

b1(T ) ≡ d logZ1/Z0

d logT

Use fixed Nt -approach, ie. T = (aNt)
−1 is changed by β:

b1(T ) =
dβ

d log a
(
⟨Sg⟩1 − ⟨Sg⟩0

)
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Topology at high T

Map of simulations
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Topology at high T

Topological susceptibility at the physical point

Though topological change is very rare, result up to about 3 GeV.
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