Quantum Connections:
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Quantum Connections Series, Summer School In Sweden, 22 June 2023 :




Universal Physics Across Scales

Shen Lab

Dirac and Majorana Fermions Kibble-Zurek Physics Higgs-Anderson mechanism
Quantum Materials Cosmic structure formation Elementary Particles
Vortices in Helium Superconductors

Powerful Symmetry Considerations; E.g. Noether’s Theorem




Simple Models---Simple Harmonic Oscillator




Simple Models---Simple Harmonic Oscillator
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Trapped particles, Nanomechanics,
Phonons, plasmons, other excitations..
Quantum Hall physics, and more....

Luo et al, Nat. Comm (2018)
Nanomech. Osc coupled by phonons

Lee, Papic, Thomale, PRX(2015)




Inverted Harmonic Oscillator (IHO)

A



Inverted Harmonic Oscillator (IHO)

“Quantum Escapades” (since early 1900’s)
Nuclear decay, Scattering, Cosmology
Activation, Atomic cooling, Quantum Chaos....

S5
New Scientist -lhl:'"-lr"




Today’s
Explorations



Coherent States

Quantum Hall Point Contact Squeezing Quantum Optics

Hawking-Unruh radiation
Quasinormal Modes

\. I |
T Angrican

Black Hole Dynamics
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Quantum Hall system
Charged patrticles in 2D subject to high magnetic fields

Integer and Fractional Quantum Hall Effects

For e.g., Tsui, Stormer, Gossard PRL 48 (1982)

Quantized Hall Conductance — v e?/h
Precise measure related to universal constants




Quantum Hall system
Charged patrticles in 2D subject to high magnetic fields

Integer and Fractional Quantum Hall Effects

Fractional quasipatrticles

For e.g., Tsui, Stormer, Gossard PRL 48 (1982)

Quantized Hall Conductance — v e?/h
Precise measure related to universal constants




Quantum Hall Point Contacts (QPC)

Constrictions which connect opposite edges of the Hall bar

Quantum Tunneling across QPC
Probe of fractional charge: Shot noise

Probe of fractional statistics (anyons):
Two-particle correlations

Fractional Charge: E.q. Kane and Fisher, (1994); Saminadayar et al., (1997), R de-Picciotto et al., (1997)
Fractional Statistics: Bartolomei at al, Science (2020); Nakamura et al, Nature Physics (2020)




Quantum Hall Basics
Charged patrticles in 2D subject to high magnetic fields

Symmetric gauge Magnetic length — URRTPA)




Quantum Hall Basics
Charged patrticles in 2D subject to high magnetic fields

Symmetric gauge Magnetic length — URRTPA)

Choose appropriate conjugate variables
Map to 1D simple harmonic oscillator, Landau levels
Each Landau level—infinite degeneracy




Quantum Hall Basics
Charged patrticles in 2D subject to high magnetic fields

right-moving skipping orbit
m A
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Magnetic length cyclotro
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Symmetric gauge




g ng skipping orbit
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Magnetic length G O 39 O o O
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™ left-moving skipping orbit

Compare with 1D SHO




Lowest Landau Level (LLL)

Projecting to the lowest Landau level: II; - 0,B - oco,n - 0....

Symmetric gauge:
Degenerate states---
eigenstates of angular momentum




Lowest Landau Level (LLL)

2y — 1 ,m—|z|?/4th
m "] Var2mml © €

Symmetric gauge:
Degenerate states---
eigenstates of angular momentum

|z| = v2miég

X and Y coordinates do not commute

Projecting to the lowest Landau level: I1; - 0,B - oco,n - 0....




Parallels with Quantum Optics




Quantum Optics Parallels— Quantum Uncertainty

Uncertainty in conjugate quantities:
Position-Momentum (also SHO)
Number-Phase (single-mode photons)

Quantum Hall:
X-Y
Angular Momentum-Phase




Quantum Optics Parallels— Quantum Uncertainty

Uncertainty in conjugate quantities:
Position-Momentum (also SHO)

Number-Phase (single-mode photons)

Quantum Hall:
X-Y
Angular Momentum-Phase

DO | SF

Coherent States:
Respect Minimum uncertainty
Superposition of fixed number states

LS = <1<y




Quantum Hall

Angular momentum eigenstates

L|n) =nh|n)

Coherent States:

Respect Minimum uncertainty
Here, in real space---centered around Z;
Also, no dynamics (unlike SHO and photons)

LLL Coherent States @

Coherent States—Ilocalized superpositions

) o0 Z*)n




Quantum Hall Tunneling and
Saddle Potentials

Disorder



Point contact, saddle potential, beam-splitter

Quantum Hall (QH) :
Point contact
W= V(Y=
Saddle potential




Point contact, saddle potential, beam-splitter

Beam splitter
Quantum optics, QH, and more

Quantum Hall (QH) .
Point contact
;= V(y-7)

Saddle potential




Tunneling and Inverted Harmonic Oscillator

Transmitted

Y

/’ "N
Reflected Incident

Tunneling across saddle
In-coming and out-going related by
Bogoliubov Transforms (cosh, sinh)




Saddle potential and Inverted Harmonic Oscillator

X and Y coordinates do not commute

Transmitted

s

/’ "N
Reflected Incident

Tunneling across saddle
In-coming and out-going related by
Bogoliubov Transforms (cosh, sinh)

H\Ho: Qf‘mU' (i;l“ ;‘\7&) m

Saddle potential—Ubiquitous—disorder landscape; area-preserving shear deformations

Fertig & Halperin, (1987); Subramanyan et al (2021)




Properties of the Inverted Harmonic Oscillator

1) Continuous Real Spectrum
2) Discrete Imaginary Spectrum

_ 1
EX==Fi(n+ z)

Scattering States
Continuous Real Spectrum

. 1 Resonant/Quasinormal Modes
=5 (sut+us) =i <“3u + 5) =i (Sas t3 Discrete Imaginary Spectrum




Saddle potential

Ny




Saddle potential and squeezing (optics)

Saddle potential




Saddle potential and squeezing (optics)

Squeeze Operator properties

SLS‘; }s(.oﬂ\ V- gé‘(?5°|hLT

Coherent States and Squeezing

\ ©°<

D)= up( b~ ec*b)
Coherent Stade: D) 10)
SDS =D Kook o' ® Sink r)




Analogy with quantum optics

Follows equipotential contours

Saddle acts as squeezing operator
e’ = Utl®/h

e Path: Xe—Utlz/h’ YeUtﬂ/h)




Saddle potentials as beam splitters

R ——

Beam Splitter




Tunneling, beam splitter, two-particles

Did the two particles go In

- the same direction or different ones?
it

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, ( 2019)

E.g. Hong, Ou and Mandel (1987)



Quantum Hall Anyon beam-splitter

Anyon signatures
observed in experiments!

MESOSCOPIC PHYSICS . N
Fractional statistics in anyon collisions

H. Bartolomei'", M. Kumar'* {, R. Bisognin’, A. Marguerite’{, J.-M. Berroir’, E. Bocquillon’, B. Plagais’,
A Cavanna’, Q. Dong’, U. Gennser”, Y. Jin’, G. Féve'

Bartolomei at al, Science (2020);




Saddle potential beam-splitter properties




Saddle potential beam-splitter properties

Saddle-defined horizon — Black Hole physics!



Black Hole dynamics and Quantum Hall parallels
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Point contact, saddle potential, beam-splitter

Beam splitter
Quantum optics, QH, and more

Quantum Hall (QH) .
Point contact
;= V(y-7)

Saddle potential




Saddle potential and squeezing (optics)

Squeeze Operator properties

SLS‘; }s(.oﬂ\ V- gé‘(?5°|hLT

Coherent States and Squeezing
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Coherent Stade: D) 10)
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Analogy with quantum optics

Follows equipotential contours

Saddle acts as squeezing operator
e’ = Utl®/h

e Path: Xe—Utlz/h’ YeUtﬂ/h)




Tunneling, beam splitter, two-particles

Did the two particles go in E.g. Hong, Ou and Mande (1967)
the same direction or different ones?

Reminiscent of Hanbury-Brown Twiss experiments
For stellar bodies

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, ( 2019) HBT (1954)




Tunneling, beam splitter, two-particles

Did the two particles go in
the same direction or different ones?

Quantum Statistics:
Bosons: Same

Fermions: Different
Anyons: Depends on initial conditions




Tunneling, beam splitter, two-particles

Did the two particles go in E.g. Hong, Ou and Mande (1967)
the same direction or different ones?

- Two particles in the lowest Landau level!
s

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, ( 2019)




Two-anyon model

+ 5 (pe + 40y + 5 (py — o)

qB

Center of mass: (E, 13)

Relative co-ordinates: (7?, 25)

Magnetic field B perpendicular to plane

Anyonic feature

V(=) = e

E.g. Leinaas and Myrheim, 1977; Wilczek 1982
Halperin, 1984, Arovas, Schrieffer, Wilczek, 1984



Two-anyon LLL Hilbert space

Center of mass Relative coordinates

Angular momentum eigenstates

L In), = nhn), LIk, o)y = (2k + a)hlk, o),

Localized (coherent) states

o0 oo
Z*)n /2 2k+a ‘ ‘
Jye=c¢€ |Z|2/25 —( n za—NazE k, o), Z

z,

7=(z2,+z,)/2

T. H. Hansson, J. M. Leinaas, J. Myrheim ,1992 ; H. Kjonsberg and J. M. Leinaas, 1997



Two-anyon LLL Hilbert space o

Relative coordinates:

Guiding center coordinates Angular momentum eigenstates

a= (2 +9°)/81% b= (2" —§°) /817 Llk, ) = (2k + a)filk, a),
¢ = j2) /812, L = h(26 — 1/2 22kt
( y yx )/ ) ( a / ) ¢k(ﬂ X T(2k 1
Respect sp(1,R) algebra \/ (2k+a+1)
Localized states _ Z z* [2)2kte e, o) Z=Z1zz
i/ (not coherent states) Na, - \/I‘ 2% +a+ 1) vkl o 3
/sl \ z,
t
Fermions/

HLM92; KL97

2
Bosons ‘Z>1/0 = el*! /SNl/O,z“Z)d F |— 2)dl,




Bunching properties

Bunching parameter

(7) = (& +57)

Fermions

<@ O-

Bosons

=@ @<



Bunching properties

Bunching parameter

0.8 AN - a=1/3
N -~ a=3/5

O.ﬁ‘-.\\ \ —_ (I:].
\\

Fermions 0 1 2 3 4 5

<@ O-

Bosons

=@ @<




Saddle potential beam splitter properties

Did the particles go in
the same direction or
different ones?

Behavior of <y,y,>

S.V. & N. R. Cooper, 2010
V. Subramanyan and S. V. 2019




Saddle potential beam splitter properties

Did the particles go in
the same direction or
different ones?

Depends on statistics
and bunching parameter-
Behavior of <y,y,> “DUAL NATURE”

1
4

Im[2]? — =x + 6

(i) = e |l 2] .




Quantum Hall Anyon beam-splitter

Anyon signatures
observed in experiments!

MESOSCOPIC PHYSICS . N
Fractional statistics in anyon collisions

H. Bartolomei'", M. Kumar'* {, R. Bisognin’, A. Marguerite’{, J.-M. Berroir’, E. Bocquillon’, B. Plagais’,
A Cavanna’, Q. Dong’, U. Gennser”, Y. Jin’, G. Féve'

Bartolomei at al, Science (2020);




artok sencr 368, 173177 (0200 K

MESOSCOPIC PHYSICS

Fractional statistics in anyon collisions

H. Bartolomei'*, M. Kumar'* {, R. Bisognin’, A. Marguerite’ , J.-M. Berroir', E. Bocquillon’, B. Placais’,

A Cavanna’, Q. Dong’, U. Gennser”, Y. Jin®, G. Féve's

Bartolomei at al, Science (2020)

NATURE PHYSICS | VOL 16 | SEPTEMBER 2020 | 931-93¢
Direct observation of anyonic braiding statistics

J. Nakamura'?, S. Liang'?, G. C. Gardner ©%* and M. J. Manfra 23455

Nakamura et al, Nature Physics (2020)




Saddle potential beam-splitter properties

Saddle-defined horizon — Black Hole physics!



Black Hole dynamics and Quantum Hall parallels:

* Hawking-Unruh Radiation
» Black hole ringdown




Saddle potential and relativistic dynamics

Time evolution

« Saddle acts as squeezing operator

e = Utl*/h

Parallels--commonality in symmetry and algebra; Squeezing and dilation; Lorentz boosts and Bogoliubov transforms




Saddle potential and relativistic dynamics

Time evolution

» Saddle acts as squeezing operator

Parallels motion of accelerating observer

Rindler coordinates ---accelerating frame as seen by inertial observer

x = e® coshar,t = e* sinhar

“Light cone Coordinates”

Rindler Hamiltonian —— Time translation generator in Rindler spacetime




Hawking-Unruh Radiation

EYENT HORIZONS: From Black Holes to Acceleration

Event Horizon 7

" Stationary
| Observer

Hawking _,/
Radiation

A stationary observer outside
the black hole would see the
thermal Hawking radiation.

T Event Horizon

Accelerating
Observer

_in Yacuum

}

Unruh *

e

Radiation

An accelerating observer in vacuum
would see a similar Hawking-like
radiation called Unruh radiation.

Found in Physicsnapkins blog



Hawking-Unruh Radiation

EVENT HORIZONS: From Black Holes to Acceleration
Event Horizon — < Event Horizon
n"l‘

' Stationary
Ol?server' Accelerating

Observer
Black Hole inv_afuum aw|0M) = () E— (OMlaI)awloM) =0

Hawking _,f Unruh 3

Radiation Radiation \
A stationary observer outside An accelerating observer in vacuum 1- ) —
the black hole would see the would see a similar Hawking-like % bn | OR ) = 0 (OR | bﬂ bQ OR O

thermal Hawking radiation. radiation called Unruh radiation.

Bogoliubov Transformation/Squeezing

1
T —
= {OwIbbalOw) = —ma—



An analogue of Hawking radiation in the quantum Hall effect

Stone, Class. Qtm. Grav. (2013)

Probability of out-going particle

Exterior Region

» v Horizon

Black Hole Interior

Surface gravity K Edge-velocity; saddle strength

In-going and out-going states and quantum fields in two frames each related by a Bogoliubov transformation

Rindler (1969); Hawking, (1974); Unruh, (1976); Fertig & Halperin, (1987)




Black holes, information paradox,
superconductor analogues

o 3(\1 ho ”.Z,Qn

black hole singularity

Andreev reflection

Black hole, while accepting particles, reflects quantum information in the outgoing modes

S. Manikandan and A. Jordan, Phys Rev. D (2020)




IHO and quasinormal modes

Decaying modes intrinsic to system
Related to black hole ringdown




Properties of the Inverted Harmonic Oscillator

1) Continuous Real Spectrum (scattering)
2) Discrete Imaginary Spectrum

S-Matrix poles and Wavepackets

W |?

0.0015
0.0010
0.0005 M
N\ .
2 6 ’

4

Resonant/Quasinormal Modes
Discrete Imaginary Spectrum




Discovery of Gravitational \Waves

Black hole merger

Feb 2016:
First Announcement

|l Selected for a Viewpoint in Physics week ending
PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016

(=g
¢

»
Observation of Gravitational Waves from a Binary Black Hole Merger
B.P. Abbott et al.’

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)



Discovery of Gravitational \Waves

Ringdown and Quasinormal Modes Black hole merger

Merger RIng-
down

-84
—=50-0 =300 =10-0 10:0 300 500
x

Fig. 3. The outgoing wave packet youi (x) at spatial inflnity correspond-
ing to the incident Gaussian wave packet in (z)=e92? with a=1.

[8] C.V. Vishveshwara, Nature (London) 227, 936 (1970).

Livingston Hanford

Extensive numerical simulations
Black Hole QNMs in diverse contexts




Original derivation of black hole QNMs

Scattering of Gravitational Radiation N

C. V. Vishveshwara

by a Schwarzschild Black-hole

ds?= — (1—2m/r)de®+ (1 — 2m/r)-1 dr? + *(dO% + sin?0 de?)

Wave packet scattering off dP
Schwarzschild metric + (ho(r) dt Ao + Ry (r) dr do) exp(—1wt) sin O T I{ cos 0)

0-60

Wave equation
In ‘tortoise coordinates’

100

’ig. 1. The effective potential Vet for the odd-parity gravitational
Fig waves of Lheplgwest mode ! =2 plotted against £*.




Original derivation of black hole QNMs

Scattering of Gravitational Radiation

by a Schwarzschild Black-hole

NATURE VOL. 227 AUGUST 29 1970

A

C. V. Vishveshwara

Wave packet scattering off ds*= — (1—2m/r)de*+ (1 = 2m/r)~" dr® + r*(d0? + sin®0 do?)
. : . . dpP
Schwarzschild metric + (ho(r) dt Ao + Ry (r) dr do) exp(—1wt) sin O T I{ cos 0)

Wave equation
In ‘tortoise coordinates’

Although the scattering of monochromatic waves did not show ob-
vious characteristics of the black hole, I felt that scattering of wave
packets might reveal the imprint of the black hole. So, I started pelt-
ing the black hole with Gaussian wave packets. If the wave packet was
spatially wide, the scattered one was affected very little. It was like a
big wave washing over a small pebble. But when the Gaussian became
sharper, maxima and minima started emerging, finally levelling off to
a set pattern when the width of the Gaussian became comparable to
or less than the size of the black hole. The final outcome was a very
characteristic decaying mode, to be christened later as the quasinormal
mode. The whole experiment was extraordinarily exciting.




Black hole quasinormal modes in QH point contacts

Wave packet scattering off

dsa=(1_@) dtt— (

Schwarzschild metric

2m

— 1% (d* + sin? 6 dg?).

024

018

0

—011

022

—034

e

=500 —300 =100 10:0 30-0 500

glngw'.pkt ()tx;)ﬁilnﬁni

. The out,
lnz i the incm nt Gaussian

n {2)=

ith 1

Tunneling across saddle potential

. I__L Sassetti ~



Black hole quasinormal modes in QH point contacts

Tunneling across saddle potential
Wave packet scattering off g P

Schwarzschild metric 1D Inverted SHO potential scattering

ds? = (l —@) dt'—(l—z—'-")—ldr“
r r

— 1% (d* + sin? 6 dg?).

Quasinormal Mode
Spectrum!

—0-84 L L 1 L
=500 —300 =100 10:0 30-0 500
z

Fig. 3. The outgoing wave packet wout () at spatial infinity correspond-
ing to the incident Guum?r]m wnvemincket Yin {z)=e8r? with a=1.




Black hole quasinormal modes in QH point contacts

Common IHO model, black hole, QPC

. Reflected Incident
—co | Effective oo

Event Horizon | potential I,

S. Hegde, V. Subramanyan, B. Bradlyn, S.V.;PRL (2019), Ann Phys P. W.A Issue, (2021)

Characteristic scales for ringdown:

Black hole— One Solar Mass: 0.35ms

Quantum Hall—Potential Strength (micron spread)
Energy k*125mK: Nanosecond scale
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In Summary,

Coherent States

Quantum Hall Point Contact Squeezing Quantum Optics
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Black Hole Dynamics




