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At large time and distance scales the laws of nature appear to be entirely
deterministic.

But at the atomic scale, indeterminism seems to emerge:
quantum mechanics.

Whence this mysterious fact? Why are we unable to follow atoms and
molecules more precisely when they evolve?

Copenhagen: do not ask that question, just follow the rules
and you get the best predictions that are possible.

Alas, the predictions come in the form of probabilities.
Like weather predictions
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As in the case of the weather,

we wish to explain where the statistical fluctuations come from.
Is there an underlying, deterministic set of laws? How can we find them?

According to J.S. Bell, CHSH, A.Aspect and many others: NO !!

But I think something is happening that they did not foresee,
and it explains where the stochastic behaviour may originate!

Suspicion :

Due to the butterfly effect, we cannot avoid all uncertainties,

that implies:

we cannot know the initial state as precisely as needed.

But, for understanding the laws of nature, it may well be necessary
to assume complete determinism.
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Consider this clue:
an unstable particle, regardless whether it decays

(in a few nanoseconds or after a lifetime of billions of years,)
follows an exponential decay law.

Can this be squared
with determinism?

Yes ! Just assume that our vacuum is filled with (deterministic)
white noise. In practice, this white noise will be completely stochastic;
the decay could be attributed to some rare coincidence in the
background, whose probability will always stay the same.

Apparently, we need a theory where the vacuum is a busy place:

Can one construct models along such lines?

[see later in these talks]
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Basic Ingredient for Models

12

3 N

Step 1. The periodic chain.

Ontological states:
|0〉, |1〉, . . . |N − 1〉

Evolution law:
|k〉t+δt = U(δt) |k〉t

U(δt)|k〉 = |k + 1 mod N〉

U(δt) = e−iH δt , d|ψ〉
dt = −i H|ψ〉 ...

|n〉E def
= 1√

N

N−1∑
k=0

e2πikn/N |k〉ont ,

|k〉ont = 1√
N

N−1∑
n=0

e−2πikn/N |n〉E . ...

k = 0, · · · , N − 1 ;
n = 0, · · · , N − 1 .

H = 2π
N δt n = ωn

2

1

0

k

(δt)-1

T
 -1
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Step 1a. The continuum limit.

Ontological states: |φ〉
Evolution law:
d
dt |φ〉t = ω

U(δt)|φ〉 = |φ+ ωδt〉

U(δt) = e−iH δt , d|ψ〉
dt = −i H|ψ〉

|n〉E def
= 1√

2π

∮
e iφn/N |φ〉ont ,

|φ〉ont = 1√
2π

∞∑
n=0

e−iφn/N |n〉E .

0 ≤ φ < 2π ;
n = 0, · · · , ∞ .

We generate exactly the spectrum
of the harmonic oscillator : H = ω n

2

1

0

k

∞
ω
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Step 2):

Generic, finite,
deterministic,
time reversible
models

are mixtures
of different

oscillators.

E

| 1 〉

| 0 〉

| N −1 〉

0

δE

δE +2π

E

0 δEi

E

0

The time steps δt are discrete, . . .
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In the discrete case,
the Hamiltonian is periodic in energy,

There are only N energy levels.

Therefore,

There is one lowest energy state (“vacuum state”), and there is
one highest energy state (“anti-vacuum”)

possibly important in black hole physics,
where the time coordinate flips across the horizon.
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These models are too simple to generate “real” quantum mechanics.
But even classical systems may be fundamentally complicated. Can one
arrange things such that “genuine” QM can be mimicked?

YES !! By assuming a

fast fluctuating background.
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This is our
third step of sophitication: Split the universe up in small sectors, each
sector containing only a finite number of states.
Each sector can only consist of pieces that are periodic.

In first approximation there is no interaction between the sectors.
Then introduce interaction exactly as in QFT: get the effects due to the
steps used in the usual perturbation theory.

Now put the sectors with very high oscillation frequences in their energy
eigen states, Now the energies do not commute with the ontological
operators in the slow states. This is why any interaction between fast
and slow, turns our theory into a quantum theory.
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Think of at least one variable, with ultra short periodicity. at every ~x ,

(log scale)

Energy

physical

invisible
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The total Hamiltonian H = H fast + H int acts exactly according to the
rules of QM.

We cannot follow the fast variables!

Therefore, we have to project out the lowest N energy states.

This does not affect the equations when H int is small.
Now H int generates a Hslow, where [H fast, Hslow] 6= 0 ,
and, since the states used in H fast are energy eigen modes, the
perturbative steps are real quantum mechanics,

whereas the theory in total is still ontological.
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This creates a new – and interesting – situation,
which can indeed occur in ordinary classical theories.

Quantum mechanics is
Nature’s punishment for doing perturbation theory !

See arxiv:2010.02019 .

for a completely classical model, which behaves exactly
as a quantum system.

Outline:
Let there be given a quantum system with a finite dimensional ‘Hilbert’
space of states,
and we ask for an arbitrary Hamiltonian: a K × K hermitian matrix.

We can construct a model that will generate this matrix as an ‘effective’
or ‘emergent’ quantum Hamiltonian.
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Simple example:
A particle, decaying by an exponential decay law.

K = 2. The particle (“atom”) can be in two states: 1) one entire
particle, 2) it has decayed.

The fast variables i each live on a circle with discrete period Li = Niδt,
like in our elementary unit model.

Take the different Ni to be relative primes.

All periods Ni are much shorter than the inverse energies of the decaying
atom or particle.
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e.o.m.: xi (t + 1) = xi (t) + 1 mod Ni .

This is driven by the hamiltonian:

H =
∑

i pi , pi = ∂
∂xi

= 2πni
Ni

, ni = 0, 1, · · · , Ni − 1 .

Assume an even distribution of these variables. This means that, in our
formal quantum language, they are all in their energy ground states
(only if the distribution is not even, we need the excited states).

Their excitation energies, are at least 2π/Niδt, which we take to be
much larger than the energies of our decaying atom.

According to thermodynamics they are rarely in an excited state. In the
ground state, the probability distribution is completely flat.
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Now consider our two-state atom.

We begin with

Hclass = 0.

Now consider its two classical states, 1 and 2. Assume that I want to
add δHij to my Hamiltonian. Our classical atom would only allow three
possible forms:

H = α1σ1 ,

with σ1 =
(0 1

1 0

)
, σ2 =

(0 −i
i 0

)
, σ3 =

(1 0
0 −1

)
.

If we impose α1 = 1
2π , α2 = α3 = 0 , then

e−iH = −
(0 i
i 0

)
; is a classical flip-flop . . .
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taking place with frequency 1 in the given time unit.

In our atom system of 2 atomic states, we want much lower energies,
larger time units, and, if K > 2 different, non-commuting elements in the
Hamiltonian.

|αi | 6= 0 , but � 1 would give real QM.

To obtain such behaviour in our model, we now use the fast fluctuating
variables xi :

Only if xi all take on some special value, say xi = x0, our system makes
its classical flip-over.

Thus, we add to the total Hamiltonian, a term

δH12 = 1
2πσ

12
1

∏
i

δ(xi − x0) . (1)

Here, σij
1 is the flipping operator σ1 acting on the two state system

|1 〉, |2〉 .
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Our fast variables are all in their lowest energy state, which takes the
same value at all points |xi 〉.
Thus we use the expectation value of Hamiltonian (1) as the new
effective Hamiltonian:

δH eff
ij → 〈δHij〉 = 1

2πσ
ij
1 · 1∏

i Ni
; δt = 1

Indeed, classically, the flip-flop takes place after time
∏

i Ni .

One can also use σij
2 and σij

3 , the same way.

And now, we can repeat this for all other flipflops, to obtain a
Hamiltonian

H eff =
∑
i<j, a

1
2πσ

ij
a ·

nij,a∏
Ni
.
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This way, for Ni and nij large enough, we can mimic almost any
Hamiltonian for the slow system.

But how can this model be quantum mechanical and classical at the
same time?

We are only using quantum terminology. This is QM , using perturbation

theory w.r.t. the induced H eff .

However, There is a catch.

All usual quantum paradoxes arise when you
allow an observer or detector, to change the ontological basis at will.
This freedom is not granted in our models. From the Big Bang onwards,
we must assume that we have real, ontological variables that stay that
way. Rotating your detector towards a non ontological basis is impossible.

Only ontological states evolve into other ontological states. The
Ontology conservation law.

It holds for completely deterministic models, and it holds for QM. Only
when ignoring this rule you get into paradoxes.
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If someone points out to you some phenomenon that cannot be explained
classically, then please answer:
This can be understood in a deterministic model, but you must have

Determinism all the way
Bob and Alice have no free will
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Our proposal is now to take our models and perform the 1/Ni expansions.

If Ni are large enough, these expansions converge exactly as in quantum
field theories.
They do not converge precisely, and nobody cares about that.

And there is a bonus: The physical values of 1/Ni are rational. This
suggests that some values for the coupling strengths in the Standard
Model (SM) will be preferred:

The Ni must be sufficiently small !!
Quantum gravity puts limits on the density of quantum states
(black holes)
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The SM is controlled by (local and global) symmetries. Translation
symmetries on a lattice (the cellular automaton), are easy to understand.
Also the continuous translations! But how do we perform

– rotations

– Lorentz transformations

– Local gauge symmetries

– BEH mechanism,

– General coordinate transformations ???

I think this question can be studied and understood. The answers might
shed new lights on the > 20 freely adjustable parameters of the SM.
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Imagine what happens when you discretise physics:

The Cellular Automaton: Only classical evolution equations.
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Claim:

• A cellular automaton is mathematically equivalent to a genuine
quantum field theory on a lattice.

•? Every lattice quantum field theory can be accurately approximated
by a classical cellular automaton.
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Are there ways to link discrete systems to the Standard Model?

Suppose we want to construct the most direct classical model that would
be linked to

free bosons in D + 1 dimensions? For instance D = 3
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http://arxiv.org/abs/2306.09885

Bosons are harmonic oscillators.
The only complication is that they are harmonically coupled oscillators:

H = 1
2

∑
i

p2i + ωi j qi qj .

This should be easy to handle: diagonalise ωi j .

Put the bosons inside a box with periodic boundary conditions, and
Fourier transform. In this case, momenta ~k are discrete:

kiLi = 2πni , ni = 0, ±1 , ±2 , · · ·

26 / 48



k
x

k
y

The function ω(~k ) in Fourier space is diagonal:

ω =
√
~k 2 + M2
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This model has the same energy spectrum as a harmonic oscillator:
En = ω n

Therefore we can map these Hilbert spaces onto one another in the
energy basis.

Our rotating variable on a circle is the quantum harmonic oscillator.

In the circular model, define the annihilation operator a and creation a†

as

〈n − 1| a |n〉 =
√
n ; 〈n| a† |n − 1〉 =

√
n . and

p =

√
ω

2
(a + a†) and q =

1

i
√

2ω
(a† − a) .

Then: [a, a†] = 1 , E = ωn = ωa†a = 1
2 (p2 + ω2q2 − 1) .

28 / 48



Time dependence of a and a†:

a(t) = a(0)e−iωt , a†(t) = a†(0)eiωt .

Therefore: [a(t), a(0)] = 0 , [a†(t), a†(0)] = 0 .

Can we use a(t) as “ontological variable” for the harmonic oscillator ?
Or a†(t) ? ...

I tried, but there are two problems:

1) We can only use either a(t) or a†(t) , but not both . . .
2) a(t) is complex → its eigen states are all over the complex plane.
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There is a better way.

Construct an operator b(t) obeying:

〈n − 1 mod N |b|n〉 = 1 , 〈n|b†|n − 1 mod N 〉 = 1 .

Also here, b(t) = b(0)e−iωt , b†(t) = b†(0)eiωt .

but now, b(t) and b†(t ′) all commute !

b and b† are the ontological parameters of the harmonic oscillator.

We can write: b = (1 + a†a)−
1
2 a = a(a†a)

1
2 .

We do have to write n − 1 mod N ,
but we can easily send N →∞ at the end.
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In ~k space, all ontological states have indefinite numbers of bosons at
every ~k. Indeed he occupation numbers can be anything and all
configurations have the same probability.

‘in quantum field theory we take it for obvious that there are only very fe
bosons in the entire space. So we must assume the initial state to have
almost zero bosons. Then this means that all ontological states are
equally probable.
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Quantum field theories (QFT) are just harmonically coupled oscillators.
Should that not be easy? This would prove that (in the absence of
interactions) QFT can also be mapped onto ontological theories.

But first a possible complication:
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Annihilation: a =
1√
2ω

p − i
√

1
2ω q , [q, p] = i ;

Creation: a† =
1√
2ω

p + i
√

1
2ω q , [a, a†] = 1 .

after which we write H = ω a†a = 1
2 (p2 + ωq2−ω) ; [a,H] = ωH

From these derive matrix elements: a†a = n;

〈n − 1|a(t)|n〉 =
√
n e−iωt , 〈n|a†(t)|n − 1〉 =

√
n eiωt .

Notice time dependence.

The a operator could be used as ontological operator, since it commutes
with itself at different times t. But a does not commute with a† .
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We can do better. Introduce operators b , b† with matrix elements

〈n − 1 mod N |b(t) |n〉 = e−iωt , 〈n|b†(t) |n − 1 mod N 〉 = eiωt .

We also have [b, H] = ωH, but now:

[b(t), b†(0)] = 0 ; and [b(t), b(0)] = 0 .

In terms of the variables b and b†, the entire evolution process keeps
them diagonalised. These must be the ontological variables we looked for.

Does this give us ontological bosons ?

If we know the b(t) and b†(t), all other operators p , q , and H follow.
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b only rotates. Its amplitude stays constant. Therefore, write

b = e−iϕ. Since ϕ(t) = ωt , we can write

H = i
∂

∂t
= ω

∂

∂ϕ
= −iω b ∂

∂b
.

The states ϕ = nωt describe the rotation of b with time.

From there, define a and a† :

a = (1 + H)
1
2 b = bH

1
2 ; a† = b†(1 + H)

1
2 = H

1
2 b† .

Then fill in:

p =

√
ω

2
(a + a†) and q =

1

i
√

2ω
(a† − a) .
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Any element of Hilbert space can be written as a superposition of
collapsed wave functions: Dirac delta peaks, in any basis you like .

But if an operator commutes with itself at all times, then delta peaks
evolve as delta peaks.

The b operator is such an operator. Ergo,

This theory is quantum mechanical and classical at the same time.

Can we do the same thing with free bosons? They are nothing more than
harmonically coupled oscillators!

Let’s try.

36 / 48



Any element of Hilbert space can be written as a superposition of
collapsed wave functions: Dirac delta peaks, in any basis you like .

But if an operator commutes with itself at all times, then delta peaks
evolve as delta peaks.

The b operator is such an operator. Ergo,

This theory is quantum mechanical and classical at the same time.

Can we do the same thing with free bosons? They are nothing more than
harmonically coupled oscillators!

Let’s try.

36 / 48



Any element of Hilbert space can be written as a superposition of
collapsed wave functions: Dirac delta peaks, in any basis you like .

But if an operator commutes with itself at all times, then delta peaks
evolve as delta peaks.

The b operator is such an operator. Ergo,

This theory is quantum mechanical and classical at the same time.

Can we do the same thing with free bosons? They are nothing more than
harmonically coupled oscillators!

Let’s try.

36 / 48



For quantum bosons in D + 1 dimensions:

H =

∫
V

d3~x
(
1
2 (Π2(~x) + ~∇Φ(~x)2 + M2Φ2(~x)

)
,

↑
p2

↑
(~k 2 + M2)q2

Put them in a box with periodic boundary conditions.
lengths Lx , Ly , Lz . Fourier transform. Then the coupled oscillators

diagonalise. And the vectors ~k discretise:

H =
∑
~k

(
1
2 (Π2(~k ) + (~k 2 + M2)Φ2(~k )

)
,

Remember notation: Φ2(~k) ≡ Φ†(−~k)Φ(~k).

Then do the same things as in previous slides,
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The energy density operator H(~k ) diagonalises in ~k space. Use the

energy density, write ω(~k ) and construct b(~k ), which will also evolve
by rotating in circles.

And then, Fourier back to get this operator in position space.

Then,
b(~x ) should become our ontological variable.

Shouldn’t it ?

Shouldn’t it ??

SHOULDN’T IT ???
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Things are not so simple. The field b(~k ) runs in circles. But b(~x ) is a
superposition of many such fields. It does not seem to go in circles.

When Fourier transforming an arbitrary function back to ~k space, it
won’t go in circles.

The equations in slide number 26 do not seem to obey locality,
How do we guarantee the the constraint

|b(~k )|2 = b∗(−~k ) b(~k )
?
= 1

It goes as follows.
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But we can prove something else. In ~x space the field b(~x , t) field obeys:

∂

∂t
b(~x , t) = −i

∫
d~y F (~y − ~x)b(~y , t);

F (~z) =
1

(2π)3

∫
d3~k ω(~k)ei

~k · ~z ,

where ω(~k) = +

√
~k 2 + M2 .

Squaring this gives: (∂2t − ~∂2x +M2) b(~x , t) = 0 , a local equation!

And moreover this is the standard classical equation. We proved that not
only the quantum theory is equivalent to a classical theory, it is the
classical theory.

But then, this could also hold for the interactions.

Compare the quantum theory

H =
(
1
2 (Π2(~k ) + (~k 2 + M2)Φ2(~k )

)
+ λ

4!Φ(~x)4,

with the corresponding classical theory. Can’t there still be a mapping?
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The quantum theory would just be the classical system in disguise.
Before shouting: “Impossible !” consider the following:

Assume we consider only that part of the theory where we allow only

physical particles that have energies E (~k) =
√
~k2 + M2 < Λ , a cutoff.

What is new in our formalism is that, even in the classical theory, one
may define energy as in a quantum system. This means that the
ontological fields b(~x ) do not commute with the energies.

Postulating that at large ~k values the energies are zero means in practice
that these states include all possible values for the ontological states,
in a statistical distribution that is completely flat

We can’t diagonalise the energies and the ontological variables at the
same time. The interaction terms 1

4!λΦ4 will couple things that are not
all diagonalised.

That is where quantum mechanics comes from!
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And now imagine what happens when you discretise physics:

The Cellular Automaton: Only classical evolution equations.
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Claim:

• A cellular automaton is mathematically equivalent to a genuine
quantum field theory on a lattice.

•? Every lattice quantum field theory can be accurately approximated
by a classical cellular automaton.
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A cellular automaton is the prototype of a deterministic system. The
evolution law is straightforward and requires no Hilbert space.
Yet, the mathematics of quantum operators is indispensable. It does not
change the theory, but enables us to perform statistical calculations that
otherwise would be impossible.

This is the cause of much confusion.

Consider the bosonic particles in our theory. They are harmonic
oscillators and as such deterministic. Of course the evolution law defines
an operator that generates the evolution in time. In all respects, this
operator plays the role of a quantum Hamiltonian. It enables us to do the
statistics for all events in such a model.

In a world of non-interacting bosons all this is obvious and
straightforward.
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The Hamiltonian generates super fast and super slow oscillations. This
defines energy. At low energy (long time scales) it describes everything
infinitely precisely.

At the highest energies, smallest time scales, also everything is infinitely
precisely defined, but things happen much faster than we can register.
Here, QM is not a theory but a mathematical tool. We introduce the
energy eigen states for describing the fastest events. This requires very
little memory space so it is very efficient.
It works even though energy does not commute with time. Frequencies
close to Planck scale are all put in their ground states. This generates
formidable amounts of efficiency, but alas also uncertainties. The
zero-energy ground state, the vacuum, is a man-made quantum
superposition of all states. It’s a completely flat probability distribution.
But the first excited state is a highly energetic, and in general a highly
improbable, superheavy particle.
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Interactions, in principle, don’t change this situation. We can’t do this
exactly, because interactions would generate much more mixture and
longer time scales. Strictly speaking, if you want infinite precision, you
can’t handle interactions, even if you know what they are.

But in practice, we can do perturbation expansion.

In a cellular automaton, the interactions between the bosons are “rare”
events. They occur infrequently, when unlikely coincidences occur in the
fast particles. We can use 1/N expansions.

Possibly all interaction coefficients (“fine-structure constants”) originate
this way
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The problem is to guess what kinds of cellular automaton rules will
produce the complex symmetry groups of the SM. The calculation
presented here, may well provide for a trail to follow.
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THANK YOU
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