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Heavy Ion Collisions: What Next?
By recreating droplets of the matter that filled the microseconds-
old universe in ultrarelativistic heavy ion collisions, we have
discovered a liquid that, as far as we now know, is:

• The first liquid that ever existed; the “original liquid”. . .
• The liquid from which the protons and neutrons in today’s

universe formed, as the liquid fell apart into mist.
• At a few trillion degrees, the hottest liquid that has ever

existed.
• The earliest complex form of matter.
• The most liquid liquid that has ever existed, with a specific

viscosity ⌘/s ⇠ 0.1.
• In a sense the simplest form of complex matter, namely in

the sense that it is “close” to the fundamental degrees of
freedom of the standard model.

All great discoveries pose new challenges. My lectures on
Wednesday will be about some recent advances and What
Next?, namely the challenges for the decade to come. But
first, today’s intro will be vintage 2015...



Quark-Gluon Plasma
• The T ! 1 phase of QCD. Entropy wins over order; sym-

metries of this phase are those of the QCD Lagrangian.

• Asymptotic freedom tells us that, for T ! 1, QGP must

be weakly coupled quark and gluon quasiparticles.

• Lattice calculations of QCD thermodynamics reveal a smooth

crossover, like the ionization of a gas, occurring in a nar-

row range of temperatures centered at a Tc ' 150 MeV ' 2

trillion �C ⇠ 20 µs after big bang. At this temperature, the

QGP that filled the universe broke apart into hadrons and

the symmetry-breaking order that characterizes the QCD

vacuum and gives mass to hadrons developed.

• Heavy ion collisions produce droplets of QGP at tempera-

tures several times Tc, reproducing the stu↵ that filled the

few-microseconds-old universe.



QGP Thermodynamics on the
Lattice

Endrodi et al, 2010

Transition temperature Equation of state Curvature on µ–T Summary

Pressure and energy density

✏ normalized to the Stefan-Boltzmann limit: ✏(T! 1)=15.7
at 1000 MeV still 20% difference to the Stefan-Boltzmann value

essentially perfect scaling, lines/points are lying on top of each other

Z. Fodor Tc , EoS and the curvature of the phase diagram from lattice QCD (Wuppertal-Budapest results)

Transition temperature Equation of state Curvature on µ–T Summary

Entropy and trace anomaly

good agreement with the HRG model up to the transition region
Tc can be defined as the inflection point of the trace anomaly

Inflection point of I(T )/T 4 154(4) MeV
T at the maximum of I(T )/T 4 187(5) MeV
Maximum value of I(T )/T 4 4.1(1)

agreement with Aoki, Fodor, Katz, Szabo, JHEP 0601, 089 (2006) [arXiv:hep-lat/0510084]

Z. Fodor Tc , EoS and the curvature of the phase diagram from lattice QCD (Wuppertal-Budapest results)

Above Tcrossover ⇠ 150-200 MeV, QCD = QGP. QGP static
properties can be studied on the lattice.

BUT: don’t try to infer dynamic properties from static ones!
Although its thermodynamics is almost that of ideal, nonin-
teracting gas, QGP, this stu↵ is very di↵erent in its dynamical
properties. [Lesson from experiment+hydrodynamics. But,
also from the large class of gauge theories with holographic
duals whose plasmas have " and s at infinite coupling 75%
that at zero coupling.]
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Liquid Quark-Gluon Plasma
• Hydrodynamic analyses of RHIC data on how asymmet-

ric blobs of Quark-Gluon Plasma expand (explode) taught
us that QGP is a strongly coupled liquid, with (⌘/s) —
the dimensionless characterization of how much dissipa-
tion occurs as a liquid flows — much smaller than that of
all other known liquids except one.

• Quarks and gluons in QGP di↵use, without being confined
in hadrons. QGP flows. Its energy density and coupling
are so large that quarks and gluons are always bumping
into each other. Far from noninteracting; mean free path
hard to define; relaxation times ⇠ 1/T .

• Quarks and gluons in QGP are not confined — but also
not free.

• The discovery that it is a strongly coupled liquid is what
has made QGP interesting to a broad scientific community.



Ultracold Fermionic Atom Fluid
• The one terrestrial fluid with ⌘/s comparably small to that

of QGP.

• NanoKelvin temperatures, instead of TeraKelvin.

• Ultracold cloud of trapped fermionic atoms, with their

two-body scattering cross-section tuned to be infinite. A

strongly coupled liquid indeed. (Even though it’s conven-

tionally called the “unitary Fermi gas”.)

• Data on elliptic flow (and other hydrodynamic flow pat-

terns that can be excited) used to extract ⌘/s as a function

of temperature. . .



Viscosity to entropy density ratio

consider both collective modes (low T)

and elliptic flow (high T)

Cao et al., Science (2010)

η/s ≤ 0.4





Rapid Equilibration?
• Agreement between data and hydrodynamics can be spoiled

either if there is too much dissipation (too large ⌘/s) or if

it takes too long for the droplet to equilibrate.

• Long-standing estimate is that a hydrodynamic description

must already be valid only 1 fm/c after the collision.

• This is the time it takes light to cross a proton, and was

long seen as rapid equilibration.

• But, is it really? How rapidly does equilibration occur in a

strongly coupled theory?



Colliding Strongly Coupled Sheets of Energy

zµ
tµ

E/µ4

Hydrodynamics valid ⇠ 3 sheet thicknesses after the collision, i.e. ⇠ 0.35

fm after a RHIC collision. Equilibration after ⇠ 1 fm need not be thought

of as rapid. Chesler, Ya↵e 1011.3562; generalized in C-S,H,M,vdS 1305.4919;

CY 1309.1439 Similarly ‘rapid’ hydrodynamization times (⌧T . 0.7�1) found

for many initial conditions. 1103.3452, 1202.0981, 1203.0755, 1304.5172.

This was the best answer we had circa 2015.



Anisotropic Viscous Hydrodynamics
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Hydrodynamics valid so early that the hydrodynamic fluid is not yet isotropic.

‘Hydrodynamization before isotropization.’ An epoch when first order ef-

fects (spatial gradients, anisotropy, viscosity, dissipation) important. Hy-

drodynamics with entropy production.

This has now been seen in very many strongly coupled analyses of hydro-

dynamization. Janik et al., Chesler et al., Heller et al., ...

Could have been anticipated as a possibility without holography. But,

it wasn’t — because in a weakly coupled context isotropization happens

first.



⌘/s from RHIC and LHC data
• I have given you the beginnings of a story that has played

out over the past decade. I will now cut to the chase,
leaving out many interesting chapters and oversimplifying.

• Using relativistic viscous hydrodynamics to describe ex-
panding QGP, produced in an initially lumpy heavy ion collision,
using microscopic transport to describe late-time hadronic
rescattering, and using RHIC and LHC data on pion and
proton spectra and v2 and v3 and v4 and v5 and v6 . . . as
functions of pT and impact parameter. . .

• QGP@RHIC, with Tc < T . 2Tc, has 1 < 4⇡⌘/s < 2 and
QGP@LHC, with Tc < T . 3Tc has 1 < 4⇡⌘/s < 3.
Nota bene: this was circa 2015.

• 4⇡⌘/s ⇠ 10
4 for typical terrestrial gases, and 10 to 100 for

all known terrestrial liquids except one. Hydrodynamics
works much better for QGP@RHIC than for water.

• 4⇡⌘/s = 1 for any (of the by now very many) known strongly
coupled gauge theory plasmas that are the “hologram” of
a (4+1)-dimensional gravitational theory “heated by” a
(3+1)-dimensional black-hole horizon.
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QGP cf CMB
• In cosmology, initial-state quantum fluctuations, processed

by hydrodynamics, appear in data as c`’s. From the c`’s,

learn about initial fluctuations, and about the “fluid” —

eg its baryon content.

• In heavy ion collisions, initial state quantum fluctuations,

processed by hydrodynamics, appear in data as vn’s. From

vn’s, learn about initial fluctuations, and about the QGP

— eg its ⌘/s, ultimately its ⌘/s(T ) and ⇣/s.

• Cosmologists have a huge advantage in resolution: c`’s up

to ` ⇠ thousands. But, they have only one “event”!

• Heavy ion collisions only up to v6 at present. But they have

billions of events. And, they can do controlled variations

of the initial conditions, to understand systematics. . .



Beyond Quasiparticles
• QGP at RHIC & LHC, unitary Fermi “gas”, gauge theory

plasmas with holographic descriptions are all strongly cou-
pled fluids with no apparent quasiparticles.

• In QGP, with ⌘/s as small as it is, there can be no ‘trans-
port peak’, meaning no self-consistent description in terms
of quark- and gluon-quasiparticles. [Q.p. description self
consistent if ⌧qp ⇠ (5⌘/s)(1/T ) � 1/T .]

• Other “fluids” with no quasiparticle description include:
the “strange metals” (including high-Tc superconductors
above Tc); quantum spin liquids; matter at quantum critical
points;. . . Among the grand challenges at the frontiers of
condensed matter physics today.

• In all these cases, after discovery two of the central strate-
gies toward gaining understanding are probing and doping.
To which we will turn. . .
But first, what from 2015 Intro must be updated in 2022?
Many improvements, but big picture was solid in 2015! I
will highlight two ways in which it has been consolidated.



2023 Updates to 2015 Intro
• Much more complete understanding now of how hydro-

dynamization happens in kinetic theory. A weakly coupled
picture, applied at intermediate coupling. Hydrodynamiza-
tion in 1 fm/c is no longer surprising in kinetic theory.
Berges, Heller, Kurkela, Mazeliauskas, Paquet, Schlichting, Spalinski, Strick-

land, Teaney, Zhu...

• We had a qualitative, intuitive, understanding of how it can
happen on this timescale at strong coupling in 2015. Now
we have a qualitative, intuitive, understanding in kinetic
theory also: adiabatic hydrodynamization. Brewer, Scheihing-

Hitschfeld, Steinhorst, Yan, Yin, KR...

• Quantification! including uncertainty quantification. Via
work of many experimentalists and theorists, we now have
more, and more precise, experimental data that, together
with improved theoretical modeling, are driving Bayesian
determinations, by multiple groups, of the “shape” of the
fluid at the time of hydrodynamization, and key properties
of QGP and their temperature dependence.
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Eg. of Today’s State of the Art
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this fig: Nijs, van der Schee, arXiv:2304.06191



Eg. of Today’s State of the Art

Trajectum (Gürsoy, Nijs, Snellings, van der Schee)

this fig: Nijs, van der Schee, arXiv:2304.06191



What the State of the Art Makes
Possible...



What Next?

Two kinds of What Next? questions for the coming decade. . .

(and for Parts III and IV of my lectures. . .)

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.

But first, a second introduction....



How to Calculate Properties of
Strongly Coupled QGP Liquid?

• Lattice QCD. Perfect for THERMODYNAMICS. Calcula-

tion of ⌘, heavy quark di↵usion coe�cient, other transport

coe�cients, beginning. Hydrodynamization, jet quenching

and other dynamical processes not in sight.

• Perturbative QCD. The right theory, but the wrong ap-

proximation.

• Calculate properties, transport coe�cients, hydrodynamiza-

tion, dynamical processes for hot strongly coupled liquid in

other gauge theories that, via holography, are analyzable

at strong coupling. Right approximation, wrong theory.

Are some dynamical properties similar across strongly coupled

liquid phases in many theories? How can we use holographic

calculations to gain intuition re dynamical questions? Exam-

ples have arisen in the first Intro, and will arise again in last

lecture. So, a second Intro. . .





Thermodynamics at Strong
Coupling

• In the Nc ! 1 and � ! 1 limit, the thermodynamics of

strongly coupled N = 4 SYM plasma are:

"�=1
"�=0

=
P�=1
P�=0

=
s�=1
s�=0

=
3

4

• Teaches us that thermodynamics of very weakly coupled

plasmas and very strongly coupled plasmas can be very

similar.

• Reminds us that (approximate) conformality above Tc need

not mean weak coupling.

• But we don’t “need” this, in the sense that we have re-

liable lattice calculations of the thermodynamics of QGP

in QCD.



⌘/s and Holography
• 4⇡⌘/s = 1 for any (of the very many) known strongly cou-

pled large-Nc gauge theory plasmas that are the “holo-

gram” of a (4+1)-dimensional gravitational theory “heated

by” a (3+1)-dimensional black-hole horizon.

• Examples of theories in which this result holds are known

which are: conformal or not; confining at T = 0 or not;

have fundamentals or not; supersymmetric or not.

• cf. 1 < 4⇡⌘/s < 3 for QGP at RHIC and LHC.

• Suggests a new kind of universality, not yet well under-

stood, applying to dynamical aspects of strongly coupled

liquids. To which liquids? Unitary Fermi ‘gas’?



⌘/s and Holography
• 4⇡⌘/s = 1 for any (of the very many) known strongly cou-

pled large-Nc gauge theory plasmas that are the “holo-

gram” of a (4+1)-dimensional gravitational theory “heated

by” a (3+1)-dimensional black-hole horizon.

• Geometric intuition for dynamical phenomena at strong

coupling. Hydrodynamization = horizon formation.

Nontrivial hydrodynamic flow pattern = nontrivial undula-

tion of black-hole metric. Dissipation due to shear viscosity

= gravitational waves falling into the horizon.

• Conformal examples show that hydrodynamics need not

emerge from an underlying kinetic theory of particles. A

liquid can just be a liquid.





Why care about the value of ⌘/s?
• Here is a theorist’s answer. . .

• Any gauge theory with a holographic dual has ⌘/s = 1/4⇡
in the large-Nc, strong coupling, limit. In that limit, the
dual is a classical gravitational theory and ⌘/s is related to
the absorption cross section for stu↵ falling into a black
hole. If QCD has a dual, since Nc = 3 it must be a string
theory. Determining (⌘/s)� (1/4⇡) would then be telling us
about string corrections to black hole physics, in whatever
the dual theory is.

• For fun, quantum corrections in dual of N = 4 SYM give:

⌘

s
=

1

4⇡

 

1+
15 ⇣(3)

(g2Nc)3/2
+

5

16

(g2Nc)
1/2

N2
c

+ . . .

!

Myers, Paulos, Sinha

with 1/N2
c and Nf/Nc corrections yet unknown. Plug in

Nc = 3 and ↵ = 1/3, i.e. g2Nc = 12.6, and get ⌘/s ⇠ 1.73/4⇡.
And, s/sSB ⇠ 0.81, near QCD result at T ⇠ 2� 3Tc.

• A more serious answer. . .



Beyond Quasiparticles
• QGP at RHIC & LHC, unitary Fermi “gas”, gauge theory

plasmas with holographic descriptions are all strongly cou-
pled fluids with no apparent quasiparticles.

• In QGP, with ⌘/s as small as it is, there can be no ‘trans-
port peak’, meaning no self-consistent description in terms
of quark- and gluon-quasiparticles. [Q.p. description self
consistent if ⌧qp ⇠ (5⌘/s)(1/T ) � 1/T .]

• Other “fluids” with no quasiparticle description include:
the “strange metals” (including high-Tc superconductors
above Tc); quantum spin liquids; matter at quantum critical
points;. . .

• Emerging hints of how to look at matter in which quasipar-
ticles have disappeared and quantum entanglement is en-
hanced: “many-body physics through a gravitational lens.”
Black hole descriptions of liquid QGP and strange metals
are continuously related! But, this lens is at present still
somewhat cloudy. . .



From N = 4 SYM to QCD
• Two theories di↵er on various axes. But, their plasmas

are much more similar than their vacua. Neither is super-
symmetric. Neither confines or breaks chiral symmetry.

• N = 4 SYM is conformal. QCD thermodynamics is reason-
ably conformal for 2Tc . T < ?. In model studies, adding
the degree of nonconformality seen in QCD thermodynam-
ics to N = 4 SYM has no e↵ect on ⌘/s and little e↵ect on
many other observables.

• The fact that the calculations in N = 4 SYM are done at
strong coupling is a feature, not a bug.

• The fact that strongly coupled N = 4 SYM is strongly
coupled at all scales, including short length scales, is a
bug. ! Wednesday.

• N = 4 SYM calculations done at 1/N2
c = 0 rather than 1/9.

• In QCD thermodynamics, fundamentals are as important
as adjoints. No fundamentals in N = 4 SYM, and so far
they have only been added as perturbations.

• Our goals are, and must be, limited to qualitative insights.



A Grand Challenge
• How can we clarify the understanding of fluids without

quasiparticles, whose nature is a central mystery in so
many areas of science?

• We have two big advantages: (i) direct experimental ac-
cess to the fluid of interest without extraneous degrees of
freedom; (ii) weakly-coupled quark and gluon quasiparti-
cles at short distances.

• We can quantify the properties and dynamics of Liquid
QGP at its natural length scales.

• Can we probe, quantify and understand Liquid QGP at
short distance scales, where it is made of quark and gluon
quasiparticles? See how the strongly coupled fluid emerges
from well-understood quasiparticles at short distances.

• The LHC and newly upgraded RHIC o↵er new probes and
open new frontiers.



A Grand Challenge
• How can we clarify the understanding of fluids without

quasiparticles, whose nature is a central mystery in so
many areas of science?
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• Can we probe, quantify and understand Liquid QGP at
short distance scales, where it is made of quark and gluon
quasiparticles? See how the strongly coupled fluid emerges
from well-understood quasiparticles at short distances.

• This will be Part IV of my lectures; Wednesday. I will use
one key holographic result then; to add further to your
intuition in advance of that, remainder of Part II of my
lectures will be three other key holographic results.
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Dragging a Heavy Quark through
Strongly Coupled Plasma

HKKKY, G, 2006

• One of the first holographic calculations related to probing
strongly coupled plasma.

• To drag a heavy quark, M ! 1, with constant velocity
~� through the static, homogeneous, equilibrium strongly
coupled plasma with temperature T of N = 4 SYM theory
requires exerting a drag force:

~f =

p
�

2⇡
(⇡T )

2 �~� /
~p

M

with � ⌘ g2Nc the ’t Hooft coupling.

• Caveat emptor: At finite M, this picture only applies for

p
� ⌧

M

T
p
�

.

Eg for b quarks at the LHC validity is pT . 20 � 40 GeV.
Higher pT heavy quarks behave like light quarks.
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p
� ⌧

M

T
p
�

.

Eg for b quarks at the LHC validity is pT . 20 � 40 GeV.
Higher pT heavy quarks behave like light quarks.
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An astounding result!

Even more surprising 
than you might think…

J/Y Alice 0-90% J/Y  Atlas 0-80%
Pb

+P
b/

p+
p

Even b quarks 
lose energy!



Heavy Quark Drag and Di↵usion in
Strongly Coupled Plasma

HKKKY, G, C-Y&T 2006

• Under the same conditions as on the previous slide, heavy
quark in strongly coupled plasma satisfies:

dp

dt
= �⌘drag p+ ⇠(t) h⇠(t), ⇠(t0)i =  �(t� t0)

where

⌘drag =
⇡
p
�T2

2M
D ⌘

2T2


=

4
p
�

1

2⇡T
 = 2MT⌘drag

• So, the calculation of the drag force is at the same time a
calculation of the heavy quark di↵usion constant D. And,
for � ' 12.6 (the value we used several slides ago) the di↵u-
sion constant in strongly coupled plasma is D ' 1.1/(2⇡T ).

• This fifteen year old result agrees surprisingly well with con-
temporary lattice calculations of D in QGP. The extraction
of D from heavy ion collision data, see Barbara’s lectures,
is broadly consistent with this also.



Di↵usion coe�cient

• Results for Ds = 2T 2
/ shows lower than quenched behavior

• 6Ds is the mean distance squared
traveled by unit time

• T-Matrix results updated
compared to figure in paper, R.
Rapp et al.
[arxiv:1612.09318][arxiv:1711.03282]
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Heavy quark diffusion from D meson v2 and RAA

32

Again use data + models together:
radiation, collisions, medium evolution
Ds(2pT) = 1.5 - 4.5 near Tc
      per models with c2/DOF < 5 (2) 
 for RAA (v2)



Heavy Quark Drag and Di↵usion in
Strongly Coupled Plasma

HKKKY, G, C-Y&T 2006

• Under the same conditions as on the previous slide, heavy
quark in strongly coupled plasma satisfies:

dp

dt
= �⌘drag p+ ⇠(t) h⇠(t), ⇠(t0)i =  �(t� t0)

where

⌘drag =
⇡
p
�T2

2M
D ⌘

T2

2
=

4
p
�

1

2⇡T
 = 2MT⌘drag

• Perhaps best to focus on a striking qualitative feature:

dp

dt
/

p

M
which is inevitable at strong coupling, and not the case
at weak coupling. Energy loss of a 20 (or 10 or 5) GeV
bottom quark same as energy loss of 6 (or 3 or 1.5) GeV
charm quark. This qualitative feature has not been tested
against data, and should be. . .



q̂ in N = 4 SYM Plasma
Liu, KR, Wiedemann 2006

• The jet quenching parameter, featured in Barbara’s lec-
tures, can also be calculated exactly in holographic theo-
ries, in the N2

c ! 1, � ! 1 limit. (The calculation involves
computing the expectation value of a certain Wilson loop
with two light-like sides.) The result is:

q̂ =
⇡3/2

�(5/4)

�(3/4

p
�T3

= 4.12
p
�T3

• If we again take � ⇡ 12.6 this yields q̂ ⇡ 14.6T3. This
fifteen year old result is about three times larger than that
estimated for QGP in QCD – not unreasonable.

• q̂ is not proportional to s or to the number density of scat-
terers, as at weak coupling. Such quantities are / N2

c T
3,

and q̂ /
p
�T3 in strongly coupled plasma.

• Reminds us that strongly coupled holographic liquids have
no well-defined quasiparticles, so q̂ cannot count the den-
sity of such.







What Next?

Two kinds of What Next? questions for the coming decade. . .

(and for Wednesday)

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.

Second introduction concluded....



What Next?

Two kinds of What Next? questions for the coming decade. . .

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.

Three di↵erent variants of this question. . .



Te
m

p
e

ra
tu

re

Doping

A
n

ti
fe

rr
o

m
a

g
n

e
t

Strange Metal

Pseudogap

Fermi LiquidHigh-T
Superconductor

QCP



Te
m

p
e

ra
tu

re
 (M

eV
)

Baryon Doping – +B (MeV)
0

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400 1600

Quark-Gluon Plasma

Color
Superconductor

Hadron Gas



Mapping the QCD Phase Diagram
• How does QGP change as you “dope” it with a larger

and larger excess of quarks over antiquarks, i.e. larger and

larger µB?

• Substantial recent progress... Slides from 2015 almost

completely superseded.

• Enormous progress on theory and modeling, by many peo-

ple. Including by the BEST collaboration – see 2108.13867

for a summary.

• Phase II of the RHIC Beam Energy Scan data taking was

completed in 2021. We await results with great interest

and anticipation.



RHIC BES II Data Taken...
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Mapping the QCD Phase Diagram
• How does QGP change as you “dope” it with a larger

and larger excess of quarks over antiquarks, i.e. larger and
larger µB? Substantial recent progress in answering ques-
tions like this on the lattice, e.g. doping-dependence of
equation of state and susceptibilities, as long as the dop-
ing is not too large. Combining lattice and RHIC Beam
Energy Scan results to map the crossover region.

• How is the crossover between QGP and hadrons a↵ected
by doping? Does it turn into a first order transition above
a critical point?

• Answering this question via theory will need further ad-
vances in lattice “technology”. Impressive recent progress
advancing established Taylor-expansion methods. New ideas
also being evaluated. Nevertheless, at present theory is
good at telling us what happens near a critical point or
first order transition, but cannot tell us where they may
be located.



Mapping the Crossover Region
Wuppertal-Budapest collaboration / Nuclear Physics A 00 (2016) 1–5 3
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Matching Wuppertal-Budapest lattice
results to 2014 Star fluctuation data
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S/N=const trajectories
from lattice EOS [WB 2015]

HRG analysis [Alba et al]
Tc from lattice [WB 1507.07510]

Fig. 2. The QCD phase diagram from analytical continuation. We used lattice simulations with imaginary chemical potentials and
extrapolated the transition temperature (red band) to real chemical potentials. We also determined the equation of state. Here we show
the constant entropy/net baryon number contours that match chemical freeze-out data. Finally, we show the contours for constant
mean/variance ratios of the net electric charge from lattice. We also show the HRG prediction for the proton fluctuation ratios. The
contours that correspond to STAR data intersect in the freeze-out points of [18].

4. Equation of state

The equation of state at finite density can be accessed through the Taylor coe�cients at µB = 0:

p(µB)
T 4 = c0(T ) + c2(T )

✓µB

T

◆2
+ c4(T )

✓µB

T

◆4
+ c6(T )

✓µB

T

◆6
+ O(µ8

B
) (2)

The first continuum result for c2 was published in Ref. [16]. In the physical point up to c4 has recently been
calculated, but without continuum extrapolation [17].

The coe�cients in Eq. (2) are defined such that strangeness neutrality is implicitly assumed. In other
words, p/T 4 is first expressed as function of µS , µB and T , and evaluated at µS (µB,T ) for which hS i = 0.
Then Taylor coe�cients are defined then for each fixed T . Our results also include a µQ to meet the actual
setting in heavy ion collisions, such that hQi = 0.4 hBi.

Here we show results for the coe�cients from imaginary µB simulations. We fitted c2, . . . , c6 on the
µB-derivatives of p/T 4 for fixed temperature, c0 we determined earlier [7]. The results are shown in Fig. 1.

From the coe�cients pressure, energy density, entropy and speed of sound can be calculated at any
(small) chemical potential. Here we show one possible application: we calculate the trajectory of the quark
gluon plasma on the T �µB phase diagram. Since the expansion of the plasma is adiabatic (constant entropy)
and the net conserved charges (e.g. baryon number) are constant in a closed system, we can track the
trajectory as the constant s/n contours.

For the central bin of each RHIC beam energy down to 19 GeV we find the s/n ratio in the freeze-out
points located by the HRG-based analysis of charge and proton fluctuations [18]. Then we draw the entire
contour in the phase diagram. We have checked that the trajectory is consistent with the HRG prediction for
all collision energies near the freeze-out point. We show the contours and the transition line in Fig. 2.

5. Freeze-out curve

As an alternative to hadron yields, fluctuations of conserved charges can also be used to find the freeze-
out parameters, since lattice has already calculated the equilibrium temperature dependence of many of the
fluctuation ratios [19, 20, 10]. The direct comparison of the equilibrium ratios of lattice to experimental
reality is not free from ambiguities [21, 22], the study of these goes beyond the scope of this work.

Wuppertal-Budapest-Houston, 1601.00466

Lattice determination of crossover region compared with freeze-
out points obtained from the intersection of: (i) lattice calcu-
lations and BES-I exptl measurements of magnitude of charge
fluctuations and proton number fluctuations; (ii) hadron res-
onance gas calculations of and exptl measurements of S/N.
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Mapping the QCD Phase Diagram
• How does QGP change as you “dope” it with a larger

and larger excess of quarks over antiquarks, i.e. larger and
larger µB? Substantial recent progress in answering ques-
tions like this on the lattice, e.g. doping-dependence of
equation of state and susceptibilities, as long as the dop-
ing is not too large. Combining lattice and RHIC Beam
Energy Scan results to map the crossover region.

• How is the crossover between QGP and hadrons a↵ected
by doping? Does it turn into a first order transition above
a critical point?

• Answering this question via theory will need further ad-
vances in lattice “technology”. Impressive recent progress
advancing established Taylor-expansion methods. New ideas
also being evaluated. Nevertheless, at present theory is
good at telling us what happens near a critical point or
first order transition, but cannot tell us where they may
be located.



RHIC BES II Data Taken...
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Mapping the QCD Phase Diagram
• Exploring the phase diagram is the goal of the RHIC Beam

Energy Scan. Pioneering results from BES-I, 2011-14.
Suggestive variations in flow and fluctuation observables
as a function of

p
s, and hence µB. Strong motivation for

higher statistics data below
p
s = 20 GeV ! BES-II.

• BES-I results present an opportunity for theory. Interpret-
ing flow (and other) observables requires 3+1-D viscous
hydrodynamic calculations at BES energies that evolve jµB
in addition to Tµ⌫, and must include state-of-the-art treat-
ment of the hadrodynamics: relative importance of hadro-
dynamic e↵ects on all observables grows. Also need baryon
stopping and state-of-the-art initial state. BES-I data de-
mand that the sophistication that has been applied at top
energies be deployed at BES energies.

• Theorists, including in the BEST collaboration, have de-
veloped these tools; I will focus today on the fluctuation
observables used to search for the critical point.
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2. Quantum Chromodynamics: The Fundamental Description of the Heart of Visible Matter

The trends and features in BES-I data provide compelling 

motivation for a strong and concerted theoretical 

response, as well as for the experimental measurements 

with higher statistical precision from BES-II. The goal 

of BES-II is to turn trends and features into definitive 

conclusions and new understanding. This theoretical 

research program will require a quantitative framework 

for modeling the salient features of these lower energy 

heavy-ion collisions and will require knitting together 

components from di!erent groups with experience 

in varied techniques, including LQCD, hydrodynamic 

modeling of doped QGP, incorporating critical 

fluctuations in a dynamically evolving medium, and more.

Experimental discovery of a critical point on the QCD 

phase diagram would be a landmark achievement. The 

goals of the BES program also focus on obtaining a 

quantitative understanding of the properties of matter 

in the crossover region of the phase diagram, where it 

is neither QGP nor hadrons nor a mixture of the two, as 

these properties change with doping.

Additional questions that will be addressed in this 

regime include the quantitative study of the onset 

of various signatures of the presence of QGP. For 

example, the chiral symmetry that defines distinct 

left- and right-handed quarks is broken in hadronic 

matter but restored in QGP. One way to access the 

onset of chiral symmetry restoration comes via BES-II 

measurements of electron-positron pair production in 

collisions at and below 20 GeV. Another way to access 

this, while simultaneously seeing quantum properties 

of QGP that are activated by magnetic fields present 

early in heavy collisions, may be provided by the slight 

observed preference for like-sign particles to emerge 

in the same direction with respect to the magnetic field. 

Such an e!ect was predicted to arise in matter where 

chiral symmetry is restored. Understanding the origin 

of this e!ect, for example by confirming indications that 

it goes away at the lowest BES-I energies, requires the 

substantially increased statistics of BES-II.

NEW MICROSCOPES ON THE INNER 
WORKINGS OF QGP
To understand the workings of QGP, there is no 

substitute for microscopy. We know that if we had a 

su#ciently powerful microscope that could resolve the 

structure of QGP on length scales, say a thousand times 

smaller than the size of a proton, what we would see 

Figure 2.10: !e top panel shows the increased statistics anticipated 
at BES-II; all three lower panels show the anticipated reduction in 
the uncertainty of key measurements. RHIC BES-I results indicate 
nonmonotonic behavior of a number of observables; two are shown in 
the middle panels. !e second panel shows a directed "ow observable that 
can encode information about a reduction in pressure, as occurs near a 
transition. !e third panel shows the "uctuation observable understood 
to be the most sensitive among those measured to date to the "uctuations 
near a critical point. !e fourth panel shows, as expected, the measured 
"uctuations growing in magnitude as more particles in each event are 
added into the analysis.

are quarks and gluons interacting only weakly with each 

other. The grand challenge for this field in the decade 

to come is to understand how these quarks and gluons 

conspire to form a nearly perfect liquid.

Microscopy requires suitable messengers that reveal 

what is happening deep within QGP, playing a role 

analogous to light in an ordinary microscope. The 
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Mapping the QCD Phase Diagram
• How can we detect the presence of a critical point on the

phase diagram, if there is one, in HIC data?

• A negative contribution to the proton kurtosis at µB ⇠
150 � 200 MeV is established. Is this a harbinger of the
approach toward a critical point at larger µB? Signs of an
upturn at larger µB are inconclusive. Higher statistics data
needed. As are substantial advances on the theory side. . .

• Once you have a validated hydrodynamic model at BES
energies, then you can add both hydrodynamic fluctuations
and the critical fluctuations of the chiral order parameter.
Need to source them, evolve them, and describe their con-
sequences at freezeout. Need self-consistent treatment:
fluctuations can’t stay in eqbm because of finite-time lim-
itation on growth of the correlation length, how do the
fluctuations evolve? Feedback on hydro? Only then can
quantify the signatures of, a possible critical point.
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Oscillation Pattern: Signature of Critical Region ?
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reaction trajectories freeze out position  and 
critical region.
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Mapping the QCD Phase Diagram
• A negative contribution to the proton kurtosis at µB ⇠

150 � 200 MeV is established. Is this a harbinger of the
approach toward a critical point at larger µB? Signs of an
upturn at larger µB are inconclusive. Higher statistics data
needed. As are substantial advances on the theory side. . .

• Once you have a validated hydrodynamic model at BES
energies, then you can add both hydrodynamic fluctuations
and the critical fluctuations of the chiral order parameter.
Need to source them, evolve them, and describe their con-
sequences at freezeout. Need self-consistent treatment:
fluctuations can’t stay in eqbm because of finite-time lim-
itation on growth of the correlation length, how do the
fluctuations evolve? Feedback on hydro? Only then can
quantify the signatures of, a possible critical point.

• BES-II data-taking completed in 2021; results anticipated
soon. Error bars will shrink and today’s tantalizing hints,
e.g. of non-monotonic behavior in dv1/dy and in the kurtosis
of the proton multiplicity distribution, will become . . . ?



Mapping the QCD Phase Diagram
• Finding, or excluding, a critical point requires theory and

modeling, with ingredients including:

• Energy and baryon number in initial stages.

• Equation of State (EoS)

– Known (lattice QCD) at µB = 0; universal features
known near a critical point. Putting these together
into a model EoS with non-universal parameters to be
fixed via comparison to data: Parotto, . . ., KR, et al,
1805.05249. Now referred to as the “BEST EoS”.

– Implementing strangeness conservation and neutrality
(2110.00622) into BEST EoS

– Extending BEST EoS to describe first order phase tran-
sition (Karthein, Koch, Ratti, in progress)

• Hydrodynamics. Critical fluctuations.

• Freezeout of critical fluctuations.



Equilibrium expectations for non-Gaussian 
fluctuations near a QCD critical point

Jamie M. Karthein

Collaborators: Maneesha Pradeep, Misha Stephanov, 
Krishna Rajagopal, and Yi Yin



11/29/2022 J.M. Karthein - Equilibrium non-Gaussian fluctuations near a QCD critical point

Baryon kurtosis as a critical signature

3

M.A. Stephanov PRL (2011)

• Higher order susceptibilities diverge with higher 
power of the correlation length, . 

• Related to moments of the net-proton 
distribution  can be measured experimentally.

κ4 ∝ ξ7

→

χB
n ≡ ∂n(p/T4)

∂(μB/T)n

κ4σ2 = χB
4 /χB

2

• Universal qualitative behavior from 3D Ising model without the inclusion of 
all sub-leading terms ( ) ∂μB

∼ ∂h

M = M0Rβθ
h = h0Rβδh̃(θ)
r = R(1 − θ2)

C. Nonaka, M. Asakawa, 
PRC (2005)

sNN

• Parameterization: 
(R, θ) → (r, h) κ4(r, h) = ( ∂3M

∂h3 )
r

➤ Ongoing search for critical point requires support from theory community to provide 
candidates for criticality-carrying observables

➤ Higher order susceptibilities diverge with higher power of the 
correlation length,  

➤ Related to moments of the net-proton distribution: can be measured 
experimentally

κ4 ∝ ξ7

Search for Criticality

NSAC 2015 Long Range Plan for Nuclear Physics 
M. Stephanov, K. Rajagopal and E. Shuryak, PRD (1999) 
M. Stephanov, PRL (2011)

3

and δ = 5, which are within few percent of their exact
values in three dimensions. The result of Eq. (9) can then
be simplified to

κ4(t,H) = −12
81− 783θ2 + 105θ4 − 5θ6 + 2θ8

R14/3(3− θ2)3(3 + 2θ2)5
. (10)

We represent κ4(t,H) graphically as a density plot in
Fig. 1. We see that the 4-th cumulant (and kurtosis)
is negative in the sector bounded by two curved rays
H/tβδ = ±const (corresponding to θ ≈ ±0.32).

(a)

!0.4 !0.2 0.0 0.2 0.4 0.6
!20

0
20
40
60
80

100
120

t

Κ
4

(b)

FIG. 1: (color online) (a) – the density plot of the function
κ4(t,H) given by Eq. (10) obtained using Eq. (9) for the linear
parametric model Eqs. (6), (7), (8) and β = 1/3, δ = 5. The
κ4 < 0 region is red, the κ4 > 0 – is blue. (b) – the dependence
of κ4 on t along the vertical dashed green line on the density
plot above. This line is the simplest example of a possible
mapping of the freezeout curve (see Fig. 2). The units of t,
H and κ4 are arbitrary.

Also in Fig. 1 we show the dependence of κ4 along a
line which could be thought of as representing a possible
mapping of the freezeout trajectory (Fig. 2) onto the tH
plane. Although the absolute value of the peak in κ4

depends on the proximity of the freezeout curve to the
critical point, the ratio of the maximum to minimum
along such an H = const curve is a universal number,
approximately equal to −28 from Eq. (10).

µB, GeV

, GeV

0

0.1

T

t

1

H

critical
point

freezeout
curve

nuclear
matter

QGP

hadron gas

FIG. 2: A sketch of the phase diagram of QCD with the freeze-
out curve and a possible mapping of the Ising coordinates t
and H .

The negative minimum is small relative to the positive
peak, but given the large size of the latter, Ref.[7, 15],
the negative contribution to kurtosis may be significant.
In addition, the mapping of the freezeout curve certainly
need not be H = const, and the relative size of the posi-
tive and negative peaks depends sensitively on that.
The trend described above appears to show in the re-

cent lattice data, Ref.[10], obtained using Pade resum-
mation of the truncated Taylor expansion in µB. As the
chemical potential is increased along the freezeout curve,
the 4-th moment of the baryon number fluctuations be-
gins to decrease, possibly turning negative, as the critical
point is approached (see Fig.2 in Ref.[10]).
Another observation, which we shall return to at the

end of the next section, is that −κ4 grows as we approach
the crossover line, corresponding to H = 0, t > 0 on the
diagram in Fig. 1(a). On the QCD phase diagram the
freezeout point will move in this direction if one reduces
the size of the colliding nuclei or selects more peripheral
collisions (the freezeout occurs earlier, i.e., at higher T ,
in a smaller system).

EXPERIMENTAL OBSERVABLES

In this section we wish to connect the results for the
fluctuations of the order parameter field σ to the fluctua-
tions of the observable quantities. As an example we con-
sider the fluctuations of the multiplicity of given charged
particles, such as pions or protons.
For completeness we shall briefly rederive the results of

Ref.[7] using a simple model of fluctuations. The model
captures the most singular term in the contribution of the
critical point to the fluctuation observables. Consider a
given species of particle interacting with fluctuating crit-
ical mode field σ. The infinitesimal change of the field δσ
leads to a change of the effective mass of the particle by
the amount δm = gδσ. This could be considered a def-
inition of the coupling g. For example, the coupling of
protons in the sigma model is gσp̄p. The fluctuations δfp

2

Baryon kurtosis as a critical signature

3

M.A. Stephanov PRL (2011)

• Higher order susceptibilities diverge with higher 
power of the correlation length, . 

• Related to moments of the net-proton 
distribution  can be measured experimentally.

κ4 ∝ ξ7

→

χB
n ≡ ∂n(p/T4)

∂(μB/T)n

κ4σ2 = χB
4 /χB

2

• Universal qualitative behavior from 3D Ising model without the inclusion of 
all sub-leading terms ( ) ∂μB

∼ ∂h

M = M0Rβθ
h = h0Rβδh̃(θ)
r = R(1 − θ2)

C. Nonaka, M. Asakawa, 
PRC (2005)

sNN

• Parameterization: 
(R, θ) → (r, h) κ4(r, h) = ( ∂3M

∂h3 )
r



11/29/2022 J.M. Karthein - Equilibrium non-Gaussian fluctuations near a QCD critical point

Early Estimates of Equilibrium Fluctuations

➤ Order-of-magnitude predictions of volume-
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relied on ansätze 

➤ Original estimates used parametrized 
correlation length with width Δ
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FIG. 2: The µB-dependence of !4p, the normalized 4th cu-
mulant of the proton number distribution defined in (1.13),
with a µB-dependent ⇠ given by (1.17). We only include the
Poisson and critical contributions to the cumulant. In the top
panel we choose µc

B = 400 MeV and illustrate how !4p is af-
fected if we vary the width � of the peak in ⇠ from 50 to 100
to 200 MeV, as in Fig. 1. The inset panel zooms in to show
how !4p is dominated by the Poisson contribution well below
µc
B . In the lower panel, we take � = 100 MeV and illustrate

the e↵ects of changing µc
B and of reducing the sigma-proton

coupling gp from our benchmark gp = 7 to gp = 5.

reasons, because their fluctuations are proxy to the fluc-
tuations of the conserved baryon number [30] and be-
cause their coupling to the critical mode � is relatively
large.

We have defined the normalized cumulants of the pro-
ton and pion distributions in (1.13) and (1.12) and the
normalized mixed cumulants in (1.15). Fig. 2 shows how
!4p might look like, with ⇠(µB) given by Eq. (1.17). We
illustrate how !4p changes if we vary the location of the
critical point µc

B and the width � of the peak in Fig. 1,
as well as the sigma-proton coupling gp. As we shall see
in Section IIA, there are four nonuniversal parameters
that (for a given ⇠max) govern the height of the peaks
of the normalized cumulants. These include gp and the
sigma-pion coupling G, as well as two parameters �̃3 and
�̃4 that we shall define in Section IIA. We have used as
our benchmark values G = 300 MeV, g = 7, �̃3 = 4 and
�̃4 = 12. As we shall discover in Section II and discuss
at length in Section III, the heights of the peaks of dif-
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FIG. 3: The µB-dependence of selected normalized cu-
mulants, defined in (1.12), (1.13) and (1.15), with a µB-
dependent ⇠ given by (1.17) as in Fig. 1. We only include
the Poisson and critical contributions to the cumulants. We
have set all parameters to their benchmark values, described
in the text, and we have chosen the width of the peak in
⇠ to be � = 100 MeV. Note the di↵erent vertical scales in
these figures and in Fig. 2; The magnitude of the e↵ect of
critical fluctuations on di↵erent normalized cumulants di↵ers
considerably, as we shall discuss in Sections II and III. As we
shall also discuss in those Sections, ratios of the magnitudes
of these di↵erent observables depend on (and can be used to
constrain) the correlation length ⇠, the proton number den-
sity np, and four non-universal parameters. We shall also see
in Section III that there are ratios among these observables
that are independent of all of these variables, meaning that
we can predict them reliably. For example, we shall see that
critical fluctuations must yield !2

2p2⇡ = (!4p�1)(!4⇡�1) and
!3
2p1⇡ = (!3p � 1)2(!3⇡ � 1) and !3

1p2⇡ = (!3p � 1)(!3⇡ � 1)2.
(The subtractions of 1 are intended to remove the Poisson
background; in an analysis of experimental data these sub-
tractions could be done by subtracting the !ip or !j⇡ de-
termined from a sample of mixed events, as this would also
subtract various other small background e↵ects.)

ferent normalized cumulants are a↵ected di↵erently by
variations in these four parameters. Fig. 3 shows how six
more di↵erent normalized cumulants vary with µB . In
this figure we keep all parameters set at their benchmark
values, deferring a discussion of how these peaks change
with parameters to Section III.
In the case of free particles in the classical Boltzmann
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point, the equilibrium correlation length ⇠eq is very long
and there is not su�cient time for the actual correlation
length ⇠ achieved in a collision to reach ⇠eq [21]. Lets sup-
pose that ⇠ reaches ⇠eq for |µB � µc

B | & W , for some W ,
while for |µB � µc

B | . W finite time e↵ects limit ⇠ such
that it peaks at ⇠max. In principle, ⇠eq(µB) could one day
be determined from lattice QCD calculations, but these
calculations are challenging at µ 6= 0 because of the no-
torious fermion sign problem, so this day remains in the
future. At present, all we can do is require that the static
correlation length ⇠eq satisfy the constraints imposed by
the universality of critical behavior at long wavelengths.
The universal behavior is really only attained in the limit
in which W ! 0 and ⇠max ! 1, so our use of it in the
present context is illustrative but not quantitative. As
a function of µB � µc

B , in the universal regime ⇠eq must
scale as ⇠ ! f±|µB � µc

B |�⌫ , where ⌫ is the relevant
critical exponent1 and f+ and f� are the amplitudes of
the singularity on the crossover and first-order side of
the transition respectively. The precise value of the criti-
cal exponent is ⌫ = (2�↵)/3 ⇡ 0.63, with the numerical
value being that for a critical point in the Ising universal-
ity class [26]. But, in our calculation in Section II we shall
be neglecting the small anomalous dimensions associated
with nonvanishing values of the exponents ⌘ ⇡ 0.04 and
↵ ⇡ 0.1. So, to be consistent, here too we shall sim-
ply use ⌫ = 2/3. The ratio of the amplitudes f+/f� is
also a universal quantity. In the Ising universality class,
f+/f� ⇡ 1.9 [27]. Since f+/f� > 1, the correlation
length falls o↵ more slowly on the crossover side µ < µc

B .
The simplest ansatz for ⇠(µB) that we have found that

incorporates the physics that we have just described is

⇠(µB) =
⇠max

h
1 +

(µB�µc
B)2

W (µB)2

i1/3 , (1.17)

with

W (µB) = W + �W tanh

✓
µB � µc

B

w

◆
(1.18)

1
For our illustrative model of the ⇠(µB) dependence along the

freezeout curve we are assuming that where the freezeout curve

passes the critical point it is approximately parallel to the tran-

sition line (crossover and first-order lines). The region of the

QCD phase diagram in the (µB , T ) plane near the critical point

can be mapped onto the Ising model phase diagram, whose

reduced temperature and magnetic field axes are convention-

ally denoted by t and h, respectively. Upon approaching the

Ising critical point along the t-direction, i.e., along the tran-

sition line, ⇠eq ⇠ t�⌫ ⇠ t�2/3
, while along the h-direction,

⇠eq ⇠ h�⌫/�� ⇠ h�2/5
. As long as h ⌧ t�� on the freezeout

curve, the t-like scaling dominates and, since |µB � µc
B | ⇠ t, we

obtain ⇠eq ⇠ |µB � µc
B |�⌫

. The condition h ⌧ t�� is violated

at points on the freezeout curve that are very close to the criti-

cal point, t ⇡ 0, where the h-like scaling sets in. For simplicity

we assume that this small-t segment of the freezeout curve in

the QCD phase diagram lies in a region where the equilibrium

correlation length ⇠eq already exceeds ⇠max = 2 fm, and thus

⇠ ⇡ ⇠max in this segment.
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FIG. 1: The correlation length ⇠(µB) achieved in a heavy
ion collision that freezes out with a chemical potential µB ,
according to the ansatz described in the text. We have as-
sumed that the collisions that freeze out closest to the critical
point are those that freeze out at µc

B = 400 MeV. We have
assumed that the finite duration of the collision limits ⇠ to
⇠ < ⇠max = 2 fm. We show ⇠(µB) for three choices of the
width parameter �, defined in the text. The choices of pa-
rameters that have gone into this ansatz are arbitrary, made
for illustrative purposes only. They are not predictions.

whereW and w are nonuniversal parameters to be chosen
and �W is specified by requiring that

W + �W

W � �W
=

✓
f+
f�

◆3/2

= 1.93/2 . (1.19)

We have constructed (1.17) such that ⇠ has the universal
behavior of ⇠eq when |µB � µc

B | � W (µB), but has a
peak that is cut o↵ at ⇠ = ⇠max where µB = µc

B . We
have chosen the shape of ⇠ in the vicinity of the peak
arbitrarily, for illustrative purposes, not via analysis of
the rate of growth of ⇠ during the finite duration in time
of a heavy ion collision. In Fig. 1 we show two instances
of our ansatz for ⇠(µB). They di↵er in their choice of the
width of the peak. We shall define the width � as the
distance in µB between the two points at which ⇠(µB)
crosses 1 fm, i.e. the width in µB within which ⇠ >
1 fm. The three curves in the figure have �=50, 100 and
200 MeV. In all three cases we have chosen w = 0.1�.
(With this choice, W = 0.189� and �W = 0.084�.)
There is no reason to expect that � should be small and,
indeed, in model calculations it seems to be larger than
100 MeV [28]. Ultimately � should be determined by
lattice calculations; one first attempt to do so indicates
� ⇠ 100 MeV [17, 29].

C. Cumulants near the critical point

We shall concentrate our analysis on observables char-
acterizing the fluctuations of pions and protons. Pions
are the most abundant species produced in relativistic
heavy ion collisions. Protons are important, among other

how
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point, the equilibrium correlation length ⇠eq is very long
and there is not su�cient time for the actual correlation
length ⇠ achieved in a collision to reach ⇠eq [21]. Lets sup-
pose that ⇠ reaches ⇠eq for |µB � µc

B | & W , for some W ,
while for |µB � µc

B | . W finite time e↵ects limit ⇠ such
that it peaks at ⇠max. In principle, ⇠eq(µB) could one day
be determined from lattice QCD calculations, but these
calculations are challenging at µ 6= 0 because of the no-
torious fermion sign problem, so this day remains in the
future. At present, all we can do is require that the static
correlation length ⇠eq satisfy the constraints imposed by
the universality of critical behavior at long wavelengths.
The universal behavior is really only attained in the limit
in which W ! 0 and ⇠max ! 1, so our use of it in the
present context is illustrative but not quantitative. As
a function of µB � µc

B , in the universal regime ⇠eq must
scale as ⇠ ! f±|µB � µc

B |�⌫ , where ⌫ is the relevant
critical exponent1 and f+ and f� are the amplitudes of
the singularity on the crossover and first-order side of
the transition respectively. The precise value of the criti-
cal exponent is ⌫ = (2�↵)/3 ⇡ 0.63, with the numerical
value being that for a critical point in the Ising universal-
ity class [26]. But, in our calculation in Section II we shall
be neglecting the small anomalous dimensions associated
with nonvanishing values of the exponents ⌘ ⇡ 0.04 and
↵ ⇡ 0.1. So, to be consistent, here too we shall sim-
ply use ⌫ = 2/3. The ratio of the amplitudes f+/f� is
also a universal quantity. In the Ising universality class,
f+/f� ⇡ 1.9 [27]. Since f+/f� > 1, the correlation
length falls o↵ more slowly on the crossover side µ < µc
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The simplest ansatz for ⇠(µB) that we have found that

incorporates the physics that we have just described is
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reduced temperature and magnetic field axes are convention-
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sition line, ⇠eq ⇠ t�⌫ ⇠ t�2/3
, while along the h-direction,
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FIG. 1: The correlation length ⇠(µB) achieved in a heavy
ion collision that freezes out with a chemical potential µB ,
according to the ansatz described in the text. We have as-
sumed that the collisions that freeze out closest to the critical
point are those that freeze out at µc

B = 400 MeV. We have
assumed that the finite duration of the collision limits ⇠ to
⇠ < ⇠max = 2 fm. We show ⇠(µB) for three choices of the
width parameter �, defined in the text. The choices of pa-
rameters that have gone into this ansatz are arbitrary, made
for illustrative purposes only. They are not predictions.

whereW and w are nonuniversal parameters to be chosen
and �W is specified by requiring that

W + �W
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=
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We have constructed (1.17) such that ⇠ has the universal
behavior of ⇠eq when |µB � µc

B | � W (µB), but has a
peak that is cut o↵ at ⇠ = ⇠max where µB = µc

B . We
have chosen the shape of ⇠ in the vicinity of the peak
arbitrarily, for illustrative purposes, not via analysis of
the rate of growth of ⇠ during the finite duration in time
of a heavy ion collision. In Fig. 1 we show two instances
of our ansatz for ⇠(µB). They di↵er in their choice of the
width of the peak. We shall define the width � as the
distance in µB between the two points at which ⇠(µB)
crosses 1 fm, i.e. the width in µB within which ⇠ >
1 fm. The three curves in the figure have �=50, 100 and
200 MeV. In all three cases we have chosen w = 0.1�.
(With this choice, W = 0.189� and �W = 0.084�.)
There is no reason to expect that � should be small and,
indeed, in model calculations it seems to be larger than
100 MeV [28]. Ultimately � should be determined by
lattice calculations; one first attempt to do so indicates
� ⇠ 100 MeV [17, 29].

C. Cumulants near the critical point

We shall concentrate our analysis on observables char-
acterizing the fluctuations of pions and protons. Pions
are the most abundant species produced in relativistic
heavy ion collisions. Protons are important, among other

how
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We now define the cumulants of the event-by-event dis-
tribution of a single observable, say x. The second and
third cumulants are given by

2x ⌘ hhx2ii ⌘ h (�x)2 i (1.2)

3x ⌘ hhx3ii ⌘ h (�x)3 i , (1.3)

where we have introduced two equivalent notations for
the cumulants. The second cumulant 2x is the variance
of the distribution, while the skewness of the distribution

is given by 3x/
3/2
2x . The fourth cumulant is di↵erent

from the corresponding fourth moment:

4x ⌘ hhx4ii ⌘ h (�x)4 i � 3 h (�x)2 i2 . (1.4)

The kurtosis of the distribution is given by 4x/2
2x.

The defining property of the cumulants is their addi-
tivity for independent variables. For example, if a and
b are two independent random variables, then i(a+b) =
ia+ib. This property is easily seen from the cumulant
generating function

g(µ) = logheµ �xi , (1.5)

which is manifestly additive. The n’th cumulant of the
x-distribution is given by

nx =
@ng(µ)

@µn

����
µ=0

. (1.6)

Using the double bracket notation introduced above,
g(µ) = hheµxii. As a result of their additivity, cumulants
of extensive variables, such as Np or N⇡, are all them-
selves extensive, meaning that they are proportional to
the volume of the system V in the thermodynamic limit.

We shall also consider mixed cumulants, which gener-
alize the more familiar Gaussian measures of correlations
to non-Gaussian measures. These are generated by

g(µ, ⌫) ⌘
X

n,m

nxmy µn⌫m

m!n!
= logheµ �x+⌫ �yi , (1.7)

and, for example, are given by

1x1y ⌘ hhxyii = h �x �y i , (1.8)

1x2y ⌘ hhxy2ii = h �x (�y)2 i , (1.9)

2x2y ⌘ hhx2y2ii
= h (�x)2 (�y)2 i � 2h �x �y i2 � h (�x)2 i h (�y)2 i ,

(1.10)

1x3y ⌘ hhxy3ii
= h �x (�y)3 i � 3 h �x �y i h (�y)2 i . (1.11)

For two extensive variables x and y such mixed cumulants
are also extensive, proportional to V .
We have described how to obtain the cumulants ix,

jy and ixjy from a data set consisting of an ensemble
of events in each of which x and y have been measured.

We can now define the intensive normalized cumulants
that we shall analyze:

!i⇡ ⌘ i⇡

hN⇡i
, (1.12)

!ip ⌘ ip

hNpi
, (1.13)

!i(p�p̄) ⌘
i(p�p̄)

hNp +Np̄i
, (1.14)

!ipj⇡ ⌘ ipj⇡

hNpii/rhN⇡ij/r
, (1.15)

!i(p�p̄)j⇡ ⌘
i(p�p̄)j⇡

hNp +Np̄ii/rhN⇡ij/r
, (1.16)

where r ⌘ i+ j.
If N⇡, Np and Np̄ are statistically independent and

Gaussian distributed, then the !2’s in (1.12), (1.13) and
(1.14) are nonzero and all the other !’s vanish.
If N⇡, Np and Np̄ are statistically independent and

Poisson distributed, then all the !i’s in (1.12), (1.13)
and (1.14) with i � 2 are equal to 1, and all the mixed
cumulants vanish and therefore so do the !’s in (1.15)
and (1.16).
In this paper we shall calculate the contributions of

critical fluctuations to the normalized cumulants (1.12),
(1.13) and (1.14) for i = 2, 3 and 4 and the normalized
mixed cumulants (1.15) and (1.16) for i’s and j’s such
that r = 2, 3 and 4.

B. Dependence of ⇠ on µB

We shall close this Introduction (in Section I.C) by
illustrating possible experimental outcomes of measure-
ments of the cumulants defined in Section I.A, assuming
that the matter produced at the freezeout point of the
fireball evolution for some collision energy

p
s is near the

critical point. In Section I.C we shall present only results,
while the calculations involved are presented in Section
II. What we shall calculate in Section II is the contribu-
tion of critical fluctuations to the observables defined in
Section I.A, in terms of the correlation length ⇠. In order
to give an example of possible experimental outcomes, we
need to make an illustrative choice of how the correlation
length ⇠ that is achieved in a heavy ion collision depends
on µB .
To start, let us assume that the critical point occurs

at µc
B = 400 MeV. Let us also assume that because the

fireball only spends a finite time in the vicinity of the
critical point the correlation length reaches a maximum
value of ⇠max = 2 fm in the collisions in which the freeze-
out point is closest to the critical point during an energy
scan. We stress that our choices of µc

B and ⇠max are
arbitrary, made for illustrative purposes only, and are in
no way predictions.
How does the correlation length achieved in a heavy

ion collision depend on the µB at which the matter pro-
duced in the collision freezes out? Close to the critical

5

0.0 0.1 0.2 0.3 0.4 0.5
⇤B�GeV0

100

200

300

400

⌅4 p

⇥�0.2 GeV

⇥�0.1 GeV

⇥�0.05 GeV

0 0.1 0.2 0.3
0

1

2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mBêGeV0

200

400

600

800

w4 p

mBc= 0.4 GeV, g=5
mBc= 0.5 GeV, g=7
mBc= 0.4 GeV, g=7
mBc= 0.3 GeV, g=7

FIG. 2: The µB-dependence of !4p, the normalized 4th cu-
mulant of the proton number distribution defined in (1.13),
with a µB-dependent ⇠ given by (1.17). We only include the
Poisson and critical contributions to the cumulant. In the top
panel we choose µc

B = 400 MeV and illustrate how !4p is af-
fected if we vary the width � of the peak in ⇠ from 50 to 100
to 200 MeV, as in Fig. 1. The inset panel zooms in to show
how !4p is dominated by the Poisson contribution well below
µc
B . In the lower panel, we take � = 100 MeV and illustrate

the e↵ects of changing µc
B and of reducing the sigma-proton

coupling gp from our benchmark gp = 7 to gp = 5.

reasons, because their fluctuations are proxy to the fluc-
tuations of the conserved baryon number [30] and be-
cause their coupling to the critical mode � is relatively
large.

We have defined the normalized cumulants of the pro-
ton and pion distributions in (1.13) and (1.12) and the
normalized mixed cumulants in (1.15). Fig. 2 shows how
!4p might look like, with ⇠(µB) given by Eq. (1.17). We
illustrate how !4p changes if we vary the location of the
critical point µc

B and the width � of the peak in Fig. 1,
as well as the sigma-proton coupling gp. As we shall see
in Section IIA, there are four nonuniversal parameters
that (for a given ⇠max) govern the height of the peaks
of the normalized cumulants. These include gp and the
sigma-pion coupling G, as well as two parameters �̃3 and
�̃4 that we shall define in Section IIA. We have used as
our benchmark values G = 300 MeV, g = 7, �̃3 = 4 and
�̃4 = 12. As we shall discover in Section II and discuss
at length in Section III, the heights of the peaks of dif-
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FIG. 3: The µB-dependence of selected normalized cu-
mulants, defined in (1.12), (1.13) and (1.15), with a µB-
dependent ⇠ given by (1.17) as in Fig. 1. We only include
the Poisson and critical contributions to the cumulants. We
have set all parameters to their benchmark values, described
in the text, and we have chosen the width of the peak in
⇠ to be � = 100 MeV. Note the di↵erent vertical scales in
these figures and in Fig. 2; The magnitude of the e↵ect of
critical fluctuations on di↵erent normalized cumulants di↵ers
considerably, as we shall discuss in Sections II and III. As we
shall also discuss in those Sections, ratios of the magnitudes
of these di↵erent observables depend on (and can be used to
constrain) the correlation length ⇠, the proton number den-
sity np, and four non-universal parameters. We shall also see
in Section III that there are ratios among these observables
that are independent of all of these variables, meaning that
we can predict them reliably. For example, we shall see that
critical fluctuations must yield !2

2p2⇡ = (!4p�1)(!4⇡�1) and
!3
2p1⇡ = (!3p � 1)2(!3⇡ � 1) and !3

1p2⇡ = (!3p � 1)(!3⇡ � 1)2.
(The subtractions of 1 are intended to remove the Poisson
background; in an analysis of experimental data these sub-
tractions could be done by subtracting the !ip or !j⇡ de-
termined from a sample of mixed events, as this would also
subtract various other small background e↵ects.)

ferent normalized cumulants are a↵ected di↵erently by
variations in these four parameters. Fig. 3 shows how six
more di↵erent normalized cumulants vary with µB . In
this figure we keep all parameters set at their benchmark
values, deferring a discussion of how these peaks change
with parameters to Section III.
In the case of free particles in the classical Boltzmann
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On the sign of kurtosis near the QCD critical point

M. A. Stephanov
Department of Physics, University of Illinois, Chicago, Illinois 60607, USA

We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is uni-
versally negative when the critical point is approached on the crossover side of the phase separation
line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity,
may become smaller than the value given by independent Poisson statistics. We discuss implications
for the Beam Energy Scan program at RHIC.

INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
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The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x
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(∇σ)2
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+
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σ2 +

λ3

3
σ3 +
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(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;
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V 〉c = 6V T 3 [ 2(λ3ξ)
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(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
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fluctuations depend much more sensitively on ξ, accord-
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imental tool. In this paper we follow up on the results
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sal equation of state near the critical point. We empha-
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the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
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Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
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experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of

ar
X

iv
:1

10
4.

16
27

v1
  [

he
p-

ph
]  

8 
A

pr
 2

01
1

On the sign of kurtosis near the QCD critical point

M. A. Stephanov
Department of Physics, University of Illinois, Chicago, Illinois 60607, USA
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line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity,
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for the Beam Energy Scan program at RHIC.

INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of
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ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.
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Let us begin, as in Ref.[1], by describing fluctuations of
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where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
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Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level
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V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
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V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by
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vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
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tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
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compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations
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versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =
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Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3
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where 〈σ4
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V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of

3

and δ = 5, which are within few percent of their exact
values in three dimensions. The result of Eq. (9) can then
be simplified to

κ4(t,H) = −12
81− 783θ2 + 105θ4 − 5θ6 + 2θ8

R14/3(3− θ2)3(3 + 2θ2)5
. (10)

We represent κ4(t,H) graphically as a density plot in
Fig. 1. We see that the 4-th cumulant (and kurtosis)
is negative in the sector bounded by two curved rays
H/tβδ = ±const (corresponding to θ ≈ ±0.32).
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FIG. 1: (color online) (a) – the density plot of the function
κ4(t,H) given by Eq. (10) obtained using Eq. (9) for the linear
parametric model Eqs. (6), (7), (8) and β = 1/3, δ = 5. The
κ4 < 0 region is red, the κ4 > 0 – is blue. (b) – the dependence
of κ4 on t along the vertical dashed green line on the density
plot above. This line is the simplest example of a possible
mapping of the freezeout curve (see Fig. 2). The units of t,
H and κ4 are arbitrary.

Also in Fig. 1 we show the dependence of κ4 along a
line which could be thought of as representing a possible
mapping of the freezeout trajectory (Fig. 2) onto the tH
plane. Although the absolute value of the peak in κ4

depends on the proximity of the freezeout curve to the
critical point, the ratio of the maximum to minimum
along such an H = const curve is a universal number,
approximately equal to −28 from Eq. (10).

µB, GeV

, GeV
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t

1
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critical
point
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nuclear
matter
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FIG. 2: A sketch of the phase diagram of QCD with the freeze-
out curve and a possible mapping of the Ising coordinates t
and H .

The negative minimum is small relative to the positive
peak, but given the large size of the latter, Ref.[7, 15],
the negative contribution to kurtosis may be significant.
In addition, the mapping of the freezeout curve certainly
need not be H = const, and the relative size of the posi-
tive and negative peaks depends sensitively on that.
The trend described above appears to show in the re-

cent lattice data, Ref.[10], obtained using Pade resum-
mation of the truncated Taylor expansion in µB. As the
chemical potential is increased along the freezeout curve,
the 4-th moment of the baryon number fluctuations be-
gins to decrease, possibly turning negative, as the critical
point is approached (see Fig.2 in Ref.[10]).
Another observation, which we shall return to at the

end of the next section, is that −κ4 grows as we approach
the crossover line, corresponding to H = 0, t > 0 on the
diagram in Fig. 1(a). On the QCD phase diagram the
freezeout point will move in this direction if one reduces
the size of the colliding nuclei or selects more peripheral
collisions (the freezeout occurs earlier, i.e., at higher T ,
in a smaller system).

EXPERIMENTAL OBSERVABLES

In this section we wish to connect the results for the
fluctuations of the order parameter field σ to the fluctua-
tions of the observable quantities. As an example we con-
sider the fluctuations of the multiplicity of given charged
particles, such as pions or protons.
For completeness we shall briefly rederive the results of

Ref.[7] using a simple model of fluctuations. The model
captures the most singular term in the contribution of the
critical point to the fluctuation observables. Consider a
given species of particle interacting with fluctuating crit-
ical mode field σ. The infinitesimal change of the field δσ
leads to a change of the effective mass of the particle by
the amount δm = gδσ. This could be considered a def-
inition of the coupling g. For example, the coupling of
protons in the sigma model is gσp̄p. The fluctuations δfp

4

of the momentum space distribution function fp consist
of the pure statistical fluctuations δf0

p around the equi-
librium distribution np for a particle of a given mass,
which itself fluctuates. This gives

δfp = δf0
p +

∂np

∂m
g δσ . (11)

Using this equation we can calculate the most singu-
lar contribution from the critical fluctuations to the mo-
ments or correlators of δfp. The fluctuation of the mul-
tiplicity N = V d

∫

p
fp is given by

δN = δN0 + V g δσ d

∫

p

∂np

∂m
, (12)

where d is the degeneracy factor (e.g., number of spin or
charge states of the particle). Neglecting, for clarity and
simplicity, the effects of quantum statistics, i.e., assum-
ing np ! 1, we can use Poisson statistics for δN0. Using
additivity of the cumulants (their defining property), and
assuming δN0 and δσ are uncorrelated, the contribution
of the critical fluctuations can be expressed in terms of
the corresponding moments of the critical field σ fluctua-
tions. For example, the contribution to the 4-th moment
can be expressed as (cf. Refs.[7, 15])

〈(δN)4〉c = 〈N〉+ 〈σ4
V 〉c

(

g d

T

∫

p

np

γp

)4

+ . . . , (13)

where γp = (dEp/dm)−1 is the relativistic gamma-factor
of a particle with momentum p and mass m. The first
term on the r.h.s. of Eq. (13) is the Poisson contribution.
We neglected np ! 1 in the quantum statistics factor
(1±np) for simplicity, and we denoted by “. . .” other con-
tributions, less singular at the critical point. The model
is admittedly crude, but it illustrates the mechanism and
correctly captures the most singular contribution near
the critical point.
In the region near the critical point where κ4 = 〈σ4

V 〉c
is negative, the 4-th cumulant of the fluctuations will
be smaller than its Poisson value, 〈N〉. The measure
defined in Ref.[7] as ω4(N) = 〈(δN)4〉c/〈N〉 will be less
than 1. By how much will depend sensitively on the
correlation length (as ξ7), i.e., on how close the freezeout
occurs to the critical point, as well as on other factors
(for protons, most significantly, on the value of µB.) We
shall not attempt to estimate this effect quantitatively in
this paper. The analysis of Ref.[15] suggests, however,
that this effect for protons can be significant compared
to the Poisson value already for ξ ∼ 2 fm.
Usual caveats apply: other (non-trivial) contributions

to moments which do not behave singularly at the critical
point can turn out to be relatively large. It is beyond the
scope of the paper to estimate these effects. The size of
these background contributions could, in principle, be
determined experimentally by performing measurements
away from the critical point.

We conclude by asking an obvious question: has the
effect of the negative kurtosis been observed? Data from
STAR indicate that at

√
s = 19.6 GeV the ratio κ4/κ2

might be substantially smaller than its Poisson value 1,
see Fig. 6 in Ref.[16], while it is very close to 1 at higher√
s (smaller µB). Unfortunately, the statistics accumu-

lated in the short run at
√
s = 19.6 GeV is clearly not

sufficient to make a reliable conclusion. It would be in-
teresting to see if this effect persists with more statistics
at this energy. If confirmed, this result could indicate
that the critical point is close, at somewhat larger values
of µB (smaller

√
s). In this case, as we already discussed

at the end of the previous section, the universality would
also predict that the negative kurtosis effect should in-
crease in more peripheral collisions at the same

√
s. At

smaller values of
√
s the effect should change sign, in-

creasing kurtosis above its Poisson value.
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➤ Average critical fluctuations of  give rise to “magnetization”:  

➤ Universal critical scaling behavior given by the 3D Ising model equation of state: 
➤ Magnetic field: 

➤ Reduced temperature: 

➤ Magnetization: 

➤ Critical fluctuations calculated in 3D Ising EOS

σ M = ⟨σ⟩

Universal Scaling EOS
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4. Theory and Phenomenology of the Critical Point

4.1. Critical phenomena
The critical phenomena which we shall focus on occur at an end-point of a first-order transition in a thermo-

dynamic system. The first-order transition corresponds to a situation when a thermodynamic system under given
external conditions (such as T and µ, for example) can be in equilibrium in two distinct thermodynamic states. Such
a two-phase coexistence can occur only for special values of external parameters, typically, on a manifold of one less
dimension than the space of external parameters. E.g., in the T � µ plane this manifold is a first-order transition line.
One of the two states is thermodynamically stable on one side of the first-order phase transition, and the other – on
the other side. By adjusting parameters along the phase-coexistence line one could arrive at a special point where the
di↵erence between the two coexisting phases disappears. This is a critical point, also known as a second-order phase
transition. This point is characterized by critical phenomena which manifest themselves in singular thermodynamic
and hydrodynamic properties.

The two most common examples of such critical points are the end point of the liquid-gas coexistence curve and
the Curie point in a (uniaxial) ferromagnet. Although the two systems in which these two examples occur are di↵erent
on a fundamental, microscopic level, the physics near the critical point is remarkably similar on qualitative as well as
quantitative level. This observation is the basis of the concept of universality of the second-order phase transitions.

The uniaxial, or Ising, ferromagnet is the simplest of such systems. It can be modeled by a lattice of spins
si = ±1, or two-state systems, with local (e.g., nearest neighbor) interaction favoring the alignment of spins in the
same direction. There are two ground states, with all the spins pointing in one of the two possible directions. The
degeneracy is lifted if one applies a magnetic, or ordering, field h, which changes the energy of the spins by h

P
i si.

The two ordered states are distinguished by the value of the magnetization

M =
1
N

NX

i=1

si (18)

which equals +1 or �1 depending on the sign of h, or more precisely, by its thermal average hMi. At finite, low
enough temperature the ordering persists and hMi plays the role of the order parameter which flips sign at h = 0. The
two ordered phases coexist on the line h = 0 in the T � h plane as shown in Fig. 7

The magnetization M along the coexistence line, h = 0, decreases with increasing temperature due to thermal
fluctuations. At the Curie temperature, Tc, the magnetization completely vanishes and remains zero for all higher
temperatures. The coexistence line (the first-order phase transition) ends at T = Tc – the critical point. There is only
one phase at and above the Curie point temperature.

Similarly, liquids (e.g., water) coexists with their vapour at given pressure p at the boiling temperature T , which
defines a line in the T vs p plane. At any of the coexistence points on this line the molecules making up the substance

Figure 7: The phase diagram of the Ising ferromagnet. The transition between the phases with positive and negative magnetization is a first-order
transition for T < Tc and a continuous crossover at T > Tc. The transition changes its character at the critical point.
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M = M0Rβθ

h = h0RβδH(θ)

t = R(1 − θ2)

K. Rajagopal and F. Wilczek, Nucl. Phys. B (1993) 
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena 
S. Mukherjee, R. Venugopalan, Y. Yin, PRC (2015)  
A. Bzdak et al, Phys. Rep. (2020)

, H(θ) = θ(3 − 2θ2)

t

14

expressed in terms of the reduced temperature r and the
rescaled magnetic field h. The map of the description
of critical fluctuations in terms of r and h to T and µ

is non-universal, and is a significant source of system-
atic uncertainty in treatments of critical dynamics in the
QCD critical regime. This uncertainty, coupled with our
ignorance of ⌧rel, provide fundamental obstacles to quan-
titative studies of real time critical dynamics in QCD.

Indeed, because of the importance of non-equilibrium
e↵ects, lattice studies of equilibrium cumulants, while of
fundamental importance, may not be su�cient. These
must be accompanied by progress in non-equilibrium
studies of the QCD critical regime. One promising ap-
proach is the use of classical statistical real time simula-
tions [46, 47] that have also previously been applied to
studying the non-equilibrium dynamics of the very ear-
liest stages of high energy heavy-ion collisions [48, 49].
Detailed dynamical models of the space-time evolution
of heavy-ion collisions as a function of beam energy are
also very important. In particular, models that build in
the transport of conserved charges and reproduce bulk
features of these collisions such as particle spectra can
place strong constraints on the parameter space for the
non-equilibrium evolution of cumulants.

In this work, we have concentrated on critical dynam-
ics on the cross-over side of the critical regime. From the
perspective of a critical point search, this approach is ap-
propriate because it is easier in both experiments and in
lattice gauge theory computations to extend explorations
of the QCD phase diagram starting from the regime of
high temperatures and low baryon chemical potentials.
However, if a critical point is localized, it would be of
great interest to understand non-equilibrium dynamics
on the first-order side of phase diagram. In this regard,
applying the framework discussed here from the cross-
over critical regime to the first-order critical regime of
the QCD phase diagram is a useful extension to be pur-
sued in future studies.
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Appendix A: Parametric representation of
equilibrium cumulants in the Ising critical regime

In this section, we explain the parameterization of the
equilibrium cumulants M eq(r, h),eq

n (r, h), n = 2, 3, 4, . . .
in the critical regime in terms of the Ising variables r and
h used in this paper. For this purpose, we only need to
know the equilibrium magnetization M

eq(r, h) as equilib-
rium cumulants can be computed by taking derivatives

of M eq(r, h) with respect to h at fixed r,


eq
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(V4H0)n
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Here H0 is a dimensionful parameter (of mass dimen-
sion 3) which relates reduced magnetic field h to the un-
reduced magnetic field.
To parametrize M eq(r, h), we use the linear parametric

model [35, 50]. In this parametrization, one introduces
two new variables R, ✓ which are related to (dimension-
less) Ising variable r, h as

r(R, ✓) = R(1� ✓
2) , h(R, ✓) = �hR
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h̃(✓) , (A2)

Following Ref. [11], we will use

h̃(✓) = 3✓
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Here �, � are standard critical exponents and we will use
the values obtained from mean field theory, � = 1/3, � =
5. In these R, ✓ variables, ✓ = 0 corresponds to the
crossover line and |✓| =

p
3/2 corresponds to the co-

existence (first order transition) line. The equilibrium
“magnetization” M

eq
0 (r, h)(or �0) is given by

M
eq(R, ✓) = M0R

�
✓ , (A4)

where M0 sets the scale of “magnetization”. The
parametrization introduced describes the equation of
state with a precision su�cient for our purpose.
We now compute 

eq
n using Eq. (A1) and Eq. (A4).

Explicitly, we have


eq
2 (R, ✓) =
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V4H0

1
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, (A5)
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Finally, we convert 
eq
n (R, ✓) into 

eq
n (r, h) using

Eq. (A2). We note that M/MA, ⇠/⇠min, S/SA,K/KA as
presented in this paper does not depend on the choice of
dimensionful normalization M0, H0.

Appendix B: Detailed derivation of Eqs. (2.20)

We present here a detailed derivation of Eqs. (2.20).
It is convenient to introduce the generating function of
cumulants,

G(�; ⌧) = log [Z(�; ⌧)] . Z(�; ⌧) ⌘ he
���

i . (B1)
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expressed in terms of the reduced temperature r and the
rescaled magnetic field h. The map of the description
of critical fluctuations in terms of r and h to T and µ

is non-universal, and is a significant source of system-
atic uncertainty in treatments of critical dynamics in the
QCD critical regime. This uncertainty, coupled with our
ignorance of ⌧rel, provide fundamental obstacles to quan-
titative studies of real time critical dynamics in QCD.

Indeed, because of the importance of non-equilibrium
e↵ects, lattice studies of equilibrium cumulants, while of
fundamental importance, may not be su�cient. These
must be accompanied by progress in non-equilibrium
studies of the QCD critical regime. One promising ap-
proach is the use of classical statistical real time simula-
tions [46, 47] that have also previously been applied to
studying the non-equilibrium dynamics of the very ear-
liest stages of high energy heavy-ion collisions [48, 49].
Detailed dynamical models of the space-time evolution
of heavy-ion collisions as a function of beam energy are
also very important. In particular, models that build in
the transport of conserved charges and reproduce bulk
features of these collisions such as particle spectra can
place strong constraints on the parameter space for the
non-equilibrium evolution of cumulants.

In this work, we have concentrated on critical dynam-
ics on the cross-over side of the critical regime. From the
perspective of a critical point search, this approach is ap-
propriate because it is easier in both experiments and in
lattice gauge theory computations to extend explorations
of the QCD phase diagram starting from the regime of
high temperatures and low baryon chemical potentials.
However, if a critical point is localized, it would be of
great interest to understand non-equilibrium dynamics
on the first-order side of phase diagram. In this regard,
applying the framework discussed here from the cross-
over critical regime to the first-order critical regime of
the QCD phase diagram is a useful extension to be pur-
sued in future studies.
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in the critical regime in terms of the Ising variables r and
h used in this paper. For this purpose, we only need to
know the equilibrium magnetization M
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Here H0 is a dimensionful parameter (of mass dimen-
sion 3) which relates reduced magnetic field h to the un-
reduced magnetic field.
To parametrize M eq(r, h), we use the linear parametric

model [35, 50]. In this parametrization, one introduces
two new variables R, ✓ which are related to (dimension-
less) Ising variable r, h as
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Here �, � are standard critical exponents and we will use
the values obtained from mean field theory, � = 1/3, � =
5. In these R, ✓ variables, ✓ = 0 corresponds to the
crossover line and |✓| =
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existence (first order transition) line. The equilibrium
“magnetization” M
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where M0 sets the scale of “magnetization”. The
parametrization introduced describes the equation of
state with a precision su�cient for our purpose.
We now compute 
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Finally, we convert 
eq
n (R, ✓) into 

eq
n (r, h) using

Eq. (A2). We note that M/MA, ⇠/⇠min, S/SA,K/KA as
presented in this paper does not depend on the choice of
dimensionful normalization M0, H0.
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expressed in terms of the reduced temperature r and the
rescaled magnetic field h. The map of the description
of critical fluctuations in terms of r and h to T and µ

is non-universal, and is a significant source of system-
atic uncertainty in treatments of critical dynamics in the
QCD critical regime. This uncertainty, coupled with our
ignorance of ⌧rel, provide fundamental obstacles to quan-
titative studies of real time critical dynamics in QCD.

Indeed, because of the importance of non-equilibrium
e↵ects, lattice studies of equilibrium cumulants, while of
fundamental importance, may not be su�cient. These
must be accompanied by progress in non-equilibrium
studies of the QCD critical regime. One promising ap-
proach is the use of classical statistical real time simula-
tions [46, 47] that have also previously been applied to
studying the non-equilibrium dynamics of the very ear-
liest stages of high energy heavy-ion collisions [48, 49].
Detailed dynamical models of the space-time evolution
of heavy-ion collisions as a function of beam energy are
also very important. In particular, models that build in
the transport of conserved charges and reproduce bulk
features of these collisions such as particle spectra can
place strong constraints on the parameter space for the
non-equilibrium evolution of cumulants.

In this work, we have concentrated on critical dynam-
ics on the cross-over side of the critical regime. From the
perspective of a critical point search, this approach is ap-
propriate because it is easier in both experiments and in
lattice gauge theory computations to extend explorations
of the QCD phase diagram starting from the regime of
high temperatures and low baryon chemical potentials.
However, if a critical point is localized, it would be of
great interest to understand non-equilibrium dynamics
on the first-order side of phase diagram. In this regard,
applying the framework discussed here from the cross-
over critical regime to the first-order critical regime of
the QCD phase diagram is a useful extension to be pur-
sued in future studies.
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Appendix A: Parametric representation of
equilibrium cumulants in the Ising critical regime

In this section, we explain the parameterization of the
equilibrium cumulants M eq(r, h),eq

n (r, h), n = 2, 3, 4, . . .
in the critical regime in terms of the Ising variables r and
h used in this paper. For this purpose, we only need to
know the equilibrium magnetization M

eq(r, h) as equilib-
rium cumulants can be computed by taking derivatives

of M eq(r, h) with respect to h at fixed r,
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Here H0 is a dimensionful parameter (of mass dimen-
sion 3) which relates reduced magnetic field h to the un-
reduced magnetic field.
To parametrize M eq(r, h), we use the linear parametric

model [35, 50]. In this parametrization, one introduces
two new variables R, ✓ which are related to (dimension-
less) Ising variable r, h as

r(R, ✓) = R(1� ✓
2) , h(R, ✓) = �hR
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h̃(✓) , (A2)

Following Ref. [11], we will use
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Here �, � are standard critical exponents and we will use
the values obtained from mean field theory, � = 1/3, � =
5. In these R, ✓ variables, ✓ = 0 corresponds to the
crossover line and |✓| =

p
3/2 corresponds to the co-

existence (first order transition) line. The equilibrium
“magnetization” M

eq
0 (r, h)(or �0) is given by

M
eq(R, ✓) = M0R

�
✓ , (A4)

where M0 sets the scale of “magnetization”. The
parametrization introduced describes the equation of
state with a precision su�cient for our purpose.
We now compute 

eq
n using Eq. (A1) and Eq. (A4).

Explicitly, we have


eq
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V4H0
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Finally, we convert 
eq
n (R, ✓) into 

eq
n (r, h) using

Eq. (A2). We note that M/MA, ⇠/⇠min, S/SA,K/KA as
presented in this paper does not depend on the choice of
dimensionful normalization M0, H0.

Appendix B: Detailed derivation of Eqs. (2.20)

We present here a detailed derivation of Eqs. (2.20).
It is convenient to introduce the generating function of
cumulants,

G(�; ⌧) = log [Z(�; ⌧)] . Z(�; ⌧) ⌘ he
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expressed in terms of the reduced temperature r and the
rescaled magnetic field h. The map of the description
of critical fluctuations in terms of r and h to T and µ

is non-universal, and is a significant source of system-
atic uncertainty in treatments of critical dynamics in the
QCD critical regime. This uncertainty, coupled with our
ignorance of ⌧rel, provide fundamental obstacles to quan-
titative studies of real time critical dynamics in QCD.

Indeed, because of the importance of non-equilibrium
e↵ects, lattice studies of equilibrium cumulants, while of
fundamental importance, may not be su�cient. These
must be accompanied by progress in non-equilibrium
studies of the QCD critical regime. One promising ap-
proach is the use of classical statistical real time simula-
tions [46, 47] that have also previously been applied to
studying the non-equilibrium dynamics of the very ear-
liest stages of high energy heavy-ion collisions [48, 49].
Detailed dynamical models of the space-time evolution
of heavy-ion collisions as a function of beam energy are
also very important. In particular, models that build in
the transport of conserved charges and reproduce bulk
features of these collisions such as particle spectra can
place strong constraints on the parameter space for the
non-equilibrium evolution of cumulants.

In this work, we have concentrated on critical dynam-
ics on the cross-over side of the critical regime. From the
perspective of a critical point search, this approach is ap-
propriate because it is easier in both experiments and in
lattice gauge theory computations to extend explorations
of the QCD phase diagram starting from the regime of
high temperatures and low baryon chemical potentials.
However, if a critical point is localized, it would be of
great interest to understand non-equilibrium dynamics
on the first-order side of phase diagram. In this regard,
applying the framework discussed here from the cross-
over critical regime to the first-order critical regime of
the QCD phase diagram is a useful extension to be pur-
sued in future studies.
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Appendix A: Parametric representation of
equilibrium cumulants in the Ising critical regime

In this section, we explain the parameterization of the
equilibrium cumulants M eq(r, h),eq

n (r, h), n = 2, 3, 4, . . .
in the critical regime in terms of the Ising variables r and
h used in this paper. For this purpose, we only need to
know the equilibrium magnetization M

eq(r, h) as equilib-
rium cumulants can be computed by taking derivatives

of M eq(r, h) with respect to h at fixed r,
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Here H0 is a dimensionful parameter (of mass dimen-
sion 3) which relates reduced magnetic field h to the un-
reduced magnetic field.
To parametrize M eq(r, h), we use the linear parametric

model [35, 50]. In this parametrization, one introduces
two new variables R, ✓ which are related to (dimension-
less) Ising variable r, h as

r(R, ✓) = R(1� ✓
2) , h(R, ✓) = �hR
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Following Ref. [11], we will use
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Here �, � are standard critical exponents and we will use
the values obtained from mean field theory, � = 1/3, � =
5. In these R, ✓ variables, ✓ = 0 corresponds to the
crossover line and |✓| =

p
3/2 corresponds to the co-

existence (first order transition) line. The equilibrium
“magnetization” M

eq
0 (r, h)(or �0) is given by

M
eq(R, ✓) = M0R
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where M0 sets the scale of “magnetization”. The
parametrization introduced describes the equation of
state with a precision su�cient for our purpose.
We now compute 
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n using Eq. (A1) and Eq. (A4).

Explicitly, we have
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Finally, we convert 
eq
n (R, ✓) into 

eq
n (r, h) using

Eq. (A2). We note that M/MA, ⇠/⇠min, S/SA,K/KA as
presented in this paper does not depend on the choice of
dimensionful normalization M0, H0.

Appendix B: Detailed derivation of Eqs. (2.20)

We present here a detailed derivation of Eqs. (2.20).
It is convenient to introduce the generating function of
cumulants,
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On the sign of kurtosis near the QCD critical point

M. A. Stephanov
Department of Physics, University of Illinois, Chicago, Illinois 60607, USA

We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is uni-
versally negative when the critical point is approached on the crossover side of the phase separation
line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity,
may become smaller than the value given by independent Poisson statistics. We discuss implications
for the Beam Energy Scan program at RHIC.

INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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may become smaller than the value given by independent Poisson statistics. We discuss implications
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INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
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the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.
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POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):
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Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡
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d3xσ(x) in a system of
volume V we find at tree level
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ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
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(see, e.g., Ref.[1] for a review and further references). Lo-
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review and references). If the critical point is situated in
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Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
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versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =
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+
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Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level
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V 〉 = V T ξ2 ; κ3 = 〈σ3
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where 〈σ4
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V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by
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I ≡ ∫
1

0

ln[x(1 − x)]
1 − x(1 − x) dx ∼ − 2.3439

gξ(θ) = gξ(0)(1 − 5
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972 (24I − 25)θ2 + 1
324 (4I + 41)θ4]ϵ2))
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INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4
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σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
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the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x
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(∇σ)2
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+

m2
σ

2
σ2 +
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σ3 +
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(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;
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2 − λ4 ] ξ
8 .

(3)

where 〈σ4
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V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by
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of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
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the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of
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On the sign of kurtosis near the QCD critical point

M. A. Stephanov
Department of Physics, University of Illinois, Chicago, Illinois 60607, USA

We point out that the quartic cumulant (and kurtosis) of the order parameter fluctuations is uni-
versally negative when the critical point is approached on the crossover side of the phase separation
line. As a consequence, the kurtosis of a fluctuating observable, such as, e.g., proton multiplicity,
may become smaller than the value given by independent Poisson statistics. We discuss implications
for the Beam Energy Scan program at RHIC.

INTRODUCTION

Mapping the QCD phase diagram as a function of
temperature T and baryochemical potential µB is one
of the fundamental goals of heavy-ion collision experi-
ments. QCD critical point is a distinct singular feature
of the phase diagram. It is a ubiquitous property of QCD
models based on the chiral symmetry breaking dynamics
(see, e.g., Ref.[1] for a review and further references). Lo-
cating the point using first-principle lattice calculations
is a formidable challenge (see, e.g., Ref.[2] for a recent
review and references). If the critical point is situated in
the region accessible to heavy-ion collision experiments
it can be discovered experimentally. The search for the
critical point is planned at the Relativistic Heavy Ion
Collider (RHIC) at BNL, the Super Proton Synchrotron
(SPS) at CERN, the future Facility for Antiproton and
Ion Research (FAIR) at GSI, and Nuclotron-based Ion
Collider Facility (NICA) in Dubna (see, e.g., Ref.[3]).

The characteristic feature of a critical point is the di-
vergence of the correlation length ξ and of the magnitude
of the fluctuations. The simplest measures of fluctuations
in heavy-ion collisions are the variances of the event-by-
event observables such as multiplicities or mean trans-
verse momenta of particles. The singular, critical con-
tribution to these variances diverges as (approximately)
ξ2, and would manifest in a non-monotonic dependence
of such measures as the critical point is passed by during
the beam energy scan [4, 5]. In realistic heavy ion colli-
sion the divergence of ξ is cut-off by the effects of critical
slowing down [5, 6], and the estimates of the maximum
correlation length are in the range of at most 2 − 3 fm,
compared to the natural 0.5−1 fm away from the critical
point. However, higher, non-Gaussian, moments of the
fluctuations depend much more sensitively on ξ, accord-
ing to Ref.[7]. For example, the 4-th moment grows as
ξ7 near the critical point, making it an attractive exper-
imental tool. In this paper we follow up on the results
of Ref.[7] to point out that the sign of the 4-th moment
could be negative as the critical point is approached from
the crossover side of the QCD phase transition.

The sign of various moments have been discussed in
the literature in related contexts: see, e.g., discussion of
the sign of the 3-rd moment in Ref.[8] or the 6-th and 8-th
moments in Ref.[9] and also numerical lattice calculations

in Ref.[10] where the possible sign change of kurtosis is
noted.
In this paper we shall address specifically the sign of

the 4-th moment (or kurtosis) and do it in a more uni-
versal and quantitative way than has been done previ-
ously, by using the known parametric form of the univer-
sal equation of state near the critical point. We empha-
size universality of the behavior of the kurtosis and draw
experimental consequences from these results.

KURTOSIS AND UNIVERSAL EFFECTIVE
POTENTIAL

Let us begin, as in Ref.[1], by describing fluctuations of
the order parameter field σ(x) near a critical point using
the probability distribution

P [σ] ∼ exp {−Ω[σ]/T } , (1)

where Ω is the effective action (free energy) functional for
the field σ, which can be expanded in powers of σ as well
as in the gradients (we chose σ = 0 at the minimum):

Ω =

∫

d3x

[

(∇σ)2

2
+

m2
σ

2
σ2 +

λ3

3
σ3 +

λ4

4
σ4 + . . .

]

.

(2)
Calculating 2-point correlator 〈σ(x)σ(0)〉 we find that
the correlation length ξ = m−1

σ . For the moments of the
zero momentum mode σV ≡

∫

d3xσ(x) in a system of
volume V we find at tree level

κ2 = 〈σ2
V 〉 = V T ξ2 ; κ3 = 〈σ3

V 〉 = 2λ3V T 2 ξ6 ;

κ4 = 〈σ4
V 〉c = 6V T 3 [ 2(λ3ξ)

2 − λ4 ] ξ
8 .

(3)

where 〈σ4
V 〉c ≡ 〈σ4

V 〉−3〈σ2
V 〉2 denotes the connected 4-th

central moment (the 4-th cumulant). The critical point
is characterized by ξ → ∞. The central observation in
Ref.[7] was that the higher moments (cumulants) κ3 and
κ4 diverge with ξ much faster than the quadratic moment
κ2. Here we shall point out that the sign of the 4-th
moment κ4 is negative in a certain sector near the critical
point. More precisely, the 4-th cumulant is negative when
the critical point is approached from the crossover side.
Let us demonstrate this in several complementary ways.
A simple way to see why the kurtosis is negative is by

following the evolution of the probability distribution of

I ≡ ∫
1

0

ln[x(1 − x)]
1 − x(1 − x) dx ∼ − 2.3439
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Equation of state for QCD with a critical point

4

Up to !("B4):
P. Parotto, DM, et al PRC (2020)

• Map a parameterization of the 3D Ising model critical point to QCD variables 
(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)

• Reduce number of free parameters by 
imposing:

➤ Utilize the BEST EOS mapping between the Ising parametric variables and QCD

➤ Reduce free parameters by imposing 
constraints from Lattice QCD 

➤ Parameter choice consistent with BEST 
EOS: μB,c = 350MeV, w = 1, ρ = 2, α2 − α1 = 90o

Mapping to QCD Phase Diagram
Equation of state for QCD with a critical point

4

Up to !("B4):
P. Parotto, DM, et al PRC (2020)

• Map a parameterization of the 3D Ising model critical point to QCD variables 
(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)

• Reduce number of free parameters by 
imposing:

Equation of state for QCD with a critical point

4

Up to !("B4):
P. Parotto, DM, et al PRC (2020)

• Map a parameterization of the 3D Ising model critical point to QCD variables 
(BEST EoS): 

P(T, μB) = T4 ∑
n

cNon−Ising
n (T )( μB

T )
n

+ PQCD
crit (T, μB)

• Reconstruct QCD pressure via Taylor 
expansion using coefficients extracted on the 
lattice: T4cLAT

n (T ) = T4cNon−Ising
n (T ) + cIsing

n (T )

Up to !("B4) + strangeness neutrality:
J.M. Karthein, DM, et al EPJ+ (2021)

• Reduce number of free parameters by 
imposing:

P. Parotto et al, PRC (2020), 
J. M. Karthein et al, EPJ+ (2021)

➤ Linear map:

11
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Estimating Equilibrium Fluctuations with BEST EOS

➤ Re-evaluate equilibrium estimates for normalized cumulants                     with 
realistic critical EOS 

➤ Updates:  (dimensionless, -independent: ) 

➤ Remaining dependence on coupling: 

ξ, λ3, λ4 ξ λ̃3 = λ3T1/2ξ3/2, λ̃4 = λ4Tξ

gp

C. Athanasiou, K. Rajagopal, M. Stephanov, PRD (2010)

12

3

We now define the cumulants of the event-by-event dis-
tribution of a single observable, say x. The second and
third cumulants are given by

2x ⌘ hhx2ii ⌘ h (�x)2 i (1.2)

3x ⌘ hhx3ii ⌘ h (�x)3 i , (1.3)

where we have introduced two equivalent notations for
the cumulants. The second cumulant 2x is the variance
of the distribution, while the skewness of the distribution

is given by 3x/
3/2
2x . The fourth cumulant is di↵erent

from the corresponding fourth moment:

4x ⌘ hhx4ii ⌘ h (�x)4 i � 3 h (�x)2 i2 . (1.4)

The kurtosis of the distribution is given by 4x/2
2x.

The defining property of the cumulants is their addi-
tivity for independent variables. For example, if a and
b are two independent random variables, then i(a+b) =
ia+ib. This property is easily seen from the cumulant
generating function

g(µ) = logheµ �xi , (1.5)

which is manifestly additive. The n’th cumulant of the
x-distribution is given by

nx =
@ng(µ)

@µn

����
µ=0

. (1.6)

Using the double bracket notation introduced above,
g(µ) = hheµxii. As a result of their additivity, cumulants
of extensive variables, such as Np or N⇡, are all them-
selves extensive, meaning that they are proportional to
the volume of the system V in the thermodynamic limit.

We shall also consider mixed cumulants, which gener-
alize the more familiar Gaussian measures of correlations
to non-Gaussian measures. These are generated by

g(µ, ⌫) ⌘
X

n,m

nxmy µn⌫m

m!n!
= logheµ �x+⌫ �yi , (1.7)

and, for example, are given by

1x1y ⌘ hhxyii = h �x �y i , (1.8)

1x2y ⌘ hhxy2ii = h �x (�y)2 i , (1.9)

2x2y ⌘ hhx2y2ii
= h (�x)2 (�y)2 i � 2h �x �y i2 � h (�x)2 i h (�y)2 i ,

(1.10)

1x3y ⌘ hhxy3ii
= h �x (�y)3 i � 3 h �x �y i h (�y)2 i . (1.11)

For two extensive variables x and y such mixed cumulants
are also extensive, proportional to V .
We have described how to obtain the cumulants ix,

jy and ixjy from a data set consisting of an ensemble
of events in each of which x and y have been measured.

We can now define the intensive normalized cumulants
that we shall analyze:

!i⇡ ⌘ i⇡

hN⇡i
, (1.12)

!ip ⌘ ip

hNpi
, (1.13)

!i(p�p̄) ⌘
i(p�p̄)

hNp +Np̄i
, (1.14)

!ipj⇡ ⌘ ipj⇡

hNpii/rhN⇡ij/r
, (1.15)

!i(p�p̄)j⇡ ⌘
i(p�p̄)j⇡

hNp +Np̄ii/rhN⇡ij/r
, (1.16)

where r ⌘ i+ j.
If N⇡, Np and Np̄ are statistically independent and

Gaussian distributed, then the !2’s in (1.12), (1.13) and
(1.14) are nonzero and all the other !’s vanish.
If N⇡, Np and Np̄ are statistically independent and

Poisson distributed, then all the !i’s in (1.12), (1.13)
and (1.14) with i � 2 are equal to 1, and all the mixed
cumulants vanish and therefore so do the !’s in (1.15)
and (1.16).
In this paper we shall calculate the contributions of

critical fluctuations to the normalized cumulants (1.12),
(1.13) and (1.14) for i = 2, 3 and 4 and the normalized
mixed cumulants (1.15) and (1.16) for i’s and j’s such
that r = 2, 3 and 4.

B. Dependence of ⇠ on µB

We shall close this Introduction (in Section I.C) by
illustrating possible experimental outcomes of measure-
ments of the cumulants defined in Section I.A, assuming
that the matter produced at the freezeout point of the
fireball evolution for some collision energy

p
s is near the

critical point. In Section I.C we shall present only results,
while the calculations involved are presented in Section
II. What we shall calculate in Section II is the contribu-
tion of critical fluctuations to the observables defined in
Section I.A, in terms of the correlation length ⇠. In order
to give an example of possible experimental outcomes, we
need to make an illustrative choice of how the correlation
length ⇠ that is achieved in a heavy ion collision depends
on µB .
To start, let us assume that the critical point occurs

at µc
B = 400 MeV. Let us also assume that because the

fireball only spends a finite time in the vicinity of the
critical point the correlation length reaches a maximum
value of ⇠max = 2 fm in the collisions in which the freeze-
out point is closest to the critical point during an energy
scan. We stress that our choices of µc

B and ⇠max are
arbitrary, made for illustrative purposes only, and are in
no way predictions.
How does the correlation length achieved in a heavy

ion collision depend on the µB at which the matter pro-
duced in the collision freezes out? Close to the critical

ωip = 1 + ωprefactor
ip (

np

n0
)

i−1
( ξ

ξmax
)

5
2 i−3

ωprefactor
ip = λ̃′ i(i − 1)!ξ

5
2 i−3
max

Ti/2 np (∫k
dp gp

v2
k

γk )
i

( n0
np

)
i−1

ω4p,σ = 6(2λ̃2
3 − λ̃4)

T2 np
ξ7(dp gp ∫k

v2
k

γk )
4

9

0.1 0.2 0.3 0.4 0.5
mBêGeV

0.5
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1.5

2.0

2.5

3.0

3.5

nên0

np-p ê n0
np ê n0

FIG. 4: Proton number density np and net proton number
density np�p̄ ⌘ np � np̄ at chemical freezeout as functions of
µB . Both depend on T as well as µB ; we have taken T (µB)
as in (2.24). We have normalized both np and np�p̄ using the
constant n0 of (2.23) introduced in (2.19) and (2.20).

where we have defined

!prefactor
ipj⇡ ⌘ �̃0

r (r � 1)! ⇠
5
2 r�3
max

T r/2

↵i
p

ni/r
p

↵j
⇡

nj/r
⇡

✓
n0

np

◆i� i
r

(2.20)
and

↵⇡ ⌘ d⇡ g⇡

Z

k

v⇡ 2
k

�⇡
k

, ↵p ⌘ dp gp

Z

k

vp 2
k

�p
k

, (2.21)

�̃0
2 ⌘ 1, �̃0

3 ⌘ �̃3 and �̃0
4 ⌘ 2�̃2

3 � �̃4. (2.22)

In the second line of (2.19) we have factored out the two
main sources of µB dependence: the correlation length ⇠
depends on µB as we have discussed at length in Section
IB and, if the normalized cumulant involves the proton
multiplicity it depends on np, which increases rapidly
with increasing µB as shown in Fig. 4. We have denoted
all of the remaining factors in our result for the contribu-
tion of critical fluctuations to the normalized cumulant
by !prefactor

ipj⇡ , which depends only weakly on µB as we
illustrate in Fig. 5. The number density n0 is an ar-
bitrary constant — note that it cancels when (2.20) is
substituted into (2.19) — introduced in order to make
!prefactor
ipj⇡ dimensionless. We shall choose

n0 ⌘ 1

(5 fm)3
= 6.116⇥ 10�5 GeV3 . (2.23)

With this choice, hnpi/n0 is of order 1 at the µB of in-
terest to us — see Fig. 4 — and none of the di↵erent
!prefactor
ipj⇡ s are orders of magnitude smaller or larger than

1, as illustrated in Fig. 5.
Let us now walk through the physics behind the dif-

ferent pieces of the expression (2.19). The Kronecker
deltas describe Poisson fluctuations, which are of course
⇠-independent. As we described in Section IA, they con-
tribute 1 to the !ip’s and the !j⇡’s and they make no

0.0 0.1 0.2 0.3 0.4 0.5
mBcêGeV

0.4
0.6
0.8
1.0
1.2
1.4
1.6

w2
prefactor

2p, 2Hp-pL
1p1p, 1Hp-pL1p
2p

0.0 0.1 0.2 0.3 0.4 0.5
mBcêGeV

1

2

3

4

w3
prefactor

3p, 3Hp-pL
2p1p, 2Hp-pL1p
1p2p, 1Hp-pL2p
3p

0.0 0.1 0.2 0.3 0.4 0.5
mBcêGeV

5

10

15

20

w4
prefactor

4p, 4Hp-pL
3p1p, 3Hp-pL1p
2p2p, 2Hp-pL2p
1p3p, 1Hp-pL3p
4p

FIG. 5: The µB-dependence of !prefactor
ipj⇡ and !prefactor

i(p�p)j⇡, de-

fined in (2.19), (2.20) and (2.25). The three panels are for the
normalized cumulants with r ⌘ i + j = 2, 3 and 4, respec-
tively. The curves can be used to determine how the height
of the peak in the critical contribution to the normalized cu-
mulants changes as we vary µc

B , the µB at which ⇠ = ⇠max

and at which (to a very good approximation) the normalized
cumulant has its peak. The height of the peak in !ipj⇡ [or
!i(p�p̄)j⇡] is proportional to (np/n0)

i�i/r [or (np�p̄/n0)
i�i/r]

multiplied by the prefactor plotted in this Figure. We have
taken T (µB) as in (2.24) and have used the benchmark pa-
rameters G = 300 MeV, gp = 7, �̃3 = 4 and �̃4 = 12.

contribution to the mixed cumulants in which i and j are
both nonzero. More realistically, the 1 of Poisson statis-
tics gets few percent contributions from Bose-Einstein
statistics (which are calculable), from initial state corre-
lations that are incompletely washed out, and from inter-
actions other than those with the critical �-mode. We are
ignoring all of these noncritical corrections to the 1. In
principle, with su�ciently precise data their magnitude
could be measured far away from the critical point and
this background could then be subtracted. If this back-
ground were significant, one could also try to study and
calculate these corrections theoretically. Present data on

generalize
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➤ Determine dimensionless couplings and their -dependence along chemical freeze-
out lines parallel to the transition line from Lattice QCD  MeV below critical 
point

μB
ΔT = 5

Extracting Higher-point Couplings
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Pre-factors for Equilibrium Normalized Cumulants

➤ Update non-critical pre-factors along the same freeze-out line 

➤ Carry stronger -dependence than early estimates due to ’sμB λ
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Equilibrium Normalized Cumulants
with Realistic EoS

• Normalized non-Gaussian cumulants (skewness and kur-
tosis) at freeze-out �T ' 5 � 7 MeV below critical point,
assumed to be in equilibrium, are comparable in magnitude
to what was estimated much more crudely, with more ad
hoc assumptions, in 2010.

• New calculations use BEST EoS plus the new calculations
of the universal behavior of ⇠, �3, �4.

• In reality, the critical fluctuations, and the consequent non-
Gaussian cumulants of the proton multiplicity distribution,
will NOT be in equilibrium.

• Critical slowing down will prevent them from growing any-
where near this big, and will also slow their subsequent
relaxation.

• Magnitude will be much less. Sensitivity to �T will be
less. . .

• Great recent progress toward full dynamical calculation. . .



Mapping the QCD Phase Diagram
• Energy and baryon number in initial stages.

• Equation of State (EoS)

• Hydrodynamics. Critical fluctuations.
– Critical fluctuations develop in those collisions that pass

near a critical point as they cool
– Critical slowing down ! fluctuations cannot stay in equi-

librium (Berdnikov+KR, 1999). Must describe out-of-
equilibrium critical fluctuations and hydrodynamics self-
consistently. Two formalisms developed; we use Hy-
dro+ (Stephanov, Yin, 2017)

– First use of Hydro+ to model fluctuation dynamics near
a QCD critical point (KR, Ridgway, Weller, Yin, 2019;
Du, Heinz, 2020; Pradeep, KR, Stephanov, Yin, 2022)

– Cooling+critical slowing down ! growth of critical fluc-
tuations “lags” what it would be in equilibrium, fluctua-
tions also persist longer than they would; expansion, ra-
dial flow ! critical fluctuations advected outward; back-
reaction on hydrodynamics turns out to be small.

• Freezeout of critical fluctuations.



Dynamics and freeze-out of 
fluctuations near the QCD critical point

(arXiv: 2204.00639)
Maneesha Pradeep1*, Krishna Rajagopal2, Misha Stephanov1, Yi Yin3 

1University of Illinois at Chicago, 2 Massachusetts Institute of Technology, 3 Institute of Modern Physics, Lanzhou 



Hydro+ simulation

Azimuthally symmetric, boost invariant hydrodynamic background with radial 
expansion with fluctuations discussed in Rajagopal, Ridgway, Weller, Yin, 19
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Hydrodynamics + relaxation equation for the 
slowest non-hydrodynamic mode

This talk :

Stephanov & Yin, 2017

Back reaction of out-of-equilibrium fluctuations on the EoS neglected 
as they have been found to be less than sub-percent level in 

Rajagopal et al, 19, Du et al, 20



Evolution of fluctuations

Γ(Q) = 2D0ξ0
ξ3 K( |Qξ | ), K(x) ∼ x2 for x < < 1

u ⋅ ∂ϕQ = − Γ (Q) (ϕQ − ϕ̄Q)
ϕQ = ∫Δx

e−i Q⋅Δx ⟨δ ̂s(x+) δ ̂s(x−)⟩
(2204.00639)

The slowest and the most singular mode 
near the critical point corresponds to 
fluctuations of  
The relaxation rate   
Equilibrium fluctuations 

̂s ≡ s
n
Γ ∼ ξ−3

∝ Cp ∼ ξ2
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Zero mode doesn’t evolve

Stephanov & Yin, 2017
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MP, Rajagopal, Stephanov, Yin, 22

Γ(x) = D0ξ0
ξ3 K(x), K(x) ∼ x2 for x ≪ 1 Model H
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u · @W2(x,Q) = ��(|Q|⇠)
�
W2(x,Q)� W̄2(x,Q)

�

The contribution of low Q modes dominate the 
particle correlations
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Dynamics of fluctuations near a critical point
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Demonstrating critical 
slowing down

Lower Q modes are suppressed strongly due to conservation and relax more slowly

Normalized 
out-of-equilibrium 

fluctuations 
for two Q modes 

and two relaxation  
rates 
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Critical correlations in space

Conservation

∫ dΔx Δx2 ϕ̃(Δx) = ϕ0

We consider two isothermal freeze-out scenarios: T=140 MeV and T=156 MeV

Out-of equilibrium 
fluctuations 

“remember” their 
past, so the difference 

between the two 
freeze-out scenarios 

is not too large

(2204.00639)
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Mapping the QCD Phase Diagram
• Finding, or excluding, a critical point requires theory and

modeling, with ingredients including:

• Energy and baryon number in initial stages.

• Equation of State (EoS)

• Hydrodynamics. Critical fluctuations.

• Freezeout of critical fluctuations
– Freezing out Hydro+ so as to faithfully turn the criti-

cal fluctuations described via Hydro+ into fluctuations
of observed proton multiplicities: 2204.00639 Pradeep,
KR, Stephanov, Yin

– . . . faithfully turn the higher moments of the critical fluc-
tuations into the skewness and kurtosis of observed pro-
ton multiplicities (in progress) Karthein, Pradeep, KR,
Stephanov, Yin

• Phase diagram mapping theory+modeling tools vastly bet-
ter than in 2015; being completed; data coming soon!



Maneesha Pradeep, University of Illinois at Chicago

Dynamics and freeze-out of 
fluctuations in heavy-ion 

collisions
Work in progress with Jamie Karthein,  Bruno Sebastian Scheihing Hitschfeld, Krishna 
Rajagopal, Misha Stephanov, and Yi Yin 
Phys.Rev.D 106 (2022) 3, 036017 with Krishna Rajagopal, Misha Stephanov, and Yi Yin 
arXiv 2211.09142 with Misha Stephanov 

CPOD 2022

https://indico.cern.ch/event/1186000/contributions/5117784/author/7233635


Critical fluctuations in hadron resonance gas
We incorporate the effects of critical fluctuations via the modification of particle masses due to their 
interaction with a critical sigma field 
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function of  to the two 

point function of the Hydro+ 
mode, 
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Effect of conservation laws on particle 
(anti)correlations at freeze-out
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Critical contribution to 
variance of proton multiplicities
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Summary 
We have generalized the Cooper-Frye freeze-out procedure so that not only the averages, but also the 
critical fluctuations of the conserved densities are matched on the freeze-out hypersurface 

We have demonstrated the freeze-out in a semi-realistic scenario and estimated the dynamical 
effects for the critical contribution to the Gaussian cumulants of proton multiplicity 

The fluctuations are less sensitive to the freeze-out temperature in an out-of-equilibrium scenario 
unlike in an equilibrium case



Mapping the QCD Phase Diagram
• Finding, or excluding, a critical point requires theory and

modeling, with ingredients including:

• Energy and baryon number in initial stages.

• Equation of State (EoS)

• Hydrodynamics. Critical fluctuations.

• Freezeout of critical fluctuations
– Freezing out Hydro+ so as to faithfully turn the criti-

cal fluctuations described via Hydro+ into fluctuations
of observed proton multiplicities: 2204.00639 Pradeep,
KR, Stephanov, Yin

– . . . faithfully turn the higher moments of the critical fluc-
tuations into the skewness and kurtosis of observed pro-
ton multiplicities (in progress) Karthein, Pradeep, KR,
Stephanov, Yin

• Phase diagram mapping theory+modeling tools vastly bet-
ter than in 2015; being completed; data coming soon!



What Next?

Two kinds of What Next? questions for the coming decade. . .

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.

Three di↵erent variants of this question. . .
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The 2015 Long Range Plan for Nuclear Science

Reaching for the Horizon

25

Sidebar 2.4: !e States of QCD Matter
The study of states of matter governed by the strong 

force parallels progress in other fields of matter in 

which surprising “emergent phenomena,” striking 

macroscopic phenomena in no way apparent in the 

laws describing the interactions between microscopic 

constituents, have been discovered. High temperature 

superconductivity is an emergent phenomenon arising 

in strongly correlated, electromagnetically interacting 

matter. The first goals after its discovery included the 

mapping of its phase diagram, shown at the upper-left, 

and the characterization of the newly found phases of 

matter, including the strange metal phase. As with QGP, 

there is no known way to describe its structure and 

properties particle by particle; understanding strange 

metals remains a central challenge. Experimental 

progress can come by changing the material doping—

adding more holes than electrons—and by probing the 

material at shorter wavelengths—for example, with the 

angle resolved photo emission spectroscopy (ARPES) 

technique, shown on the lower left—with the goal of 

understanding how strong correlations result in the 

emergence of the surprising macroscopic phenomena. 

Near perfect fluidity is an equally exciting and 

unexpected emergent phenomenon, in this case arising 

in strongly interacting matter in the QGP phase. Doping 

QGP, adding more quarks than antiquarks, is done via 

changing the collision energy and enables a search for 

a possible critical point in the phase diagram shown in 

the upper right. The reach of the RHIC BES-II program 

that will be enabled by new instrumentation at RHIC is 

shown, as are the trajectories on the phase diagram 

followed by the cooling droplets of QGP produced in 

collisions with varying energy. The microscopy of QGP 

is enabled by new “microscopes,” such as sPHENIX, 

shown in the lower right, and upgraded detectors and 

luminosities in the combined RHIC and LHC program.

Te
m

p
e

ra
tu

re

Doping

Te
m

p
e

ra
tu

re
 (M

eV
)

Baryon Doping – +B (MeV)
0

0

50

100

150

200

250

300

200 400 600 800 1000 1200 1400 1600

ARPES Microscope sPHENIX Microscope

A
n

ti
fe

rr
o

m
a

g
n

e
t

Strange Metal Quark-Gluon Plasma

Color
Superconductor

Hadron Gas
Pseudogap

Fermi LiquidHigh-T
Superconductor

QCP



What Next?

Two kinds of What Next? questions for the coming decade. . .

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.

Three di↵erent variants of this question. . .



Probing the Original Liquid
The question How does the strongly coupled liquid emerge
from an asymptotically free gauge theory? can be thought of
in three di↵erent ways, corresponding to three meanings of
the word “emerge”: as a function of resolution, time, or size.
• How does the liquid emerge as a function of resolution

scale? What is the microscopic structure of the liquid?
Since QCD is asymptotically free, we know that when
looked at with su�cient resolution QGP must be weakly
coupled quarks and gluons. How does a liquid emerge
when you coarsen your resolution length scale to ⇠ 1/T?

• Physics at t = 0 in an ultrarelativistic heavy ion collision is
weakly coupled. How does strongly coupled liquid form?
How does it hydrodynamize?

• How does the liquid emerge as a function of increasing
system size? What is the smallest possible droplet of the
liquid?

Each, in a di↵erent way, requires stressing or probing the QGP.
Each can tell us about its inner workings.



Smallest possible droplet of liquid?
• What is the smallest possible droplet of QGP that behaves

hydrodynamically? Anyone doing holographic calculations
at strong coupling, or anyone seeing e↵ects of small lumps
in the initial state visible in the final state, could have asked
this question, but didn’t. Question was asked by data: pPb
collisions @LHC; pAu, dAu and 3HeAu data @RHIC.

• Subsequently, holographic calculations of a “proton” of
radius R colliding with a sheet show hydrodynamic flow in
the final state as long as the collision has enough energy
such that RThydrodynamization & 0.5 to 1.

• Many recent theoretical advances. Hydrodynamic behavior
in small-big collisions at top RHIC energy and LHC energy
less surprising, a posteriori. But still remarkable.

• Not our focus today. For today, tells us that to see “inside”
the liquid we will need probes which resolve short length
scales. . .



Measured v (p ) in the 0–5% most central p+Au collisions and 20–40% central d+Au

collisions compared with SONIC predictions and MSTV postdictions. Each point

represents an average over p  bins of width 0.2 GeV c  to 0.5 GeV c . The vertical lines

(boxes) represent one standard deviation statistical (systematic) uncertainties. The

quoted dN /dη values are taken from ref. . Blue and red curves correspond to SONIC

predictions for d+Au and p+Au, respectively. The green curve corresponds to MSTV

calculations for 0–5% central p+Au collisions, which the authors state yield an identical
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Eeek! Hydrodynamics in small systems!

2

Not big & dense 
 
But, we see collective 
flow!
Seeded by the initial 
geometry

A small droplet of 
QGP?!

PHENIX 
Collaboration
Nature Physics 
(2018)



Collectivity in small systems 

• Evidence of QGP droplets in small collision systems

• Smaller !! in p+Au and larger !" in 3He+Au

Nature	Phys.	15,	214	(2019)
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Smallest possible droplet of liquid?
• What is the smallest possible droplet of QGP that behaves

hydrodynamically? Anyone doing holographic calculations
at strong coupling, or anyone seeing e↵ects of small lumps
in the initial state visible in the final state, could have asked
this question, but didn’t. Question was asked by data: pPb
collisions @LHC; pAu, dAu and 3HeAu data @RHIC.

• Subsequently, holographic calculations of a “proton” of
radius R colliding with a sheet show hydrodynamic flow in
the final state as long as the collision has enough energy
such that RThydrodynamization & 0.5 to 1.

• Many recent theoretical advances. Hydrodynamic behavior
in small-big collisions at top RHIC energy and LHC energy
less surprising, a posteriori. But still remarkable.

• Not our focus today. For today, tells us that to see “inside”
the liquid we will need probes which resolve short length
scales. . .



Why Jets?
• The remarkable utility of hydrodynamics, for example in

describing the dynamics of small lumps in the initial state
in AA collisions, tells us that to see the inner workings of
QGP, namely to see how the liquid is put together from
quarks and gluons, we will need probes with much finer
resolution.

• Need resolution scale that is ⌧ size of a proton, ⌧ size of
lumps coming from the initial state that behave hydrody-
namically, ⌧ 1/Thydrodynamization.

• Jets are multiscale probes. (Scales associated with: hard
production, splittings in the shower, momentum trans-
fers as jet partons interact with the medium, response
of medium. So, from very hard to very soft.)

• They provide best+only chance for a scattering experi-
ment o↵ a droplet of QGP and seeing its inner workings.

• Our best shot at getting experimental evidence for point-
like scatterers in QGP when QGP is probed with large
momentum transfer.



Why Jets?
• Nature gives us two multi-resolution-scale probes: Upsilons

and jets.

• Upsilons tell us whether the QGP can screen color forces
over length scales of order the size of the ⌥(1S), ⌥(2S),
⌥(3S). LHC data indicate that the dissociation pattern of
these quarkonia states depends on their binding energy,
which is to say on their size, as long expected. More to
come, for example as pT -dependence is studied.

• Upsilons can tell us about the screening length of the QGP,
not about how it is put together. And, since the screen-
ing length is ⇠ 1/T at strong coupling, and even longer at
less strong coupling, the QGP is liquid-like at this resolu-
tion. And, if an Upsilon state is smaller than the screening
length, it doesn’t tell us anything beyond that fact. Bot-
tom line: Upsilons are a three-scale probe that will tell us
about screening but they do not see the inner workings.



Jet Quenching, in brief

Wit Busza  APS May 2011  25 

Example: studies of di‐jets give a glimpse of 

what happens when a fast quark or gluon is 

ploughing through the hot dense medium 

CMS 

ATLAS 

Jet quenching discovered @ RHIC; @ LHC, seen instantly!
• 200+ GeV jets lose many tens of GeV passing through the

liquid QGP.
• Lost energy turns into many soft particles, around jet and

at all angles.
• There might have been a third jet in these events? If so

it has been turned entirely into soft particles.
• Lower energy jets, seen by ALICE and at RHIC, can emerge,

surrounded by their debris.



Photon
191GeV

Jet
98GeV

2011: Detected 3000 
photon-jet pairs in 
109 PbPb collisions 

Unbalanced photon-jet event in PbPb  



Jets as Probes of QGP
• Closest we will ever come to doing a scattering experiment

o↵ a droplet of Big Bang matter.

• Jets in heavy ion collisions also o↵er the best chance of
watching how QGP hydrodynamizes. Jets leave a wake in
the medium. Can we see how it hydrodynamizes, and then
flows? Best shot at experimental access to this physics.

• But, jets sure don’t make it easy to decode the info about
the nature of QGP at various length scales encoded in the
modification of their energies, shapes, and structure.

• We need high statistics sPHENIX and LHC data on rare
events in which jet partons scatter o↵ QGP partons by a
su�cient angle to yield observable consequences.

• And, theorists are using the data of today to build the
baseline of understanding with and against which to look
for and interpret such e↵ects.

• For example, how do we separate observable e↵ects due
to wake from those due to scattering o↵ quasiparticles?



sPHENIX first performance

Cameron Dean
Massachusetts Institute of Technology
MITHIG Physics Discussions
05/30/2023



What is sPHENIX?

05/31/23 MITHIG physics discussions 2

• Super PHENIX is the successor to the Pioneering Hadron Electron Nuclear Interaction eXperiment (PHENIX)
• A barrel detector designed to study heavy flavor and jet physics in a heavy ion environment
• Uses both new technology and technology shared with other experiments

• Located in the PHENIX experimental hall, IP-8
• Last PHENIX data taking was 2016
• Data taking began on May 18th 2023
Top – The location of (s)PHENIX at RHIC
Left – A PHENIX event display



sPHENIX layout

05/31/23 MITHIG physics discussions 3

sEPD

MinBIAS

TPC

MVTX

iHCAL

MAGNET

oHCAL

INTT

EMCAL

TPOT
TPOT



sPHENIX scale

05/31/23 MITHIG physics discussions 4

First run year 2023

!!! [GeV] 200

Trigger Rate [kHz] 15

Magnetic Field [T] 1.4

First active point [cm] 2.5

Outer radius [cm] 270

" ⩽1.1

$"#$  [cm] 10

N(AuAu) collisions* 1.43x1011

* In 3 years of running



Tracking

05/31/23 MITHIG physics discussions 5

INTT ladder placement 
at BNL, June 2022

MVTX closure tests, 
February 2023

TPC after insertion, 
January 2023



Calorimetry

05/31/23 MITHIG physics discussions 6

Left: Inner hadronic 
calorimeter 
installation, June 2022 

Right: Electromagnetic 
calorimeter cabling, 
December 2022 



Commissioning plan

05/31/23 MITHIG physics discussions 7

• Commissioning started on May 18th when we got 
approval to cool down the magnet
• First detectors on were ZDC and MBD
• HCals were timed in next
• Followed by EMCal
• Started timing in INTT and TPOT last week
• Started timing in TPC this week
• Magnet switch on was yesterday, 5/30!
• Will also start bringing in MVTX tomorrow
• sEPD installation to start mid-July during 

maintenance period
• Currently trying collisions with 56-56 bunches!



First-look event displays!
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Hadronic calo correlations
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Conclusions

05/31/23 MITHIG physics discussions 16

• sPHENIX is the first new hadron detector in 
> 10 years

• Data taking started less than 2 weeks ago!
• Magnet turned on yesterday!
• First approval process occurred on Friday!
• Phenomenal effort underway to time in all 

detectors
• ZDC, MBD, inner and outer HCal, and 

EMCal are timed in
• INTT, TPC and TPOT are getting added in 

now
• MVTX expected to start timing in 

tomorrow (locked to global trigger ~5pm 
yesterday)

• First physics ideas have been circulating for 
months now, let’s discuss!



How you can learn from a model
• There are things you can do with a model (here, the Hybrid

Model) that you cannot do with experimental data. (Eg,
turn physical e↵ects o↵ and on) . . .

• . . . but that nevertheless teach us important lessons for
how to look at, and learn from, experimental data.

• TODAY’s EXAMPLE: identifying which jet observables
are more sensitive to the presence of quasiparticles — scat-
terers — in the QGP-soup. And, which are more sensitive
to the wakes that jets make in the soup.

• Disentangling e↵ects of jet modification from e↵ects of
jet selection. In simulations; in Z+jet or �+jet data.
2110.13159 Brewer, Brodsky, KR

• Using jet substructure modification to probe QGP resolu-
tion length. Can QGP “see” partons within a jet shower
(rather than losing energy coherently)? 1707.05245 ZH,
DP, KR; 1907.11248 Casalderrey-Solana, Milhano, DP,
KR. (Apparent answer: yes. Eg., 2303.13347 ALICE)

• But first, an intro to the Hybrid Model. . .



A Hybrid Approach
Casalderrey-Solana, Gulhan, Milhano, Pablos, KR, 2014,15,16; Hulcher, DP,KR,

’17; JCS,ZH,GM,DP,KR, ’18; JCS,GM,DP,KR, ’19; JCS,GM,DP,KR, Yao, ’20

• Hard scattering and the fragmentation of a hard parton
produced in a hard scattering are weakly coupled phenom-
ena, well described by pQCD.

• The medium itself is a strongly coupled liquid, with no
apparent weakly coupled description. And, the energy the
jet loses seems to quickly become one with the medium.

• Try a hybrid approach. Think of each parton in a parton
shower à la PYTHIA losing energy à la dE/dx for light
quarks in strongly coupled liquid.

• Look at RAA for jets and for hadrons, dijet asymmetry,
jet fragmentation function, photon-jet and Z-jet observ-
ables. Upon fitting one parameter, lots of data described
well. Value of the fitted parameter is reasonable: xtherm
(energetic parton thermalization distance) 3-4 times longer
in QGP than in N = 4 SYM plasma at same T .

• Then: add the wake in the plasma; add resolution e↵ects;
look at jet shapes, jet masses jet substructure observables;
add Molière scattering. . .



Quenching a Light Quark “Jet”
Chesler, Rajagopal, 1402.6756, 1511.07567

πTx
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• Take a highly boosted light quark and shoot it through
strongly coupled plasma. . .

• A fully geometric characterization of energy loss. Which
is to say a new form of intuition. Energy propagates along
the blue curves, which are null geodesics in the bulk. When
one of them falls into the horizon, that’s energy loss! Pre-
cisely equivalent to the light quark losing energy to a hy-
drodynamic wake in the plasma.



Implementation of Hybrid Model
Casalderrey-Solana, Gulhan, Milhano, Pablos, KR, 1405.3864,1508.00815

• Jet production and showering from PYTHIA.
• Embed the PYTHIA parton showers in hydro background.

(2+1D hydro from Heinz and Shen.)
• Between one splitting and the next, each parton in the

branching shower loses energy according to

1

Ein

dE

dx
= �

4x2

⇡x2
therm

1
q
x2
therm

� x2

where xtherm ⌘ E
1/3
in

/(2scT4/3
) with sc one free parameter

that to be fixed by fitting to one experimental data point.
(sc ⇠ 1 � 1.5 in N = 4 SYM; smaller sc means xtherm is
longer in QGP than in N = 4 SYM plasma with same T .)

• Turn energy loss o↵ when hydrodynamic plasma cools be-
low a temperature that we vary between 145 and 170
MeV. (This, plus the experimental error bar on the one
data point, becomes the uncertainty in our predictions.)

• Reconstruct jets using anti-kT .



Perturbative Shower … Living in Strongly Coupled QGP 

Hadronization 

• High !! parton shower up until 
hadronization described by DGLAP
evolution (PYTHIA).

• For QGP with "~Λ"#$, the medium 
interacts strongly with the shower.
• Energy loss from holography:

QGP
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Perturbative Shower … Living in Strongly Coupled QGP

Energy and momentum conservation             deposit hydrodynamic wake in QGP liquid 

Hadronization 

QGP

• High !! parton shower up until 
hadronization described by DGLAP
evolution (PYTHIA).

• For QGP with "~Λ"#$, the medium 
interacts strongly with the shower.
• Energy loss from holography:
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Jets as Probes of QGP
• Theorists are taking key steps toward realizing the vision

of using jets as probes. Four examples here, all relying

upon the Hybrid Model.

• Disentangling e↵ects of jet modification from e↵ects of jet

selection. In simulations; in Z+jet data (LHC); in �+jet

data (sPHENIX). 2110.13159 Brewer, Brodsky, KR

• Using jet substructure modification to probe the QGP res-

olution length. Can the QGP “see” partons within a jet

shower, or does it lose energy coherently? 1707.05245

Hulcher, Pablos, KR; 1907.11248 Casalderrey-Solana, Mil-

hano, Pablos, KR

• Jet wakes in droplet of QGP

• Selecting substructure observables sensitive to scattering

of jet partons o↵ QGP partons



Disentangling Jet Modification
from Selection

Orange: pZT > 80 GeV; pjetT > 30 GeV

Blue: pjetT > 80 GeV; pZT > 30 GeV — jet selection biases toward

those jets that lose less energy



Disentangling Jet Modification
from Selection

Orange: pZT > 80 GeV; pjetT > 30 GeV. See jet modification.

Blue: pjetT > 80 GeV; pZT > 30 GeV — jet selection biases toward

those jets that lose less energy. These jets are skinnier. And

the bias is toward less jet modification.



Jets as Probes of QGP
• Theorists are taking key steps toward realizing the vision

of using jets as probes. Four examples here. . .

• Disentangling e↵ects of jet modification from e↵ects of jet

selection. In simulations; in Z+jet data (LHC); in �+jet

data (sPHENIX). 2110.13159 Brewer, Brodsky, KR

• Using jet substructure modification to probe the QGP res-

olution length. Can the QGP “see” partons within a jet

shower, or does it lose energy coherently? 1707.05245

Hulcher, Pablos, KR; 1907.11248 Casalderrey-Solana, Mil-

hano, Pablos, KR

• Jet wakes in droplet of QGP

• Selecting substructure observables sensitive to scattering

of jet partons o↵ QGP partons



R. Cruz-Torres - DNP22 19

Medium resolution length, Lres

Lres = 0:  medium resolves 
splitting immediately after 

parton fragments.

Fully-incoherent energy loss

Lres = :  medium does not 
resolve splitting.


Fully-coherent energy loss

∞

Data favors mechanisms of incoherent 
energy loss in the QGP



Jets as Probes of QGP
• Jet wakes in droplets of QGP.

– Momentum/energy “lost” by parton shower ! wake in
the fluid ! spray of soft hadrons, many in the jet. Jets
in HIC are not just the parton shower hadronized.

– To use jets as probes, must calculate, or understand+avoid,
wake. Wake also interesting: study equilibration.

– Crude calculation of particles in jet originating from
wake has been a part of the Hybrid Model since 2016,
it’s weaknesses and strengths known. . .

– Full hydrodynamic calculation of wake due to every par-
ton in every jet in a sample of 100,000 jets is unfeasible.
Jet wake from linearized hydrodynamics will su�ce, and
will modify Hybrid Model predictions for soft particles
in jets in the direction indicated by data: 2010.01140
Casalderrey-Solana, Milhano, Pablos, KR, Yao

– Use the linearity of linearized hydro to speed up calcu-
lation of wake by ⇠ 10,000 and of its hadronization by
⇠ 100 (in progress).



Why Molière scattering?
Why add to Hybrid Model?

• QGP, at length scales O(1/T ), is a strongly coupled liquid.
Flow, and jet observables sensitive to parton energy loss,
are well-described (eg in hybrid model) in such a fluid,
without quasiparticles.

• At shorter length scales, probed via large momentum-
exchange, asymptotic freedom ! quasiparticles matter.

• High energy partons in jet showers can probe particulate
nature of QGP. Eg via power-law-rare, high-momentum-
transfer, large-angle, Molière scattering

• “Seeing” such scattering is first step to probing micro-
scopic structure of QGP.

• What jet observables are sensitive to e↵ects of high-momentum-
transfer scattering? To answer, need to turn it o↵/on.

• Start from Hybrid Model – in which any particulate e↵ects
are definitively o↵! Add Molière, and look at e↵ects. . .



Moliere Scattering in a brick of QGP (D’Eramo, KR, Yin, 2019)

• Sufficiently hard scattering should be perturbative.
• High !+ particle can be deflected, changing its energy and direction.

• Recoiling particle, "1 , a new particle to be quenched
• Thermal particle, "+, from BE/FD distribution, removed from medium.
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Results (for a QGP brick)

Incoming gluon, %%& = 20", L = 15/" Incoming gluon, %%& = 100", L = 15/"
• Excluding ?: > 4 25# not a simple curve on this plot, but effects visible
• Restricting to ?:, C̃ > 4 25# excludes soft scatterings; justifies assumptions made in 

amplitudes; avoids double counting 
• Analytical results → fast to sample
• Apply at every time step, to every rung, in every shower, in Hybrid Model Monte Carlo….  

And, if a scattering happens, two subsequent partons then lose energy a la Hybrid

Preliminary



Results (for a QGP brick)

Incoming gluon, %%& = 40", L = 15/" Incoming gluon, %%& = 200", L = 15/"
• Excluding ?: > 4 25# not a simple curve on this plot, but effects visible
• Restricting to ?:, C̃ > 4 25# excludes soft scatterings; justifies assumptions made in 

amplitudes; avoids double counting 
• Analytical results → fast to sample
• Apply at every time step, to every rung, in every shower, in Hybrid Model Monte Carlo….  

And, if a scattering happens, two subsequent partons then lose energy a la Hybrid

Preliminary



Results (for a QGP brick)

Incoming gluon, %%& = 20", L = 15/" Incoming gluon, %%& = 100", L = 15/"
• Excluding ?: > 4 25# not a simple curve on this plot, but effects visible
• Restricting to ?:, C̃ > 4 25# excludes soft scatterings; justifies assumptions made in 

amplitudes; avoids double counting 
• Analytical results → fast to sample
• Apply at every time step, to every rung, in every shower, in Hybrid Model Monte Carlo….  

And, if a scattering happens, two subsequent partons then lose energy a la Hybrid

Preliminary



Results (for a QGP brick)

Incoming gluon, %%& = 20", L = 15/" Incoming gluon, %%& = 100", L = 15/"
• Excluding ?: > 10 25# not a simple curve on this plot, but effects visible
• Restricting to ?:, C̃ > 10 25# excludes soft scatterings; justifies assumptions made in 

amplitudes; avoids double counting. Can vary where to set this cut… 
• Analytical results → fast to sample
• Apply at every time step, to every rung, in every shower, in Hybrid Model Monte Carlo….  

And, if a scattering happens, two subsequent partons then lose energy a la Hybrid

Preliminary



Perturbative Shower … Living in Strongly Coupled QGP

Energy and momentum conservation             deposit hydrodynamic wake in QGP liquid 

Hadronization 

QGP

• High !! parton shower up until 
hadronization described by DGLAP
evolution (PYTHIA).

• For QGP with "~Λ"#$, the medium 
interacts strongly with the shower.
• Energy loss from holography:
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Adding Moliere Scattering to Hybrid Model

Hadronization 
QGP

• High !! parton shower up until 
hadronization described by DGLAP
evolution (PYTHIA).

• For QGP with "~Λ"#$, the medium 
interacts strongly with the shower.
• Energy loss from holography:
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Energy and momentum conservation             activate hydrodynamic modes of plasma 
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Other explored effects: Gaussian broadening and finite resolution effects



Gaussian Broadening vs Large Angle Scattering 

• Elastic scatterings of exchanged   
momentum ~4$

Gaussian broadening due to multiple 
soft scattering

• At strong coupling, holography predicts   
Gaussian broadening without quasi-particles  
(eg: N=4 SYM)
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Adding this in hybrid model (C-S et al 2016)              
yields very little effect on jet observables
• Restrict to momentum exchanges > 4$

focus on perturbative regime with a   
power-law distribution

D’Eramo et al., 2011, 2018
+

Mehtar-Tani et al., PRD 2021 
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Jet !>>

• ?01 previously fit with jet and hadron 
suppression data from ATLAS+CMS at 
2.76+5.02 TeV

• Elastic scatterings lead to slight 
additional suppression; refit ?01 . That 
means red is on top of blue in this plot 
by construction. (Addition of the elastic 
scatterings yields only small change to 
value of ?01.)

• Adding the hadrons from the wake 
allows the recovery of part of the 
energy within the jet cone; blue and 
green slightly below red and blue.

• All results, here on, are Preliminary.

Casalderrey-Solana et al. 2019
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Jet Shapes and Fragmentation Functions

Elastic scattering effects look very similar to wake effects, but smaller. 
• Moliere scattering transfers jet energy to high angle and lower momentum 

fraction particles. So does energy loss to wake in fluid.
• In these observables, effect of Moliere looks like just a bit more wake.
• In principle sensitive to Moliere, but in practice not: more sensitive to wake. 
• Moliere effects are even slightly smaller if @A, C̃ > a 4$! with a=10.
• What if we look at groomed observables? Less sensitive to wake…

Lower momentum 

frac. per hadron
More energy at 

higher radius
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Elastic scattering effects look very similar to wake effects, but smaller. 
• Moliere scattering transfers jet energy to high angle and lower momentum 

fraction particles. So does energy loss to wake in fluid.
• In these observables, effect of Moliere looks like just a bit more wake.
• In principle sensitive to Moliere, but in practice not: more sensitive to wake. 
• Moliere effects are even slightly smaller if @A, C̃ > a 4$! with a=10.
• What if we look at groomed observables? Less sensitive to wake…
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Groomed "E and Rg
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largest !* splittings…

…also with a higher zcut. 
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All show much less sensitivity to 
wake: R=0.2; Moliere scattering 
shows up; effects of Moliere and 
wake are again similar in shape, 
but here effects of Moliere are 
very much dominant.
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On previous slides, Rg and Girth 
with xJ>0.4: missing the most 
modified jets. Here, xJ>0.1.
Moliere scattering important. 
Some effects of wake.

Selection bias reduced (cf
Brewer+Brodsky+KR); some 
effects of wake visible.  
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Inclusive Jets within Inclusive Jets: Inclusive Subjets

1. Reconstruct jet with R=0.6
2. Recluster each jet’s particle 

content into subjets with R=0.15

sj1

sj2

sj3

Jet

R0;>? = 3

Moliere scattering visible as increase in number of subjets; no 
such effect coming from wake at all.

Moliere scattering also yields more separated subjets…

These observables are directly sensitive to “sprouting a new 
subjet” the intrinsic feature of Moliere scattering which makes it 
NOT just a bit more wake.

Increase in number 

of subjets. 
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…which are more widely distributed. 
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Z-Jet Acoplanarity

• Study acoplanarity in boson-jet system: Z-jet.
• Very little effect from Moliere scattering; increase in acoplanarity that we 

see is almost entirely due to the wake.
• Similar conclusions for acoplanarities at even lower ,+ , via hadron—

charged-jet correlations. Should look also Gamma-D, DFD correlations….
• Groomed zg and Rg , leading kT, and in particular inclusive subjet

observables all more sensitive to Moliere scattering.
• Moliere scattering: jet sprouts added prongs, not much overall deflection

PreliminaryPreliminary



Conclusions

• Studied the effect of power-law-rare, large-angle, scattering on jet observables in the 
perturbative regime.

• Moliere scattering affects many “shape observables”. But, for “overall shape 
observables” (jet shapes; FF) effects are similar to, and smaller than, effects of wake.

• Grooming helps, by grooming away the soft particles from the wake. Effects of Moliere 
scattering dominate the modification of several groomed observables (Rg, Leading kT, 
Girth, WTA axis angle.  Inclusive jets, and gamma-jets; for the latter, selection biases 
can be reduced.)

• Not all groomed observables are sensitive to Moliere scattering; cf groomed jet mass.

• Modification of inclusive subjet observables (number, and angular spread, of subjets) 
are especially sensitive to the presence of Moliere scatterings. These observables are 
unaffected by the wake. They reflect what it is that makes the effects of scattering 
different from those of the wake.

• Subjet observables may also be influenced by other ways in which jet shower partons
“see” particulate aspects of the QGP. That’s great! 

• Acoplanarity observables that we have investigated to date show little sensitivity to 
Moliere scattering; significant sensitivity to the wake in many cases.

• Future: studying charm observables (gamma-D, DFD , D within jets …)



Jets as Probes of QGP
• Theorists taking key steps. . .

• Disentangling jet modification from jet selection.

• Showing that QGP can resolve structure within jet shower.

• Jet wakes in droplets of QGP.

• Selecting those jet substructure observables that are sen-
sitive to scattering of jet partons o↵ QGP partons, and are
not sensitive to particles coming from the wake: 2208.13593
and in progress, Hulcher, Pablos, KR.

– Builds upon theoretical framework for computing Molière
scattering in QGP, and finding point-like scatterers in a
liquid developed in: 1808.03250 D’Eramo, KR, Yin

• Next several years will be the golden age of HIC jet physics:
sPHENIX, LHC runs 3 and 4, new substructure observ-
ables. Many theory advances, here and elsewhere, whet
our appetite for the feast to come. We shall learn about
the microscopic structure of QGP, and the dynamics of
rippling QGP.



Probing the Original Liquid
The question How does the strongly coupled liquid emerge
from an asymptotically free gauge theory? can be thought of
in three di↵erent ways, corresponding to three meanings of
the word “emerge”: as a function of resolution, time, or size.
• How does the liquid emerge as a function of resolution

scale? What is the microscopic structure of the liquid?
Since QCD is asymptotically free, we know that when
looked at with su�cient resolution QGP must be weakly
coupled quarks and gluons. How does a liquid emerge
when you coarsen your resolution length scale to ⇠ 1/T?

• Physics at t = 0 in an ultrarelativistic heavy ion collision is
weakly coupled. How does strongly coupled liquid form?
How does it hydrodynamize?

• How does the liquid emerge as a function of increasing
system size? What is the smallest possible droplet of the
liquid?

Each, in a di↵erent way, requires stressing or probing the QGP.
Each can tell us about its inner workings.



What Next?

Two kinds of What Next? questions for the coming decade. . .

• A question that one asks after the discovery of any new

form of complex matter: What is its phase diagram? For

high temperature superconductors, for example, phase di-

agram as a function of temperature and doping. Same

here! For us, doping means excess of quarks over anti-

quarks, rather than an excess of holes over electrons.

• A question that we are privileged to have a chance to ad-

dress, after the discovery of “our” new form of complex

matter: How does the strongly coupled liquid emerge

from an asymptotically free gauge theory? Maybe answer-

ing this question could help to understand how strongly

coupled matter emerges in other contexts.



Ansatz for a fluctuating particle distribution 
function near the critical point
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hfAi+ �fA

 We incorporate the effects of critical fluctuations via the modification of 
particle masses due to their interaction with the critical sigma field 

Fluctuating particle distribution function
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�mA ⇡ gA�
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fA = hfAi+ gA
@ hfAi
@mA

�

MP, Rajagopal, Stephanov, Yin, 22

<latexit sha1_base64="a22O/d9C4f5MMgYJb2+r9whERk4="></latexit>

h�i = 0, h�(x+)�(x�)i = Z�1 h�ŝ(x+)�ŝ(x�)i

Stephanov, Rajagopal, Shuryak, 1999

Fluctuating particle 
distribution function

For more details about the EFT, refer to previous talk by J.M.Karthein



Freeze-out of Gaussian fluctuations near the 
critical point
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h�NA�NBi = hNAi �AB +� h�NA�NBi�

Poisson contribution

Critical contribution

MP, Rajagopal, Stephanov, Yin, 22



Critical contribution to variance of proton multiplicity  

The fluctuations are reduced relative to equilibrium value 
(conservation laws)
Fluctuations increase with  (faster diffusion)
Compared to the equilibrium scenario, the fluctuations are less 
sensitive to freeze-out temperature
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⇠max Proximity of the trajectory to critical point 
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Tf Proximity of freeze-out point to critical region MP, Rajagopal, Stephanov, Yin, 22



We’ll now discuss a recently developed approach to freeze-
out , called the maximum entropy freeze-out. 

Admits a generalization to non-critical fluctuations and higher-order fluctuations
Provides crucial information about g_As



Freeze-out in heavy-ion collisions consistent with 
conservation laws

Mean and higher-point correlation functions of 
conserved densities must be equated between both the 

descriptions

More degrees of freedom on the kinetic side
Infinitely many solutions to this set of conservation laws
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hfAi+ �fA

Fluctuating particle 
distribution function



Maximum entropy approach to freeze-out

A general method for freeze-out based on the principle of maximum entropy, not 
relying on universality near critical point

MP, Stephanov, 22

What is the most likely ensemble of free streaming particles after freeze-out 
consistent with conservation laws?

We obtain this by maximizing the entropy associated with the fluctuations of the 
particle distribution function f, subject to the constraints of conservation 
equations
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S[f̄ , G2, G3, G4, . . . ] =

Z

f
P [f ] logP [f ]

Similar to n-PI entropy in QFT

Probability distribution functional of f

Berges, 04, Stephanov, Yin, 17…



How to obtain g_As 

where there is only one mode which is singular and out of equilibrium:

Applying maximum-entropy freeze-out to a Hydro+ simulation
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�GAB =
gAgB
ZT 2

mA

EA

mB

EB
fAfB� h�ŝ�ŝi

Agrees with the prescription obtained using the EFT with sigma !eld:

if g_As have a specific energy dependence 
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Phenomenological implications
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qp = 1, q⇡ = 0

Mixed correlations of protons and pions can have negative sign
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gA ⌘ ĝA
sin↵1

w sin(↵1 � ↵2)
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ĝp,0 ⇡ �3.1, ĝ⇡,0 ⇡ 0.18, ĝp̄,0 ⇡ 5.5

Baryon density and 
enthalpy at the 
critical point
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BEST EoS parameters defined 
in previous talk by J. M. 

Karthein
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µc = 350MeV



Freeze-out of higher point fluctuations
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General freeze-out prescription (linearized)

For classical gas, IRCs reduce to factorial cumulants.

Self correlations 
systematically 

subtracted for higher 
point correlations 

Irreducible relative 
cumulants (IRCs)
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MP, Stephanov, 22



Summary - Freeze-out

Numerical implementation of freeze-out of higher-point fluctuations needs 
to be performed..

We have demonstrated the freeze-out of Gaussian fluctuations 
near a critical point in a semi-realistic scenario.

A general prescription for freeze-out has been recently 
developed - Maximum entropy approach

Previously, unknown parameters crucial for the freeze-out of 
fluctuations near the QCD critical point in terms of the QCD equation 
of state

Thank you!
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Jet Mass, and Groomed Jet Mass

Ungroomed observable is sensitive to the wake; not to Moliere scattering. 
Grooming removes wake, but still little sensitivity to Moliere scattering.
• What if we look at groomed observables? Less sensitive to wake…
• Yes, but not every groomed observable is sensitive to hard scattering…
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Hadron--Charge-Jet Acoplanarity, LHC energy

• Study acoplanarity in hadron - charged jet system.
• Parameters similar to ALICE
• Very little effect from Moliere scattering; increase in acoplanarity that we 

see is almost entirely due to the wake.
• Significant effect caused by the wake seen for R=0.4 jets, not for R=0.2
• IAA  indicates effect of wake enhances number of jets at these pT

• And indeed effect of wake seen only in the lower charged jet pT bin
• Moliere scattering: jet sprouts added prongs, not much overall deflection
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Hadron—Charge-Jet Acoplanarity, LHC energy

• Study acoplanarity in hadron - charged jet system.
• Parameters similar to ALICE
• Very little effect from Moliere scattering; increase in acoplanarity that we 

see is almost entirely due to the wake.
• Significant effect caused by the wake seen for R=0.4 jets, not for R=0.2
• IAA  indicates effect of wake enhances number of jets at these pT

• And indeed effect of wake seen only in the lower charged jet pT bin
• Moliere scattering: jet sprouts added prongs, not much overall deflection
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Hadron--Charge-Jet Acoplanarity, RHIC energy

• Study acoplanarity in pi0 - charged jet system.
• Parameters similar to but not same as STAR
• Very little effect from Moliere scattering; increase in acoplanarity that we 

see is almost entirely due to the wake.
• Significant effect caused by the wake seen for R=0.5 jets, not for R=0.2
• IAA  indicates effect of wake enhances number of jets at these pT

• Moliere scattering: jet sprouts added prongs, not much overall deflection
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Hadron--Charge-Jet Acoplanarity, RHIC energy

• Study acoplanarity in pi0 - charged jet system.
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