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Â
<latexit sha1_base64="sAClYaJNyOD6uf/GZ+9Bn3DkYdM="></latexit>

t = 0

<latexit sha1_base64="sAClYaJNyOD6uf/GZ+9Bn3DkYdM="></latexit>

t = 0
<latexit sha1_base64="oRZXDvUJbbXR2ZrrmJ684TKNVx4="></latexit>

| (t)i =
X

n

cn |ni
<latexit sha1_base64="Diz26wQTPc+YS+HWk0y5vMbfn+k="></latexit>

|cn|2 <latexit sha1_base64="T0lIlyXR+b9FOUdKG+xz1MQCn7g="></latexit>

E<latexit sha1_base64="OT0LgGx96GlCOwkXLv6yqzzP8w4=">AAAKs3icjVZLc9s2EGbSl82+nLa3XtBqNJET25U0TduLJokzmvGhh3T8iKaCxIIkJHIMgiwIWXZo/sBee+u/6S5I6kGqHXNGIrDfvvDtAoSbiDDV3e4/jx5/8OFHH3+yt29/+tnnX3x58OSrqzReKI9ferGI1chlKReh5Jc61IKPEsVZ5Ar+zr1+g/i7G67SMJYX+i7hk4jNZTgLPaZB5DzZ+4tKvvTiKGLSz+giyfGPKRUvc3sL8pcA+fFS7gJdBF2mCAKKb0IhIJrf6izM60ZpPu5N4B0LP72L4JW1eg0lxa65zsd9UBR8pqlgci44afXIPWn1CVXhPNBUGWnN1hj2SsN7NPk/bYi01t4IU9jc17SBI5+rIq+ZYp6R6JAJMMk3Jv28wYibZ/DHNSP1xXJEbpjiSRqKWCLe3ta4rdi8rdveVchdHXlfIe+buTCMyEQSFMk8NFGZZ7ImmqPynMFshyeBoIC29Ju+UkgvDecRq8lvgI0NMhpUpAm2Vvqn0kB3o7mCEYYMmCajZjrnFSPnjQqo2aphzbiJb8B19LTCTuvIqEJGdeRCVRCMatgQoIjpwHWzoemFNnlTYCkBpYTrUM7JMtQB+XVxzVJwY7e3PMSzoqe/M13dafWKbj6ss8UErss0MrRvvwhGWZKo+JYMYYhMviZ2Ww+6MIOdBaSnYQc8DWi6iBxJPPgZADsD1c+q6WDoyAppvwabAW62lYPC9w6fmTyST3MP3vn0Gb6e5sZQbpqAkPBpFurOEBWPh0bv8AcawHmUE7OOcjOXiyi3P8gNF+Y8I5SUIXNybyLeT/sobMbLQbzmZqcdoZ4f68I42jSOMKGhE20wu7IqSKYqiDvUBYqqYvyO05weVXHoESz3mLoEWM1XrOG4ItVBns3GdWRZuhG8L5SDLUr+y2YjpIN7BOI6EiJjXBotCD0iRWQsNEfRylcQ4nQKRqXDtaBM4Myh51vKEM742Bau09wmo8wB2H4YLTtXUs+ePij9l5TsYKbytvb1EhsqiEmHCoIZm4Op+DTAoZf14ZCCs69MEzcciKmY9nHNlXvUBNNp3ynPBB3r3BTTVNLQAd4pNE+iYywHInC8FiqD8rMEZy0sstLO8fwFh2JABZb5mDIcwMboPHt2CJZQ2/bS0Lv2C0uratweg5cjKp5Tnwv4GEyqkk7p6ZrAcHqKGz3clrTXutvln57DQtene6MTpuvOIQOy8kGer8an1XiEe9xuOwet7knXPKQ56JWD1qtvZuZ56xz8DfcZbxFxqT3B0nTc6yZ6kuGX2zO3g0XKE+Zdszkfw1CyiKeTzNy5gBSQ+GQWK/hJTYx00yJjUYqXGtDEEzytYyjchY0XevbLJAtlstBcekWg2UIQKAte4IgfKu5pcQcD5qkQciVewKB/NFzzbCChV19yc3DVP+n9dPLiN2DjR6t49qxvre+tjtWzfrZeWWfWW+vS8va7+1f7zv4f9gt7bLu2X6g+flTafG1tPXb0L37p14k=</latexit>
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hÂiIf we wait long enough, we expect         to relax towards its equilibrium value.

How is this possible (given the deterministic evolution)?

<latexit sha1_base64="Diz26wQTPc+YS+HWk0y5vMbfn+k="></latexit>

|cn|2 <latexit sha1_base64="T0lIlyXR+b9FOUdKG+xz1MQCn7g="></latexit>

E<latexit sha1_base64="OT0LgGx96GlCOwkXLv6yqzzP8w4="></latexit>
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ETH

More concise statement of the ETH:

The local properties of eigenstates are indistinguishable from those of a thermal state!

entire system in eigenstate

thermal density matrix

1. Introduction

Imagine we prepare a large, isolated quantum system in an eigenstate | ni of its Hamil-
tonian Ĥ, which we perturb at time t = 0 via a coupling to a local operator Ô. We
expect, and it has been demonstrated both in numerical and in actual experiments
using cold atoms, that the expectation value of Ô will thermally relax towards its equi-
librium value, even though the time evolution of the system is governed by Schrödinger’s
equation, and hence deterministic. The eigenstate thermalization hypothesis (ETH) of
Deutsch and Srednicki proposes that this is possible because each eigenstate acts as a
thermal bath for its subsystems.

More concisely, the ETH states that if the entire system is in eigenstate | ni and we
divide it into a small subsystem S and a much larger bath B, and trace out the bath,
the reduced density matrix of the system S

⇢̂
n

S ⌘ TrB | ni h n| , (1)

is equal to the thermal density matrix

⇢̂S(�) ⌘ TrB ⇢̂(�) with ⇢̂(�) =
1

Z
e
��Ĥ (2)

we obtain by taking the trace of a thermal density matrix for the entire system. The
inverse temperature � in (2) is fixed by

hĤi
�
= �

@

@�
lnZ = �n, (3)

where �n is the energy eigenvalue of | ni, Ĥ | ni = �n | ni, and

Z = Tr e��Ĥ (4)
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S B

The ETH does not (fully) apply to systems with extensive symmetries 
(integrable systems, many-body localization, quantum scars).
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If we place the entire system in a thermal state

2. Consistency requirements

A sum of exponential functions usually does not give a single exponential!

and apply the ETH to each of them, we get a weighted sum of canonical distributions with 
different temperatures      for the subsystem S: 
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However, it works out if the eigenvalue density of the entire system is given by a Gaussian, 
and the bath B >> subsystem S

Theorem (Hartmann, Mahler, Hess (2005), Hofmann, Helbig, Thomale, MG, to appear):

The eigenvalue density of a locally interacting quantum system approaches a Gaussian in 
the limit of large systems

Expansion around        yields:

why this is the (inverse) temperature       will become clear below! 

with
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variance of the entire system
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It is hard to see how any eigenvalue distribution different from the Gaussian 
{with arbitrary width and normalization) can satisfy this.

another consistency condition:

is equivalent to          !

According to the ETH,        will also be connected to       via       :
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According to 3 above, this temperature enters the canonical distribution for the sub-
system S. It is positive for �n < 0, which we assume in the following. (Our analysis,
however, applies equally to �n > 0, where �n < 0.)

If the ETH is to hold, the temperature �n will also be connected to �n via (3). With
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which is equivalent to (12). The ETH is hence consistent if the eigenvalue distribution
is a Gaussian, which in turn is always the case for locally interacting quantum systems.
Note that this consistency requires a relation between a weighted integral over ⇢(�) and
its (logarithmic) derivative at �n. To our understanding, this condition specifies the
functional form of ⇢(�) up to the parameter ↵ and an overall normalization.

An even more stringent consistency condition can be derived from nesting. Since the
thermal state ⇢̂(�) in (2) for the entire system consists of a sum of eigenstates | mih m|,
we can apply the ETH to each of them. This yields a sum of canonical distributions
⇢̂S(�m) for the subsystem S, which are weighted with the Boltzmann factor e��m for the
entire system. Consistency requires now that this weighted sum of exponential functions
with different temperatures �m is equal to a single exponential ⇢̂S(�). In supplement A,
we show that this is indeed the case if we assume the Gaussian density of eigenvalues
(11) and take the limit of a very large bath.

5

According to 3 above, this temperature enters the canonical distribution for the sub-
system S. It is positive for �n < 0, which we assume in the following. (Our analysis,
however, applies equally to �n > 0, where �n < 0.)

If the ETH is to hold, the temperature �n will also be connected to �n via (3). With

Z(�) = N

Z
d� ⇢(�) e��� = N exp

✓
�
2

2↵

◆
(13)

we find

�n = hĤi
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which is equivalent to (12). The ETH is hence consistent if the eigenvalue distribution
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we show that this is indeed the case if we assume the Gaussian density of eigenvalues
(11) and take the limit of a very large bath.
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We find perfect Lorentzians for the ensemble averages of the overlap curves, which differ in 
width and height, but enclose exactly the same area, and are shifted relative to               .   
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This implies that we obtain canonical distributions for the (sub-)system S, but with 
probabilities according to shifted levels.
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5. Results form Dyson-Brownian motion random 
matrix theory

First of all, we argue that the ETH is internally consistent only if the bath B is
sufficiently large and the eigenvalue distribution of the entire quantum system, and
hence the bath, is given by a Gaussian distribution. This is fully consistent with our
assumptions since it has been shown by Hartmann, Mahler, and Hess,1 and also by
ourselves using a different method, that for quantum systems with local interactions the
eigenvalue distribution converges towards a Gaussian in the large system limit, which
we assume.

In most of the analysis thereafter, we consider random systems where the coupling X̂

of the small subsystem S and the bath B is weak, and can hence be treated perturbatively.
We further assume that the bath is large, and that X̂ couples only to a small subset
BX of the bath. In this setting we study the decomposition of exact eigenstates of the
entire system | ni in terms of basis states of the unperturbed system

|�µii ⌘ |�
S
µi ⌦ |�

B
i i , (5)

i.e., direct products of eigenstates of the subsystem Ĥ
S
|�

S
µi = "µ |�

S
µi, µ = 1, . . . , NS,

and the bath Ĥ
B
|�

B

i
i = Ei |�

B

i
i, i = 1, . . . , NB. Our numerical work, and our analytic

calculations using RMT, show that the statistical expectation values E of the squares of
the overlaps �µi,n = E

⇥
| h�µi | ni |

2⇤ are given by Cauchy-Lorentz distributions

�µi,n /
�µ

(aµi � �n � ⌘ � ⌘µ)
2 + �2µ

, (6)

where aµi ⌘ "µ+Ei are the energies of the unperturbed system (see Fig.??). The peaks
of the distributions when plotted as functions of the energies Ei of the basis states of
the bath have width �µ and are shifted by ⌘ + ⌘µ relative to the positions �n � "µ they
assume when the coupling is infinitesimal.

To first order in the matrix variance t of the perturbation X̂,

t =
1

N
E[ Tr(X̂2) ] , (7)

where N is the dimension of the matrix X̂, we find:

1. The shifts are given by

⌘ + ⌘µ = �t

p
⇡

NS�

X

⌫

e
�"̃

2
µ⌫ erfi("̃µ⌫) (8)

where erfi(z) ⌘ �i erf(iz) is the imaginary error function (Erfi[x] in Mathematica),
"̃µ⌫ ⌘

1
�"µ⌫ � b, "µ⌫ ⌘ "µ � "⌫ , b ⌘

1
4��, and � is a parameter which roughly

corresponds to the bandwidth of the subset BX (see below). The shifts consist of
a overall component due to the change in energy of the entire system due to X̂,
and a µ dependent term which may be interpreted as an effective level repulsion
for the subsystem S.
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First of all, we argue that the ETH is internally consistent only if the bath B is
sufficiently large and the eigenvalue distribution of the entire quantum system, and
hence the bath, is given by a Gaussian distribution. This is fully consistent with our
assumptions since it has been shown by Hartmann, Mahler, and Hess,1 and also by
ourselves using a different method, that for quantum systems with local interactions the
eigenvalue distribution converges towards a Gaussian in the large system limit, which
we assume.

In most of the analysis thereafter, we consider random systems where the coupling X̂

of the small subsystem S and the bath B is weak, and can hence be treated perturbatively.
We further assume that the bath is large, and that X̂ couples only to a small subset
BX of the bath. In this setting we study the decomposition of exact eigenstates of the
entire system | ni in terms of basis states of the unperturbed system

|�µii ⌘ |�
S
µi ⌦ |�

B
i i , (5)

i.e., direct products of eigenstates of the subsystem Ĥ
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where aµi ⌘ "µ+Ei are the energies of the unperturbed system (see Fig.??). The peaks
of the distributions when plotted as functions of the energies Ei of the basis states of
the bath have width �µ and are shifted by ⌘ + ⌘µ relative to the positions �n � "µ they
assume when the coupling is infinitesimal.
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a overall component due to the change in energy of the entire system due to X̂,
and a µ dependent term which may be interpreted as an effective level repulsion
for the subsystem S.
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6. Remarks and Summary

1. Eigenstate thermalization

(a) requires a Gaussian eigenstate density, which is always the case 
for locally interacting quantum systems. 

(b) can be derived using Dyson-Brownian motion random matrix 
theory.

2. Our analysis provides a derivation of statistical mechanics which 
requires neither the concept of ergodicity or typicality, nor that of 
entropy.  Thermodynamic behaviour follows solely from the 
applicability of quantum mechanics to large systems, locality, and 
the absence of integrability. 
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law of thermodynamics, but it does not appear plausible
how a statistical theory without dynamics could account
for the origin of life.) The only place where something
non-deterministic appears to happen is in between, when
a measurement occurs. Therefore, it seemed reasonable
to start by thinking about the measurement process. I
will return to this point at the end.

To establish notation and terminology, I will begin with
a brief review of what is generally agreed on in quantum
mechanics (Gottfried, 1966):

(a) At any fixed time, the state of a system is described
by a (normalized) vector in Hilbert space, |ÂÍ.

(b) The state vector evolves according to Schrödinger’s
equation,

i ˆ

ˆt
|ÂÍ = H |ÂÍ , (1)

where the Hamilton H of the system is a linear,
self-adjoint operator.

(c) Observables are likewise described by linear, self-
adjoint operators. If |ÂÍ is in an eigenstate of an
observable A, A |ÂÍ = a |ÂÍ, the observed value of
A is a.

(d) Every measurement of A with a device described
by classical physics yields one of the eigenvalues
of A. The probability of finding a particular eigen-
value a when measuring |ÂÍ is ÎP (A, a) |ÂÍÎ2, where
P (A, a) is the projection operator on the subspace
of states with eigenvalue a (Born’s rule). If A is
measured again thereafter, the observed value will
be a again.

According to the Copenhagen interpretation (Bohr,
1928) of 1927, (d) implies that the state of the system
after the first measurement is given by

P (A, a) |ÂÍ
ÎP (A, a) |ÂÍÎ . (2)

This is referred to as the “collapse” of the wave function.
The probability in the process is assumed to be frequentist,
i.e., due to the occurence of random events, as opposed to
a Bayesian probability, which is a subjective probability
an observer assigns due to inaccessibility of information.

II. PROBLEMS WITH THE COPENHAGEN
INTERPRETATION

There are two reasons why this interpretation is prob-
lematic. The first is that the laws of quantum mechanics,
and in particular the evolution according to (1), have been
tested and verified to highest precision for almost a cen-
tury (Arndt and Hornberger, 2014). Since this formalism

is deterministic, it cannot describe a collapse of a wave
function along the lines of (2), and all attempts to extend
it in a way consistent with the entirety of experimental ob-
servations have been inconclusive (Arndt and Hornberger,
2014; Bassi et al., 2013; Diósi, 1987; Donadi et al., 2021;
Ghirardi et al., 1986; Penrose, 1996). A related issue is
that in the absence of a viable formalism, we have little
guidance where to place the boundary between quantum
and the classical domains, as illustrated by Schrödinger’s
cat (Schrödinger, 1935) or Wigner’s friend (Bong et al.,
2020; Wigner, 1961).

The second problem is that the assignment of frequen-
tist probabilities appears to violate the principle of locality
in an Einstein–Podolski–Rosen (Einstein et al., 1935; Reid
et al., 2009) (EPR) setting. I will elaborate this point
now.

In an EPR setting, one considers a pure quantum state
of two entangled degrees of freedom, moves them far apart,
and measures observables which reflect the correlation
due to the entanglement in space-like separated regions
of spacetime R and R. Then causality precludes any in-
terference between the measurements. According to the
Copenhagen interpretation, each measurement will cause
a collapse of the wave function, with a frequentist proba-
bility assigned to each. Since the results are correlated,
however, both cannot be random. Note further that there
is no objective sense as to which measurement occurs first,
since this depends on the frame of reference.

For definiteness, let the pure state we prepare be a spin
singlet (Bohm, 1951) of two spin half particles 1 and 2,

|ÂÍ = 1Ô
2

!
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

"
, (3)

where øi and ¿i refer to the ‡
z eigenvalues +1 and ≠1 of

particle i, respectively. As one measures ‡
z
(1) of particle 1

in region R and ‡
z
(2) of particle 2 in region R, and later

compares the results, one will find that the product of the
eigenvalues is always ≠1, i.e., that one of the spins is ø
and the other ¿. The outcome of the “first” measurement
determines the outcome of the “second”, and we can
assign a frequentist probability to at most one of them.

This problem led Einstein et al. (Einstein et al., 1935) to
conclude in 1935 that the theory of quantum mechanics
cannot be complete in the sense that additional infor-
mation must be available in regions R and R (so called
“hidden variables”). This possibility was subsequently
ruled out by experiment (Aspect et al., 1982; Giustina
et al., 2015; Hensen et al., 2015; Pan et al., 2000; Reid
et al., 2009). A pedagogically outstanding review of how
this can be done in principle has been given by Cole-
man (Coleman, 2020 [1994]), based on Gedanken exper-
iments by Bell (Bell, 1964) and by Greenberger, Horne,
and Zeilinger (Greenberger et al., 1989). The most signif-
icant aspect of EPR is that it cannot be reconciled with
locally induced collapse models (Arndt and Hornberger,

2
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2. Problems with Copenhagen
1. Schrödingers equation is deterministic, does not describe a collapse

2. When should a collapse occur?  Schrödinger’s cat
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The study of the predictability sieve, investigations of the interface between 
chaotic dynamics and decoherence, and most recently, the tantalizing glimpses of
the information-theoretic nature of the quantum have elucidated our understanding
of the Universe. During this period, Los Alamos has grown into a leading center 
for the study of decoherence and related issues through the enthusiastic participation
of a superb group of staff members, postdoctoral fellows, long-term visitors, and
students, many of whom have become long-term collaborators. This group includes,
in chronological order, Andy Albrecht, Juan Pablo Paz, Bill Wootters, Raymond
Laflamme, Salman Habib, Jim Anglin, Chris Jarzynski, Kosuke Shizume,
Ben Schumacher, Manny Knill, Jacek Dziarmaga, Diego Dalvit, Zbig Karkuszewski,
Harold Ollivier, Roberto Onofrio, Robin Blume-Kohut, David Poulin, Lorenza
Viola, and David Wallace.

Finally, I have some advice to the reader. I believe this paper
should be read twice: first, just the old text alone; then—and 
only then—on the second reading, the whole thing. I would also
recommend to the curious reader two other overviews: the draft 
of my Reviews of Modern Physics paper (Zurek 2001a) and 
Les Houches Lectures coauthored with Juan Pablo Paz 
(Paz and Zurek 2001).

... or more generally:  Where is the quantum-classical boundary?
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3. Einstein-Podolsky-Rosen (EPR) Paradox

prepare a spin singlet state
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This led EPR to believe in hidden variables, a possibility ruled out since 
through tests of Bell’s inequality. 

A pedagogically outstanding way how this can be done in principle is due 
to Greenberger, Horne, and Zeilinger (GHZ, 1989) 
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Here we have a drawing of space-time. It’s really four
dimensional, but due to budgetary constraints I’ve had
to represent it as a two-dimensional object. The scale has
been chosen so that time t is measured in years and x in
light-years, therefore the paths of light rays are 45-degree
lines.

Now let’s consider two measurements on possibly two
different systems done in two regions A and B—forget B’
for the moment, its role will emerge later. Thus these
black dots represent actually substantial regions in space
time, during which an experiment has been conducted.

Now one thing Dr. Diehard will have to admit is that
although the results of an experiment in A may interfere
with an experiment in B, the results of an experiment in
B can hardly interfere with the results of an experiment
in A unless information can travel backwards in time,
which we will assume he does not accept. That’s because
A is over and done with and its results recorded in the
log book before B occurs.

On the other hand, if we imagine another Lorentz ob-
server with another coordinate system, B will appear as
B’ here. B and B’, as you can see by eyeball, are on
the same space-like hyperbola—there is a Lorentz trans-
formation that leaves A at the origin of coordinates un-
changed and turns B into B’. B and B’ are space-like
separated from A. A light signal cannot get from A to B,
and nothing traveling slower than the speed of light can
get from A to B.

Now that second Lorentz observer would give the same
argument I gave, except he would interchange the roles
of A and B’. He would say the results of an experiment
at A cannot interfere with the act of doing an experiment
at B’ because B’ is earlier than A. But B’ is B, just B
seen by a different observer.

Therefore, if you believe in the principal of Lorentz
invariance, and if you believe you cannot send informa-
tion backwards in time, you have to conclude that ex-
periments done at space-like separated locations suffi-
ciently far apart from each other cannot interfere with
each other. It can’t matter what order you ask the ques-
tions if this question is being asked of an earthman and
this one of an inhabitant of the Andromeda Nebula, and
they’re both being asked today.

Are there any questions about this? This is the
groundwork from which the rest will proceed.

On everything else we accept the Diehard position.
Now here is the experimental proposal—this is a drawing
from an imaginary proposal to the Department of En-

9

?

1

2

3

Fig. 1: The Diehard Proposal (1” = 1 light minute)

ergy for the Diehard experiment. Three of Dr. Diehard’s
graduate students are assigned to experimental stations,
as you see from the scale they are several light-minutes
from each other. The graduate students, with lack of
imagination, are called numbers 1, 2, and 3. They’re al-
most as old as Dr. Diehard—it’s difficult to get a thesis
under him.

10

OFF

A

B

�+

Fig. 2: The Acme “Little Wonder” Dual Cryptometer

They are informed that once a minute something will
be sent from a mysterious central station to each of
the three Diehard teams—what something is, they don’t
know. However, they’re armed with measuring devices
whose structure they again do not know. They are called
dual cryptometers because they can measure each of two
things, but what those two things are nobody knows—at
least the Diehards don’t know. They can turn a switch to
either measure A or measure B. They make this decision
once a minute shortly before the announced time of the
signal, and sure enough, a light bulb lights up that says
either A is +1 or A is �1 if they are measuring A, or the
same thing for B. They have no idea what A or B is.
It’s possible the central station is sending them elemen-
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The Diehard team obtains records like

A1 = 1 B2 = �1 B3 = �1

A1 = 1 A2 = �1 B3 = �1

B1 = 1 B2 = 1 A3 = 1

. . .

They find whenever they measure A1B2B3 it is +1.
Likewise for B1A2B3 and B1B2A3.

They deduce that

A1A2A3 = 1

We obtain records like

A1 = 1 B2 = �1 B3 = �1

A1 = 1 A2 = �1 B3 = �1

B1 = 1 B2 = 1 A3 = 1

. . .

We find whenever we have measured A1B2B3 it is +1.
Likewise for B1A2B3 and B1B2A3.

If the outcomes were predetermined, this would imply

A1A2A3 = 1

to measure A and obtained the result +1; observer 2 has
decided to measure B and obtained the result �1; and
observer 3 has decided to measure B and obtained the
result �1. They have obtained in this way zillions of
measurements on a long tape. They record them in this
way because they really believe that whatever this thing
is doing, A1 = 1, that is to say, the value of quantity A

that would be measured at station 1 is +1 independent of
what is going on on stations 2 and 3, because these three
measurements are space-like separated. That’s what they
have to believe if they’re Diehards. They have to believe
there’s really some predictable value of this thing which
they would know if they knew all the hidden variables.
In this particular case, they don’t know what B1 is but
they know what A1 is.

Now as they go through their measurements, they find
in that roughly 3/8 of the measurements—they’re mak-
ing random decisions about which things they measure—
whenever they measure one A and two B’s the result of
the product of the measurements is +1. Now they’re
making their choices at random and since they believe
that these things have well-defined meanings independent
of their measurements, they have to believe, if they be-
lieve in normal empirical principles, that all the time the
value of one A and two B’s—the value that would be ob-
tained if they had done the measurement—the product is

+1. Sometimes all three of these numbers are +1. Some-
times one of them is +1 and two are �1. But the product
is always +1. It’s as if I gave you a zillion boxes and you
turned up 3/8 of them and discovered each of them had
a penny in it, you would assume within 1 over the square
root of N—negligible error—that if you opened up all
the other boxes, they would also have pennies in them.
By the miracle of modern arithmetic—that is to say by
multiplying these three numbers together and using the
fact that each B squared is 1—they deduce that if they
look on their tape for those experiments in which they’ve
chosen to measure the product of three A’s, they would
obtain the answer +1.

12
Behind the Scenes

| i =
1
p
2

⇥
|"""i � |###i

⇤

A1 = �
(1)
x B1 = �

(1)
y etc.

A1B2B3 | i = �
(1)
x �

(2)
y �

(3)
y | i = | i

etc. for B1A2B3 and B1B2A3.

But . . .

A1A2A3 | i = �
(1)
x �

(2)
x �

(3)
x | i = � | i

What spooky action-at-a-distance?

Now let’s look behind the scenes and see what’s ac-
tually going on. Maybe a little suspense would help...
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It’s not blood samples we’re sending to them after all,
it’s three spin one-half particles arranged in the following
peculiar initial state: one over the square root of two all
spins up minus all spins down:

1p
2

⇥
|"""i � |###i

⇤
(2)

A is simply �x for the particle that arrives at the appro-
priate station, and B is �y.

Let’s first check that A1B2B3 acting on this state is
+1. By the third statement about quantum mechanics I
put on the board in my preliminary section [see Slide 4],
this quantity is definitely always going to be measured to
be +1. Well, we have �x(1)�y(2)�y(3) by my transcrip-
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send out samples to three space-like separated stations, where we measure either A or B:
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x

t

R R

Here we have a drawing of space-time. It’s really four
dimensional, but due to budgetary constraints I’ve had
to represent it as a two-dimensional object. The scale has
been chosen so that time t is measured in years and x in
light-years, therefore the paths of light rays are 45-degree
lines.

Now let’s consider two measurements on possibly two
different systems done in two regions A and B—forget B’
for the moment, its role will emerge later. Thus these
black dots represent actually substantial regions in space
time, during which an experiment has been conducted.

Now one thing Dr. Diehard will have to admit is that
although the results of an experiment in A may interfere
with an experiment in B, the results of an experiment in
B can hardly interfere with the results of an experiment
in A unless information can travel backwards in time,
which we will assume he does not accept. That’s because
A is over and done with and its results recorded in the
log book before B occurs.

On the other hand, if we imagine another Lorentz ob-
server with another coordinate system, B will appear as
B’ here. B and B’, as you can see by eyeball, are on
the same space-like hyperbola—there is a Lorentz trans-
formation that leaves A at the origin of coordinates un-
changed and turns B into B’. B and B’ are space-like
separated from A. A light signal cannot get from A to B,
and nothing traveling slower than the speed of light can
get from A to B.

Now that second Lorentz observer would give the same
argument I gave, except he would interchange the roles
of A and B’. He would say the results of an experiment
at A cannot interfere with the act of doing an experiment
at B’ because B’ is earlier than A. But B’ is B, just B
seen by a different observer.

Therefore, if you believe in the principal of Lorentz
invariance, and if you believe you cannot send informa-
tion backwards in time, you have to conclude that ex-
periments done at space-like separated locations suffi-
ciently far apart from each other cannot interfere with
each other. It can’t matter what order you ask the ques-
tions if this question is being asked of an earthman and
this one of an inhabitant of the Andromeda Nebula, and
they’re both being asked today.

Are there any questions about this? This is the
groundwork from which the rest will proceed.

On everything else we accept the Diehard position.
Now here is the experimental proposal—this is a drawing
from an imaginary proposal to the Department of En-
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Fig. 1: The Diehard Proposal (1” = 1 light minute)

ergy for the Diehard experiment. Three of Dr. Diehard’s
graduate students are assigned to experimental stations,
as you see from the scale they are several light-minutes
from each other. The graduate students, with lack of
imagination, are called numbers 1, 2, and 3. They’re al-
most as old as Dr. Diehard—it’s difficult to get a thesis
under him.
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Fig. 2: The Acme “Little Wonder” Dual Cryptometer

They are informed that once a minute something will
be sent from a mysterious central station to each of
the three Diehard teams—what something is, they don’t
know. However, they’re armed with measuring devices
whose structure they again do not know. They are called
dual cryptometers because they can measure each of two
things, but what those two things are nobody knows—at
least the Diehards don’t know. They can turn a switch to
either measure A or measure B. They make this decision
once a minute shortly before the announced time of the
signal, and sure enough, a light bulb lights up that says
either A is +1 or A is �1 if they are measuring A, or the
same thing for B. They have no idea what A or B is.
It’s possible the central station is sending them elemen-
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groundwork from which the rest will proceed.

On everything else we accept the Diehard position.
Now here is the experimental proposal—this is a drawing
from an imaginary proposal to the Department of En-
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Fig. 1: The Diehard Proposal (1” = 1 light minute)

ergy for the Diehard experiment. Three of Dr. Diehard’s
graduate students are assigned to experimental stations,
as you see from the scale they are several light-minutes
from each other. The graduate students, with lack of
imagination, are called numbers 1, 2, and 3. They’re al-
most as old as Dr. Diehard—it’s difficult to get a thesis
under him.
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They are informed that once a minute something will
be sent from a mysterious central station to each of
the three Diehard teams—what something is, they don’t
know. However, they’re armed with measuring devices
whose structure they again do not know. They are called
dual cryptometers because they can measure each of two
things, but what those two things are nobody knows—at
least the Diehards don’t know. They can turn a switch to
either measure A or measure B. They make this decision
once a minute shortly before the announced time of the
signal, and sure enough, a light bulb lights up that says
either A is +1 or A is �1 if they are measuring A, or the
same thing for B. They have no idea what A or B is.
It’s possible the central station is sending them elemen-
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The Diehard team obtains records like

A1 = 1 B2 = �1 B3 = �1

A1 = 1 A2 = �1 B3 = �1

B1 = 1 B2 = 1 A3 = 1

. . .

They find whenever they measure A1B2B3 it is +1.
Likewise for B1A2B3 and B1B2A3.

They deduce that

A1A2A3 = 1

We obtain records like

A1 = 1 B2 = �1 B3 = �1

A1 = 1 A2 = �1 B3 = �1

B1 = 1 B2 = 1 A3 = 1

. . .

We find whenever we have measured A1B2B3 it is +1.
Likewise for B1A2B3 and B1B2A3.

If the outcomes were predetermined, this would imply

A1A2A3 = 1

to measure A and obtained the result +1; observer 2 has
decided to measure B and obtained the result �1; and
observer 3 has decided to measure B and obtained the
result �1. They have obtained in this way zillions of
measurements on a long tape. They record them in this
way because they really believe that whatever this thing
is doing, A1 = 1, that is to say, the value of quantity A

that would be measured at station 1 is +1 independent of
what is going on on stations 2 and 3, because these three
measurements are space-like separated. That’s what they
have to believe if they’re Diehards. They have to believe
there’s really some predictable value of this thing which
they would know if they knew all the hidden variables.
In this particular case, they don’t know what B1 is but
they know what A1 is.

Now as they go through their measurements, they find
in that roughly 3/8 of the measurements—they’re mak-
ing random decisions about which things they measure—
whenever they measure one A and two B’s the result of
the product of the measurements is +1. Now they’re
making their choices at random and since they believe
that these things have well-defined meanings independent
of their measurements, they have to believe, if they be-
lieve in normal empirical principles, that all the time the
value of one A and two B’s—the value that would be ob-
tained if they had done the measurement—the product is

+1. Sometimes all three of these numbers are +1. Some-
times one of them is +1 and two are �1. But the product
is always +1. It’s as if I gave you a zillion boxes and you
turned up 3/8 of them and discovered each of them had
a penny in it, you would assume within 1 over the square
root of N—negligible error—that if you opened up all
the other boxes, they would also have pennies in them.
By the miracle of modern arithmetic—that is to say by
multiplying these three numbers together and using the
fact that each B squared is 1—they deduce that if they
look on their tape for those experiments in which they’ve
chosen to measure the product of three A’s, they would
obtain the answer +1.
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What spooky action-at-a-distance?

Now let’s look behind the scenes and see what’s ac-
tually going on. Maybe a little suspense would help...
[Coleman covers most of Slide 12].

It’s not blood samples we’re sending to them after all,
it’s three spin one-half particles arranged in the following
peculiar initial state: one over the square root of two all
spins up minus all spins down:
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A is simply �x for the particle that arrives at the appro-
priate station, and B is �y.

Let’s first check that A1B2B3 acting on this state is
+1. By the third statement about quantum mechanics I
put on the board in my preliminary section [see Slide 4],
this quantity is definitely always going to be measured to
be +1. Well, we have �x(1)�y(2)�y(3) by my transcrip-
tion table. �x turns up into down. �y turns up into down
with a factor of i or maybe �i, I can never remember, but
that’s no problem here because you have two of them so
the square is always �1. Acting on the first component of
this state this operator produces the second component
including the minus sign while acting on the second com-
ponent this operator produces the first. So this state is
indeed an eigenstate of this operator with eigenvalue +1.
And, of course, since everything is permutation invariant,
the same is true for the other two operators.
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they would know if they knew all the hidden variables.
In this particular case, they don’t know what B1 is but
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fact that each B squared is 1—they deduce that if they
look on their tape for those experiments in which they’ve
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for GHZ states, however, we measure A1A2A3 = �1
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obtain the answer +1.
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peculiar initial state: one over the square root of two all
spins up minus all spins down:
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Let’s first check that A1B2B3 acting on this state is
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the same is true for the other two operators.

But A1A2A3 is �x(1)�x(2)�x(3), and �x’s turns and up
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2014; Bassi et al., 2013; Diósi, 1987; Donadi et al., 2021;
Ghirardi et al., 1986; Penrose, 1996).

III. MANY-WORLDS INTERPRETATIONS

Both these problems may be resolved by turning
to Many-Worlds interpretations (Coleman, 2020 [1994];
Deutsch, 2002; DeWitt and Graham, 1973; Everett, 1957;
Saunders, 1993; Saunders et al., 2010; Vaidman, 2016,
2018; Wallace, 2012) (MWIs). I will limit the presenta-
tion here to what I will need to reconcile Many-World
interpretations with the Copenhagen interpretation fur-
ther below.

The idea is simply that there is only quantum me-
chanics (“All is �”, in the words of Vaidman (Vaidman,
2016)), and only deterministic evolution according to
Schrödinger’s equation (1). Measurements do not entail
a projection or collaps of the wave function. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

The idea is simply that there is only quantum me-
chanics, and only deterministic evolution according to
Schrödinger’s equation. Measurements do not entail a
projection or collaps of the wave function. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

To be concise, consider a spin half particle in a super-
position of eigenstates of ‡

z,

|ÂÍ = u |øÍ + v |¿Í , (4)

where u and v are complex coe�cients such that |ÂÍ
is normalized. Consider further a ‡

z measuring de-
vice M with Hilbert space M = {|M0Í , |MøÍ , |M¿Í},
and an observer consciousness C with Hilbert space
C = {|C0Í , |CøÍ , |C¿Í}. The subscript 0 indicates states
where no measurement has taken place, while ø and ¿
indicate states where ‡

z eigenvalues +1 or ≠1 have been
measured or perceived. According to MWIs, a measure-
ment of (4) by the observer will evolve the initial state

|ÂiÍ =
!
u |øÍ + v |¿Í

"
¢ |M0Í ¢ |C0Í (5)

following the von Neumann chain (Neumann, 1955 [1932])
via the intermediate state

|ÂMÍ =
!
u |øÍ ¢ |MøÍ + v |¿Í ¢ |M¿Í

"
¢ |C0Í (6)

into the final state

|ÂM,CÍ = u |øÍ ¢ |MøÍ ¢ |CøÍ + v |¿Í ¢ |M¿Í ¢ |C¿Í (7)

without a projection onto one of the terms on the left of
(7). If we define a definiteness operator D (Albert, 1994;
Coleman, 2020 [1994]) such that it will yield eigenvalue
+1 if the observer perceives a definite outcome,

D |CøÍ = |CøÍ , D |C¿Í = |C¿Í , (8)

and annihilate all states orthogonal to those, the final state
(7) will trivially be an eigenstate of D with eigenvalue +1
as well. In other words, the state will be perceived as
definite even if it is not projected onto an eigenstate of
‡

z.
The evolution of the state, of course, does not stop

with (6) or (7), as the state will rapidly become entangled
with other degrees of freedom. One can now take the
view of a local Hilbert space which is coupled weakly to
an external bath. This causes decoherence (Joos et al.,
2003; Schlosshauer, 2005, 2019; Zeh, 1970; Zurek, 1981,
1982, 2002 [1991], 2003, 2009) and necessitates that the
local description will be in terms of a density matrix
rather than a state vector. The view taken in MWIs,
however, is that as more and more degrees of freedom
become entangled with the two orthogonal amplitudes in
(5), the state will remain in a coherent superposition of
both, until we end up in a coherent superposition of two
“worlds”. Regardless of which view is taken, the preferred
basis for these two worlds (ø and ¿ in the ‡

z basis in
our example) is selected via decoherence (Saunders, 1993;
Saunders et al., 2010). Formally, we may introduce a
Hilbert space of the world W = {|W0Í , |WøÍ , |W¿Í} and
write the final state after the observer became entangled
as

|ÂfÍ = u |øÍ ¢ |MøÍ ¢ |CøÍ ¢ |WøÍ

+ v |¿Í ¢ |M¿Í ¢ |C¿Í ¢ |W¿Í . (9)

If an observer has the conscious perception of having
measured an ø spin, there exists another world where the
(same) observer has the conscious perception of having
measured an ¿ spin. (I have put “same” in brackets
because they are only identical up to the time of the
measurement.) In general, each measurement of a state
which is not an eigenstate of the observable we measure
yields a branching into di�erent worlds. The (Bayesian)
probability for any observer to find himself in the branch
where the measured value of observable A is a is assumed
(and has been derived under certain assumptions) to be
ÎP (A, a) |ÂÍÎ2 (cf. point (d) in the Introduction) (Kent,
2015; Saunders et al., 2010; Schlosshauer and Fine, 2005;
Sebens and Carroll, 2018 [2014]; Vaidman, 2012, 2020;
Zurek, 2005).

The MWIs clearly resolve the first problem of the
Copenhagen interpretation. Now consider measurements
of EPR states in MWIs. Including Hilbert spaces for ‡z
measuring devices M and M and observer consciousnesses
C and C in spacetime regions R and R, respectively, we
write the initial state as

|ÂiÍ = 1Ô
2

!
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

"

¢ |M0Í ¢ |C0Í ¢
--M0

,
¢

--C0
,

¢ |W0Í (10)

where we take the Hilbert space of the world to be
W = {|W0Í , |Wø1ø2Í , |Wø1¿2Í , |W¿1ø2Í , |W¿1¿2Í}. When
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become entangled with the two orthogonal amplitudes in
(5), the state will remain in a coherent superposition of
both, until we end up in a coherent superposition of two
“worlds”. Regardless of which view is taken, the preferred
basis for these two worlds (ø and ¿ in the ‡

z basis in
our example) is selected via decoherence (Saunders, 1993;
Saunders et al., 2010). Formally, we may introduce a
Hilbert space of the world W = {|W0Í , |WøÍ , |W¿Í} and
write the final state after the observer became entangled
as
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+ v |¿Í ¢ |M¿Í ¢ |C¿Í ¢ |W¿Í . (9)

If an observer has the conscious perception of having
measured an ø spin, there exists another world where the
(same) observer has the conscious perception of having
measured an ¿ spin. (I have put “same” in brackets
because they are only identical up to the time of the
measurement.) In general, each measurement of a state
which is not an eigenstate of the observable we measure
yields a branching into di�erent worlds. The (Bayesian)
probability for any observer to find himself in the branch
where the measured value of observable A is a is assumed
(and has been derived under certain assumptions) to be
ÎP (A, a) |ÂÍÎ2 (cf. point (d) in the Introduction) (Kent,
2015; Saunders et al., 2010; Schlosshauer and Fine, 2005;
Sebens and Carroll, 2018 [2014]; Vaidman, 2012, 2020;
Zurek, 2005).

The MWIs clearly resolve the first problem of the
Copenhagen interpretation. Now consider measurements
of EPR states in MWIs. Including Hilbert spaces for ‡z
measuring devices M and M and observer consciousnesses
C and C in spacetime regions R and R, respectively, we
write the initial state as
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W = {|W0Í , |Wø1ø2Í , |Wø1¿2Í , |W¿1ø2Í , |W¿1¿2Í}. When

3

SciPost Physics Submission

by Bell [32] and by Greenberger, Horne, and Zeilinger [33]. The most significant aspect of
EPR is that it cannot be reconciled with locally induced collapse models [12,13,18–21].

3 Many-Worlds interpretations

Both these problems may be resolved by turning to Many-Worlds interpretations [3,6,10,34–
37] (MWIs). I will limit the presentation here to what I will need to reconcile Many-World
interpretations with the Copenhagen interpretation further below.

The idea is simply that there is only quantum mechanics (“All is  ”, in the words of
Vaidman [36]), and only deterministic evolution according to Schrödinger’s equation (1).
Measurements do not entail a projection or collaps of the wave function. The definiteness
of our daily life experience is subjective only. All probabilities are Bayesian.

To be concise, consider a spin half particle in a superposition of eigenstates of ‡
z,

|ÂÍ = u |øÍ + v |¿Í, (4)

where u and v are complex coe�cients such that |ÂÍ is normalized. Consider further
a ‡

z measuring device M with Hilbert space M = {|M0Í, |MøÍ, |M¿Í}, and an observer
consciousness C with Hilbert space C = {|C0Í, |CøÍ, |C¿Í}. The subscript 0 indicates states
where no measurement has taken place, while ø and ¿ indicate states where ‡

z eigenvalues
+1 or ≠1 have been measured or perceived. According to MWIs, a measurement of (4) by
the observer will evolve the initial state

|ÂiÍ =
1
u |øÍ + v |¿Í

2
¢ |M0Í ¢ |C0Í (5)

following the von Neumann chain [38] via the intermediate state

|ÂMÍ =
1
u |øÍ ¢ |MøÍ + v |¿Í ¢ |M¿Í

2
¢ |C0Í (6)

into the final state

|ÂM,CÍ = u |øÍ ¢ |MøÍ ¢ |CøÍ + v |¿Í ¢ |M¿Í ¢ |C¿Í (7)

without a projection onto one of the terms on the left of (7). If we define a definiteness
operator D [6, 39] such that it will yield eigenvalue +1 if the observer perceives a definite
outcome,

D|CøÍ = |CøÍ, D|C¿Í = |C¿Í, (8)

and annihilate all states orthogonal to those, the final state (7) will trivially be an eigenstate
of D with eigenvalue +1 as well. In other words, the state will be perceived as definite
even if it is not projected onto an eigenstate of ‡

z.
The evolution of the state, of course, does not stop with (6) or (7), as the state

will rapidly become entangled with other degrees of freedom. One can now take the
view of a local Hilbert space which is coupled weakly to an external bath. This causes
decoherence [5,7,40–44] and necessitates that the local description will be in terms of a
density matrix rather than a state vector. The view taken in MWIs, however, is that as
more and more degrees of freedom become entangled with the two orthogonal amplitudes in
(5), the state will remain in a coherent superposition of both, until we end up in a coherent
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tion here to what I will need to reconcile Many-World
interpretations with the Copenhagen interpretation fur-
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The idea is simply that there is only quantum me-
chanics (“All is �”, in the words of Vaidman (Vaidman,
2016)), and only deterministic evolution according to
Schrödinger’s equation (1). Measurements do not entail
a projection or collaps of the wave function. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

The idea is simply that there is only quantum me-
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definite even if it is not projected onto an eigenstate of
‡

z.
The evolution of the state, of course, does not stop
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“worlds”. Regardless of which view is taken, the preferred
basis for these two worlds (ø and ¿ in the ‡
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our example) is selected via decoherence (Saunders, 1993;
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superposition of two “worlds”. Regardless of which view is taken, the preferred basis for
these two worlds (ø and ¿ in the ‡

z basis in our example) is selected via decoherence [10,45].
Formally, we may introduce a Hilbert space of the world W = {|W0Í, |WøÍ, |W¿Í} and
write the final state after the observer became entangled as

|ÂfÍ = u| øÍ ¢ |MøÍ ¢ |CøÍ ¢ |WøÍ + v| ¿Í ¢ |M¿Í ¢ |C¿Í ¢ |W¿Í. (9)

If an observer has the conscious perception of having measured an ø spin, there exists
another world where the (same) observer has the conscious perception of having measured
an ¿ spin. (I have put “same” in brackets because they are only identical up to the time
of the measurement.) In general, each measurement of a state which is not an eigenstate
of the observable we measure yields a branching into di�erent worlds. The (Bayesian)
probability for any observer to find himself in the branch where the measured value of
observable A is a is assumed (and has been derived under certain assumptions) to be
ÎP (A, a)|ÂÍÎ2 (cf. point (d) in the Introduction) [10,46–49].

The MWIs clearly resolve the first problem of the Copenhagen interpretation. Now
consider measurements of EPR states in MWIs. Including Hilbert spaces for ‡z measuring
devices M and M and observer consciousnesses C and C in spacetime regions R and R,
respectively, we write the initial state as

|ÂiÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

2
¢ |M0Í ¢ |C0Í ¢ |M0Í ¢ |C0Í ¢ |W0Í (10)

where we take the Hilbert space of the world to be

W =
)
|W0Í, |Wø1ø2Í, |Wø1¿2Í, |W¿1ø2Í, |W¿1¿2Í

*
.

When we carry out measurements in R and R, the final state will evolve following the von
Neumann chain into

|ÂfÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ¢ |MøÍ ¢ |CøÍ ¢ |M¿Í ¢ |C¿Í ¢ |Wø1¿2Í

≠ same term with ø ¡ ¿
2
. (11)

This is a coherent superpositions of two worlds, which both have the property that the
product of the eigenvalues obtained via measurements of ‡

z
(1) and ‡

z
(2) is ≠1.

We see that within MWIs, the space-like separation of the regions R and R, in which
measurements M and M take place, does not render the situation di�erent from what it
would be if we were to measure ‡

z
(1) and ‡

z
(2) of particles 1 and 2 directly and locally after

preparing the singlet state (3). Note further that if the second observer C obtains the
information by asking C rather than by conducting the measurement M, the final state
vector is given by (11) with M¿ and Mø replaced by M0. Therefore, it is irrelevant for the
state of the second observer whether he measures the spin of particle 2 or asks the first
observer.

In summary, the analysis presented so far suggests that MWIs are fully consistent, both
internally and with the observed phenomenology, while the Copenhagen interpretation is
not. Still, a poll [50] from 2013 showed that 42% of all physicists subscribe to Copenhagen,
while only 18% subscribe to MWIs. The reason is presumably that the notion of constant
branchings into countless Many Worlds is deeply unappealing, if not altogether inadequate2

[51–53]. No one appears to like it, but some of the greatest minds of our time subscribe to
it because they are even less willing to accept logical inconsistencies.

2
In MWIs, the collapse is e�ectively replaced by an allocation of a “self” or a consciousness to a particular

branch of the wave function, and a satisfactory derivation of the Born rule might not be possible.
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2014; Bassi et al., 2013; Diósi, 1987; Donadi et al., 2021;
Ghirardi et al., 1986; Penrose, 1996).

III. MANY-WORLDS INTERPRETATIONS

Both these problems may be resolved by turning
to Many-Worlds interpretations (Coleman, 2020 [1994];
Deutsch, 2002; DeWitt and Graham, 1973; Everett, 1957;
Saunders, 1993; Saunders et al., 2010; Vaidman, 2016,
2018; Wallace, 2012) (MWIs). I will limit the presenta-
tion here to what I will need to reconcile Many-World
interpretations with the Copenhagen interpretation fur-
ther below.

The idea is simply that there is only quantum me-
chanics (“All is �”, in the words of Vaidman (Vaidman,
2016)), and only deterministic evolution according to
Schrödinger’s equation (1). Measurements do not entail
a projection or collaps of the wave function. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

The idea is simply that there is only quantum me-
chanics, and only deterministic evolution according to
Schrödinger’s equation. Measurements do not entail a
projection or collaps of the wave function. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

To be concise, consider a spin half particle in a super-
position of eigenstates of ‡

z,

|ÂÍ = u |øÍ + v |¿Í , (4)

where u and v are complex coe�cients such that |ÂÍ
is normalized. Consider further a ‡

z measuring de-
vice M with Hilbert space M = {|M0Í , |MøÍ , |M¿Í},
and an observer consciousness C with Hilbert space
C = {|C0Í , |CøÍ , |C¿Í}. The subscript 0 indicates states
where no measurement has taken place, while ø and ¿
indicate states where ‡

z eigenvalues +1 or ≠1 have been
measured or perceived. According to MWIs, a measure-
ment of (4) by the observer will evolve the initial state

|ÂiÍ =
!
u |øÍ + v |¿Í

"
¢ |M0Í ¢ |C0Í (5)

following the von Neumann chain (Neumann, 1955 [1932])
via the intermediate state

|ÂMÍ =
!
u |øÍ ¢ |MøÍ + v |¿Í ¢ |M¿Í

"
¢ |C0Í (6)

into the final state

|ÂM,CÍ = u |øÍ ¢ |MøÍ ¢ |CøÍ + v |¿Í ¢ |M¿Í ¢ |C¿Í (7)

without a projection onto one of the terms on the left of
(7). If we define a definiteness operator D (Albert, 1994;
Coleman, 2020 [1994]) such that it will yield eigenvalue
+1 if the observer perceives a definite outcome,

D |CøÍ = |CøÍ , D |C¿Í = |C¿Í , (8)

and annihilate all states orthogonal to those, the final state
(7) will trivially be an eigenstate of D with eigenvalue +1
as well. In other words, the state will be perceived as
definite even if it is not projected onto an eigenstate of
‡

z.
The evolution of the state, of course, does not stop

with (6) or (7), as the state will rapidly become entangled
with other degrees of freedom. One can now take the
view of a local Hilbert space which is coupled weakly to
an external bath. This causes decoherence (Joos et al.,
2003; Schlosshauer, 2005, 2019; Zeh, 1970; Zurek, 1981,
1982, 2002 [1991], 2003, 2009) and necessitates that the
local description will be in terms of a density matrix
rather than a state vector. The view taken in MWIs,
however, is that as more and more degrees of freedom
become entangled with the two orthogonal amplitudes in
(5), the state will remain in a coherent superposition of
both, until we end up in a coherent superposition of two
“worlds”. Regardless of which view is taken, the preferred
basis for these two worlds (ø and ¿ in the ‡

z basis in
our example) is selected via decoherence (Saunders, 1993;
Saunders et al., 2010). Formally, we may introduce a
Hilbert space of the world W = {|W0Í , |WøÍ , |W¿Í} and
write the final state after the observer became entangled
as

|ÂfÍ = u |øÍ ¢ |MøÍ ¢ |CøÍ ¢ |WøÍ

+ v |¿Í ¢ |M¿Í ¢ |C¿Í ¢ |W¿Í . (9)

If an observer has the conscious perception of having
measured an ø spin, there exists another world where the
(same) observer has the conscious perception of having
measured an ¿ spin. (I have put “same” in brackets
because they are only identical up to the time of the
measurement.) In general, each measurement of a state
which is not an eigenstate of the observable we measure
yields a branching into di�erent worlds. The (Bayesian)
probability for any observer to find himself in the branch
where the measured value of observable A is a is assumed
(and has been derived under certain assumptions) to be
ÎP (A, a) |ÂÍÎ2 (cf. point (d) in the Introduction) (Kent,
2015; Saunders et al., 2010; Schlosshauer and Fine, 2005;
Sebens and Carroll, 2018 [2014]; Vaidman, 2012, 2020;
Zurek, 2005).

The MWIs clearly resolve the first problem of the
Copenhagen interpretation. Now consider measurements
of EPR states in MWIs. Including Hilbert spaces for ‡z
measuring devices M and M and observer consciousnesses
C and C in spacetime regions R and R, respectively, we
write the initial state as

|ÂiÍ = 1Ô
2

!
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

"

¢ |M0Í ¢ |C0Í ¢
--M0

,
¢

--C0
,

¢ |W0Í (10)

where we take the Hilbert space of the world to be
W = {|W0Í , |Wø1ø2Í , |Wø1¿2Í , |W¿1ø2Í , |W¿1¿2Í}. When
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superposition of two “worlds”. Regardless of which view is taken, the preferred basis for
these two worlds (ø and ¿ in the ‡

z basis in our example) is selected via decoherence [10,45].
Formally, we may introduce a Hilbert space of the world W = {|W0Í, |WøÍ, |W¿Í} and
write the final state after the observer became entangled as

|ÂfÍ = u| øÍ ¢ |MøÍ ¢ |CøÍ ¢ |WøÍ + v| ¿Í ¢ |M¿Í ¢ |C¿Í ¢ |W¿Í. (9)

If an observer has the conscious perception of having measured an ø spin, there exists
another world where the (same) observer has the conscious perception of having measured
an ¿ spin. (I have put “same” in brackets because they are only identical up to the time
of the measurement.) In general, each measurement of a state which is not an eigenstate
of the observable we measure yields a branching into di�erent worlds. The (Bayesian)
probability for any observer to find himself in the branch where the measured value of
observable A is a is assumed (and has been derived under certain assumptions) to be
ÎP (A, a)|ÂÍÎ2 (cf. point (d) in the Introduction) [10,46–49].

The MWIs clearly resolve the first problem of the Copenhagen interpretation. Now
consider measurements of EPR states in MWIs. Including Hilbert spaces for ‡z measuring
devices M and M and observer consciousnesses C and C in spacetime regions R and R,
respectively, we write the initial state as

|ÂiÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

2
¢ |M0Í ¢ |C0Í ¢ |M0Í ¢ |C0Í ¢ |W0Í (10)

where we take the Hilbert space of the world to be

W =
)
|W0Í, |Wø1ø2Í, |Wø1¿2Í, |W¿1ø2Í, |W¿1¿2Í

*
.

When we carry out measurements in R and R, the final state will evolve following the von
Neumann chain into

|ÂfÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ¢ |MøÍ ¢ |CøÍ ¢ |M¿Í ¢ |C¿Í ¢ |Wø1¿2Í

≠ same term with ø ¡ ¿
2
. (11)

This is a coherent superpositions of two worlds, which both have the property that the
product of the eigenvalues obtained via measurements of ‡

z
(1) and ‡

z
(2) is ≠1.

We see that within MWIs, the space-like separation of the regions R and R, in which
measurements M and M take place, does not render the situation di�erent from what it
would be if we were to measure ‡

z
(1) and ‡

z
(2) of particles 1 and 2 directly and locally after

preparing the singlet state (3). Note further that if the second observer C obtains the
information by asking C rather than by conducting the measurement M, the final state
vector is given by (11) with M¿ and Mø replaced by M0. Therefore, it is irrelevant for the
state of the second observer whether he measures the spin of particle 2 or asks the first
observer.

In summary, the analysis presented so far suggests that MWIs are fully consistent, both
internally and with the observed phenomenology, while the Copenhagen interpretation is
not. Still, a poll [50] from 2013 showed that 42% of all physicists subscribe to Copenhagen,
while only 18% subscribe to MWIs. The reason is presumably that the notion of constant
branchings into countless Many Worlds is deeply unappealing, if not altogether inadequate2

[51–53]. No one appears to like it, but some of the greatest minds of our time subscribe to
it because they are even less willing to accept logical inconsistencies.

2
In MWIs, the collapse is e�ectively replaced by an allocation of a “self” or a consciousness to a particular

branch of the wave function, and a satisfactory derivation of the Born rule might not be possible.
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This is a coherent superpositions of two worlds, which both have the property that the
product of the eigenvalues obtained via measurements of ‡

z
(1) and ‡

z
(2) is ≠1.

We see that within MWIs, the space-like separation of the regions R and R, in which
measurements M and M take place, does not render the situation di�erent from what it
would be if we were to measure ‡

z
(1) and ‡

z
(2) of particles 1 and 2 directly and locally after

preparing the singlet state (3). Note further that if the second observer C obtains the
information by asking C rather than by conducting the measurement M, the final state
vector is given by (11) with M¿ and Mø replaced by M0. Therefore, it is irrelevant for the
state of the second observer whether he measures the spin of particle 2 or asks the first
observer.

In summary, the analysis presented so far suggests that MWIs are fully consistent, both
internally and with the observed phenomenology, while the Copenhagen interpretation is
not. Still, a poll [50] from 2013 showed that 42% of all physicists subscribe to Copenhagen,
while only 18% subscribe to MWIs. The reason is presumably that the notion of constant
branchings into countless Many Worlds is deeply unappealing, if not altogether inadequate2

[51–53]. No one appears to like it, but some of the greatest minds of our time subscribe to
it because they are even less willing to accept logical inconsistencies.
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Problems with Many Worlds interpretations

1. Which branch of the multiverse do I find myself in?

→  collapse is pushed back to the level of consciousness   

2. All attempts to derive the Born rule (probabilities) have failed.

3. There is a universe for every possible outcome of measurements, no 
matter how unlikely they are.
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4. Interlinking and the ensemble of macroscopic 
objects (EMO)
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This is a coherent superpositions of two worlds, which
both have the property that the product of the eigenvalues
obtained via measurements of ‡
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(1) and ‡
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We see that within MWIs, the space-like separation of
the regions R and R, in which measurements M and M
take place, does not render the situation di�erent from
what it would be if we were to measure ‡

z
(1) and ‡

z
(2) of

particles 1 and 2 directly and locally after preparing the
singlet state (3). Note further that if the second observer
C obtains the information by asking C rather than by
conducting the measurement M, the final state vector is
given by (11) with M¿ and Mø replaced by M0. Therefore,
it is irrelevant for the state of the second observer whether
he measures the spin of particle 2 or asks the first observer.

In summary, the analysis presented so far suggests that
MWIs are fully consistent, both internally and with the
observed phenomenology, while the Copenhagen inter-
pretation is not. Still, a poll (Schlosshauer et al., 2013)
from 2013 showed that 42% of all physicists subscribe to
Copenhagen, while only 18% subscribe to MWIs. The
reason is presumably that the notion of constant branch-
ings into countless many worlds is deeply unappealing,
if not altogether inadequate (Kent, 1990, 2010). No one
appears to like it, but some of the greatest minds of our
time subscribe to it because they are even less willing to
accept logical inconsistencies.

IV. INTERLINKING AND THE ENSEMBLE OF
MACROSCOPIC OBJECTS

In this work I will show that, when consequently
thought through, the assumption that there is only quan-
tum mechanics will not (necessarily) imply many worlds,
but e�ectively lead to a “classical reality” onto which
states become projected upon measurement, i.e., to a
phenomenology close to the Copenhagen interpretation,
but without the inconsistencies described above. This
is not to say that I will be able to rule out MWIs—I
think this would be impossible with the body of available
experimental evidence—but rather that I will show that
there is no need to invoke them.

I will begin with a few assumptions. Most of them
can be relaxed later on, but it is helpful to start from a
concise picture.

Assumptions:

(i) The fundamental theory is a quantum theory. The
entire universe can be described by a solution of
this quantum theory, which for simplicity we call
wave function �.

(ii) The evolution of � is, to an approximation we have
not been able to challenge, given by the linear regime
of the quantum theory. For simplicity, let us assume
time is fundamental (as opposed to emerging) and
let us refer to the theory describing this evolution
as the Schrödinger equation. For time to be mean-
ingful, � must not be an eigenstate of the time
evolution operator.

(iii) The universe started with the big bang, and at that
time, many degrees of freedom of the universe were
entangled with their environments. We expect that
there is still significant entanglement.

(iv) For simplicity, we further assume that at a time we
refer to as the present, there is only one “world”.
Since all the branchings into other “worlds”, should
they have occurred in the past, have no influence on
our perception of the present, any consistent theory
based on this assumption will be su�cient.

The reality of our daily life experience, however, does
not appear to be governed by a quantum theory or de-
scribed by a pure state �, as most of it is described by
either classical dynamics or statistical physics. The latter,
however, can be understood as emergent. With the known
exception of systems which are either integrable or display
single or many-body localization, interacting quantum
systems thermalize (D’Alessio et al., 2016; Deutsch, 1991,
2010, 2018; Garrison and Grover, 2018; Gemmer et al.,
2009; Gogolin and Eisert, 2016; Nandkishore and Huse,
2015; Rigol et al., 2008; Rigol and Srednicki, 2012; Santos
et al., 2012; Srednicki, 1994, 1996, 1999), in the sense that
if we partition a system in a pure quantum state |Â(t)Í
into a small subsystem A and a large environment B, the
density matrix of the subsystem A obtained by tracing
out the environment B,

flA(t) © trB

!
|Â(t)ÍÈÂ(t)|

"
,

will converge towards a Boltzmann distribution,

flA(—) © trB

!
fl(—)

"
with fl(—) = 1

Z
exp (≠—H) .

The statement becomes exact in the limit where both
the size of B and the time we wait is taken to infin-
ity. If |Â(t)Í is an eigenstate of the system with energy
EÂ, the eigenstate thermalization hypothesis (ETH) of
Deutsch (Deutsch, 1991) and Srednicki (Srednicki, 1994,
1999) states that the equivalence flA(t) = flA(—) holds
for small subsystems A which are weakly coupled to the
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Our  daily life experience, however, is mostly described by either
classical dynamics or statistical physics.
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particles 1 and 2 directly and locally after preparing the
singlet state (3). Note further that if the second observer
C obtains the information by asking C rather than by
conducting the measurement M, the final state vector is
given by (11) with M¿ and Mø replaced by M0. Therefore,
it is irrelevant for the state of the second observer whether
he measures the spin of particle 2 or asks the first observer.

In summary, the analysis presented so far suggests that
MWIs are fully consistent, both internally and with the
observed phenomenology, while the Copenhagen inter-
pretation is not. Still, a poll (Schlosshauer et al., 2013)
from 2013 showed that 42% of all physicists subscribe to
Copenhagen, while only 18% subscribe to MWIs. The
reason is presumably that the notion of constant branch-
ings into countless many worlds is deeply unappealing,
if not altogether inadequate (Kent, 1990, 2010). No one
appears to like it, but some of the greatest minds of our
time subscribe to it because they are even less willing to
accept logical inconsistencies.

IV. INTERLINKING AND THE ENSEMBLE OF
MACROSCOPIC OBJECTS

In this work I will show that, when consequently
thought through, the assumption that there is only quan-
tum mechanics will not (necessarily) imply many worlds,
but e�ectively lead to a “classical reality” onto which
states become projected upon measurement, i.e., to a
phenomenology close to the Copenhagen interpretation,
but without the inconsistencies described above. This
is not to say that I will be able to rule out MWIs—I
think this would be impossible with the body of available
experimental evidence—but rather that I will show that
there is no need to invoke them.

I will begin with a few assumptions. Most of them
can be relaxed later on, but it is helpful to start from a
concise picture.

(i) The fundamental theory is a quantum theory. The
entire universe can be described by a solution of
this quantum theory, which for simplicity we call
wave function �.

(ii) The evolution of � is, to an approximation we have
not been able to challenge, given by the linear regime

of the quantum theory. For simplicity, let us assume
time is fundamental (as opposed to emerging) and
let us refer to the theory describing this evolution
as the Schrödinger equation. For time to be mean-
ingful, � must not be an eigenstate of the time
evolution operator.

(iii) The universe started with the big bang, and at that
time, many degrees of freedom of the universe were
entangled with their environments. We expect that
there is still significant entanglement.

(iv) For simplicity, we further assume that at a time we
refer to as the present, there is only one “world”.
Since all the branchings into other “worlds”, should
they have occurred in the past, have no influence on
our perception of the present, any consistent theory
based on this assumption will be su�cient.

Our daily life experience, however, is mostly described
by either classical dynamics or statistical physics.

The reality of our daily life experience, however, does
not appear to be governed by a quantum theory or de-
scribed by a pure state �, as most of it is described by
either classical dynamics or statistical physics. The latter,
however, can be understood as emergent. With the known
exception of systems which are either integrable or display
single or many-body localization, interacting quantum
systems thermalize (D’Alessio et al., 2016; Deutsch, 1991,
2010, 2018; Garrison and Grover, 2018; Gemmer et al.,
2009; Gogolin and Eisert, 2016; Nandkishore and Huse,
2015; Rigol et al., 2008; Rigol and Srednicki, 2012; Santos
et al., 2012; Srednicki, 1994, 1996, 1999), in the sense that
if we partition a system in a pure quantum state |Â(t)Í
into a small subsystem A and a large environment B, the
density matrix of the subsystem A obtained by tracing
out the environment B,
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will converge towards a Boltzmann distribution,

flA(—) © trB

!
fl(—)

"
with fl(—) = 1

Z
exp (≠—H) .

The statement becomes exact in the limit where both
the size of B and the time we wait is taken to infin-
ity. If |Â(t)Í is an eigenstate of the system with energy
EÂ, the eigenstate thermalization hypothesis (ETH) of
Deutsch (Deutsch, 1991) and Srednicki (Srednicki, 1994,
1999) states that the equivalence flA(t) = flA(—) holds
for small subsystems A which are weakly coupled to the
environment B, with the inverse temperature — deter-
mined by ÈHÍ— = EÂ. Even though the ETH has so far
not been shown to hold for interacting systems (without
integrability or localization) in general, it is supported
by a significant body of numerical evidence (D’Alessio
et al., 2016; Garrison and Grover, 2018; Rigol et al., 2008).
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not appear to be governed by a quantum theory or de-
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however, can be understood as emergent. With the known
exception of systems which are either integrable or display
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2010, 2018; Garrison and Grover, 2018; Gemmer et al.,
2009; Gogolin and Eisert, 2016; Nandkishore and Huse,
2015; Rigol et al., 2008; Rigol and Srednicki, 2012; Santos
et al., 2012; Srednicki, 1994, 1996, 1999), in the sense that
if we partition a system in a pure quantum state |Â(t)Í
into a small subsystem A and a large environment B, the
density matrix of the subsystem A obtained by tracing
out the environment B,

flA(t) © trB

!
|Â(t)ÍÈÂ(t)|

"
,

will converge towards a Boltzmann distribution,

flA(—) © trB

!
fl(—)

"
with fl(—) = 1

Z
exp (≠—H) .

The statement becomes exact in the limit where both
the size of B and the time we wait is taken to infin-
ity. If |Â(t)Í is an eigenstate of the system with energy
EÂ, the eigenstate thermalization hypothesis (ETH) of
Deutsch (Deutsch, 1991) and Srednicki (Srednicki, 1994,
1999) states that the equivalence flA(t) = flA(—) holds
for small subsystems A which are weakly coupled to the
environment B, with the inverse temperature — deter-
mined by ÈHÍ— = EÂ. Even though the ETH has so far
not been shown to hold for interacting systems (without
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et al., 2016; Garrison and Grover, 2018; Rigol et al., 2008).
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(2nd law of TD: entanglement entropy increases under usual circumstances)
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though the ETH has so far not been shown to hold for interacting systems (without
integrability or localization) in general, it is supported by a significant body of numerical
evidence [57,61, 63]. An important consequence of quantum thermalization, and the ETH
in particular, is that the entanglement entropy [14, 38] of a subsystem is equal to the
thermal entropy.

The “All is  ” assumption (i) hence implies that all of entropy is entanglement entropy.
The second law of thermodynamics merely states that the entanglement of subsystems
with its environment does not decrease under usual circumstances.

We now identify the classical reality we perceive as such and describe by classical
dynamics with the ensemble of macroscopic objects (EMO), in which all objects are
connected through chains of entangled links. This does not imply that all objects are
mutually entangled or share mutual information, but merely that all the individual degrees
of freedom are entangled with other degrees of freedom in their environment, which are
then again entangled with more degrees of freedom, and so on. In this way, chains of
entangled links connect all degrees of freedom in the EMO.

To illustrate this concept of quantum interlinking, consider a simple example consisting
of four qubits (two-state systems) A, B, C, D with states

|n1; n2; n3; n4Í © |n1ÍA ¢ |n2ÍB ¢ |n3ÍC ¢ |n4ÍD,

where the ni’s can take the values 0 or 1. Now consider the state

|ÂÍ = 1
2

1ÿ

i=0

1ÿ

k=0
|i; (i + k) mod 2; k; kÍ (12)

= 1
2

1
|0; 0; 0; 0Í + |0; 1; 1; 1Í + |1; 1; 0; 0Í + |1; 0; 1; 1Í

2
.

With the entanglement entropy of system A given by

S(A) = ≠trA(flA ln flA) with flA = trBCD
!
|ÂÍÈÂ|

"
,

we find S(A) = S(D) = ln 2, and S(A, D) = 2 ln 2, for the joint entropy

S(A, D) = ≠trAD(flAD ln flAD)

of A and D. A and D are neither correlated nor share mutual information [14],

S(A :D) © S(A) + S(D) ≠ S(A, D) = 0.

While A and D in (12) are not entangled, they are still interlinked though the chain
ABCD of mutually entangled degrees of freedom. It is not possible to factorize |ÂÍ into
a product state, and hence not possible to describe A or D independently. This simple
example illustrates that (sub-)systems can be interlinked while they are neither entangled
nor correlated. There are no classical e�ects associated with quantum interlinking.

To quantify the interlinking of two (uncorrelated) subsystems A and AÕ, one may
consider the entanglement entropy for all possible ways to bisect the system such that
A and AÕ belong to di�erent sectors. A suggestive measure for the interlinking I(A, AÕ)
is then the minimal value of the entropy attainable. In state (12), I(A, D) = ln 2, since
S(A) = S(A, B) = S(A, B, C) = ln 2. For a given macroscopic object, the amount of
interlinking with the EMO is simply given by the thermal entropy of this object, since this
entropy corresponds to the entanglement entropy between the object and the EMO.

The important point in the present context is that unless it is possible to partition
a macroscopic system such that the parts are not entangled, all the degrees of freedom
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where the ni’s can take the values 0 or 1. Now consider the state

|ÂÍ = 1
2

1ÿ

i=0

1ÿ

k=0
|i; (i + k) mod 2; k; kÍ (12)

= 1
2

1
|0; 0; 0; 0Í + |0; 1; 1; 1Í + |1; 1; 0; 0Í + |1; 0; 1; 1Í

2
.

With the entanglement entropy of system A given by

S(A) = ≠trA(flA ln flA) with flA = trBCD
!
|ÂÍÈÂ|

"
,

we find S(A) = S(D) = ln 2, and S(A, D) = 2 ln 2, for the joint entropy

S(A, D) = ≠trAD(flAD ln flAD)

of A and D. A and D are neither correlated nor share mutual information [14],

S(A :D) © S(A) + S(D) ≠ S(A, D) = 0.

While A and D in (12) are not entangled, they are still interlinked though the chain
ABCD of mutually entangled degrees of freedom. It is not possible to factorize |ÂÍ into
a product state, and hence not possible to describe A or D independently. This simple
example illustrates that (sub-)systems can be interlinked while they are neither entangled
nor correlated. There are no classical e�ects associated with quantum interlinking.

To quantify the interlinking of two (uncorrelated) subsystems A and AÕ, one may
consider the entanglement entropy for all possible ways to bisect the system such that
A and AÕ belong to di�erent sectors. A suggestive measure for the interlinking I(A, AÕ)
is then the minimal value of the entropy attainable. In state (12), I(A, D) = ln 2, since
S(A) = S(A, B) = S(A, B, C) = ln 2. For a given macroscopic object, the amount of
interlinking with the EMO is simply given by the thermal entropy of this object, since this
entropy corresponds to the entanglement entropy between the object and the EMO.

The important point in the present context is that unless it is possible to partition
a macroscopic system such that the parts are not entangled, all the degrees of freedom
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A measurement occurs when one or several microscopic degrees of freedom, 
which were previously disentangled from the EMO, become entangled with 
degrees of freedom belonging to the EMO, and hence interlinked with all of 
them.

The process, however, is not as envisioned by von Neumann in 1932:

(This is when the collapse occurs in the Copenhagen interpretation.)

Measurement:  a degree of freedom, previously disentangled 
from the EMO, becomes interlinked with it 

5. Measurements, Schrödinger's cat, and EPR
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An initial state

evolves via

into the final state
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The ”bifurcation into two worlds” occurs when the spin becomes entangled 
with the measuring device M, and hence interlinked with a world.
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are interlinked. In a quantum theory, interlinked degrees of freedom cannot be described
independently, even if they are classically independent. The assumption that all common
macroscopic objects in the universe are interlinked is backed by the applicability of statistical
mechanics and thermodynamics. If all of entropy is interpreted as entanglement entropy,
any object which carries thermal entropy, and hence any object which has a temperature in
the sense of conventional thermodynamics3, is entangled with its environment, and hence
part of the EMO. On the other hand, if we prepare an isolated system in a pure quantum
state, it will not carry thermal entropy. In practice, of course, macroscopic systems become
very rapidly entangled with the environment.

5 The measurement process, Schrödinger’s cat, and EPR

The notion of the EMO, and in particular quantum interlinking, is key to understanding
the measurement process, or in general, the transition from a quantum to a classical
description. A measurement of one or several microscopic degrees of freedom, which
were previously disentangled from the EMO, occurs when they become interlinked with it
through entanglement with degrees of freedom belonging to the EMO. In the Copenhagen
interpretation, this process corresponds to the collapse of the wave function. To be consistent
with a century of literature on the subject, we refer to this process as a “measurement”.
Strictly speaking, however, this is not fully accurate as it is irrelevant whether we extract
information or not. For the transition from a quantum to a classical description, only
interlinking is required.

The process is hence di�erent from the chain envisioned by von Neumann [38], which
we described by the sequence of states (5), (6), (7), and (9) in the example above. While
the correlations of the device M and the observer consciousness C with the initial spin (4)
develop step by step, the interlinking occurs all at once. Since M, C, and W are interlinked
already, it is not possible to factorize them into a product state. The correct way to write
the initial state is hence

|ÂiÍ =
1
u |øÍ + v |¿Í

2
¢ |M0, C0, W0Í (13)

rather than (5), which then evolves through

|ÂMÍ = u |øÍ ¢ |Mø, C0, WøÍ + v |¿Í ¢ |M¿, C0, W¿Í (14)

into

|ÂfÍ = u |øÍ ¢ |Mø, Cø, WøÍ + v |¿Í ¢ |M¿, C¿, W¿Í. (15)

Note that through interlinking, the bifurcation into “two worlds” occurs already when the
initial spin state (4) becomes entangled with M.

The first step (6) in the von Neumann chain could only happen if the measuring device
M was disentangled from everything else beforehand, which, as explained above, would
require it to be in a pure quantum state with zero entropy.

3
The connection between temperature and entanglement entropy is subtle, however, because (a) an

object does not have to be in a thermal state to be entangled with its environment, and (b) we can

assign a temperature to a pure many body state, even though its overall entropy is zero. In this case, the

temperature enters in the thermal description of subsystems according to the ETH. Since we cannot access

this temperature from outside without infringing on the purity of the state, however, we do not refer to it

as “a temperature in the sense of conventional thermodynamics”.
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Schrödinger’s cat: The measurement occurs when the alpha ray becomes 
entangled with the detector, and hence interlinked with 
the cat, the box, and the observer outside.
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EPR:
M Mmeasuring devices are interlinked → one

spins are entangled → one 
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EPR:

→  when we measure one spin, we have measured both!

after the “first” measurement, everything is described by a single 
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Since Wigner’s friend [22], Schrödinger’s cat [2], and the Geiger counter used in the
thought experiments all carry entropy, they are all part of the EMO. The measurement
occurs whenever the quantum mechanical degree of freedom subject to measurement
becomes entangled with one of them. In these settings, the Geiger counter becomes
entangled first. Adding a cat, a friend, or walls around either will make no di�erence.

The EPR paradox is likewise resolved by taking into account that the measuring devices
M and M in regions R and R are both part of the EMO, and are as such interlinked. The
measurement takes place when one of the two mutually entangled EPR spins becomes
entangled with either measuring device, since this automatically interlinks both spins with
the EMO. Expressed in equations, if we measure spin 1 first, the initial state

|ÂiÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ≠ |¿1Í ¢ |ø2Í

2
¢ |M0, C0, M0, C0, W0Í (16)

evolves into

|ÂfÍ = 1Ô
2

1
|ø1Í ¢ |¿2Í ¢ |Mø, C0, M0, C0, Wø1¿2Í

≠ |¿1Í ¢ |ø2Í ¢ |M¿, C0, M0, C0, W¿1ø2Í
2
. (17)

When we measure the second spin, device and spin are interlinked already, and the outcome
is certain.

6 Gravity and non-linearities

It is more subtle to address the question whether both amplitudes in Eqs. (14) or (17)
persist, as MWIs would suggest, or collapse onto one of them, as suggested by the
Copenhagen interpretation. As mentioned above, the argument cited by proponents of
MWIs is that there is nothing in the formalism to describe a collapse. It would require the
linear Schrödinger equation, or its relativistic generalizations, to be augmented by some
non-linearity, and there is no experimental evidence for any such augmentation as larger
and larger systems can be prepared in well-defined quantum states. If a non-linearity,
possibly in the spirit of Ghirardi, Rimini, and Weber [18], or Diósi [19] and Penrose [20,64],
were to exist [12], so the line of argument, we would have noted it already [13,21]. Therefore,
we have no choice but to adjust our interpretation to the equations we have, and hence to
embrace MWIs.

An alternative way to present this dilemma is through the search for a boundary
between quantum and classical domains, as illustrated so charmingly in a cartoon by
Zurek [5]. In the cartoon, the horizontal axis denotes the size (# of atoms) of the system,
with 1 atom firmly in the quantum and 1023 atoms firmly in the classical domain. We
know that the quantum domain exists, and whenever we push towards the classical domain,
we find no indications of a boundary. Therefore, there is only a quantum domain, and
our perceived definiteness of classical reality is subjective only, as elaborated with the
“definiteness operator” defined in (8) above.

The problem with this view is once again the implicit assumption of a von Neumann
chain. If it was technically feasible to prepare a system of 1023 atoms in a pure quantum
state, disentangled from the EMO, we should in principle be able to observe interference
phenomena. (Practical limitations arise from the smallness of ~.) On the other hand, if a
system consisting of 102 atoms is entangled with the EMO, we will not be able to observe
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Models in the literature, like Ghirardi, Rimini, and Weber (1986), or Diósi 
(1987) and Penrose (1996), assume that a collapse takes place locally.

There is no experimental evidence for this - the systems we are able to 
probe become larger and larger, but linear QM works just fine!

A collapse requires a non-linearity in the time evolution of QM.

6. Is there a collapse?

37



Interlinking, however, changes the scale.  Recall our measurement process: 
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interference phenomena. Since the number of baryons (protons and neutrons) in the visible
universe is of the order of 1080, it is very plausible that all systems we will ever be able to
prepare in a laboratory will evolve to the greatest precision we will ever be able to access
according to linear equations, while the corrections to them become meaningful only at
much larger scales. This is significant as we are dealing with scales at which the e�ects of
(quantum) gravity, which do not necessarily share the linearity of Schrödinger’s equation,
need to be taken into account.

Let us recapitulate what we understand so far. When we measure the spin ‡
z of the

initial state (5) above, we entangle it with its environment and hence interlink it with the
EMO. According to the linear Schrödinger equation, the evolution will be given by

|ÂiÍ =
1
u |øÍ + v |¿Í

2
¢ |W0Í (18)

æ |ÂfÍ = u |øÍ ¢ |WøÍ + v |¿Í ¢ |W¿Í,

where Wø and W¿ denote “worlds” in which the spin is measured and perceived ø or ¿,
respectively. As in every scenario, decoherence is key, since it is responsible for the selection
of the basis of these “worlds”, i.e., the ‡

z basis in |ÂfÍ above. The only reason to keep both
amplitudes in |ÂfÍ is the linearity of Schrödinger’s equation. We have no reason to expect,
however, that this linearity will prevail once gravity is included. The “worlds” are given
by the EMO, which has a scale where gravity cannot possibly be neglected. Therefore,
MWIs are based on extrapolation of a set of equations to a regime where we have no reason
to assume validity. While Many Worlds seem inevitable when one thinks along the von
Neumann chain, there is no need to invoke them in the framework I advocate here.

Let us now, for the sake of discussion, assume that a collapse occurs, due to non-
linearities we have not yet been able to include in our equations describing the time
evolution in quantum theories, and assign a frequentist probability to it. Then the final
state in (18) will evolve into one of the two amplitudes in the superposition, that is, into
either |øÍ ¢ |WøÍ or |¿Í ¢ |W¿Í. The spin, which was disentangled from the EMO initially,
became entangled and immediately disentangled again. During the measurement process,
it gained and lost entanglement entropy. The evolution of the spin is adequately described
by Schrödinger’s equation before and after the measurement.

Note that the only assumption this framework depends on from the list above is the
“All is  ” assumption (i). The (approximate) evolution according to a linear equation in (ii)
is experimentally verified and undisputed, and the entanglement within our universe in (iii)
follows through the ETH from the applicability of statistical mechanics and thermodynamics.
Nothing depends on (iv) anyway. Note also that in (i), we do not require that our universe
is in a pure quantum state  , since we can always purify any mixed state through additional
degrees of freedom we subsequently trace out [14]. So the only assumption we have really
made is that the fundamental theory is a quantum theory.

The resulting picture implies that when a spin is measured here on earth, the wave
function will become interlinked instantly with stars on the other side of our galaxy.
Does this contradict the principle of relativity? The answer is no, as no information is
transmitted. Interlinking happens in Hilbert space, not in real space, and has no classical
or observable consequences. When we calculate amplitudes in functional integrals, the
choice of paths we integrate over is likewise not constrained by the principle of relativity.
This appears to indicate that Hilbert space is fundamental, while the physical space subject
to the principle of relativity is is an emergent (tensor product) structure within this space.
The possibility that space-time emerges from entanglement has recently been explored in
anti-de Sitter space [65–71].

Another broad implication of the present proposal for the collapse of wave functions
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“All is  ” assumption (i). The (approximate) evolution according to a linear equation in (ii)
is experimentally verified and undisputed, and the entanglement within our universe in (iii)
follows through the ETH from the applicability of statistical mechanics and thermodynamics.
Nothing depends on (iv) anyway. Note also that in (i), we do not require that our universe
is in a pure quantum state  , since we can always purify any mixed state through additional
degrees of freedom we subsequently trace out [14]. So the only assumption we have really
made is that the fundamental theory is a quantum theory.

The resulting picture implies that when a spin is measured here on earth, the wave
function will become interlinked instantly with stars on the other side of our galaxy.
Does this contradict the principle of relativity? The answer is no, as no information is
transmitted. Interlinking happens in Hilbert space, not in real space, and has no classical
or observable consequences. When we calculate amplitudes in functional integrals, the
choice of paths we integrate over is likewise not constrained by the principle of relativity.
This appears to indicate that Hilbert space is fundamental, while the physical space subject
to the principle of relativity is is an emergent (tensor product) structure within this space.
The possibility that space-time emerges from entanglement has recently been explored in
anti-de Sitter space [65–71].

Another broad implication of the present proposal for the collapse of wave functions
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So we may assume a collapse takes place, due to non-linearities of QM at 
length scales we are unable to access.

These non-linearities might be related to gravity.

It is very possible that linear QM works just fine for every system we will 
ever be able to access in a laboratory (be it         or          baryons), but non-
linearities appear at much larger scales. 
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Interlinking, however, changes the scale.  Recall our measurement process: 
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interference phenomena. Since the number of baryons (protons and neutrons) in the visible
universe is of the order of 1080, it is very plausible that all systems we will ever be able to
prepare in a laboratory will evolve to the greatest precision we will ever be able to access
according to linear equations, while the corrections to them become meaningful only at
much larger scales. This is significant as we are dealing with scales at which the e�ects of
(quantum) gravity, which do not necessarily share the linearity of Schrödinger’s equation,
need to be taken into account.

Let us recapitulate what we understand so far. When we measure the spin ‡
z of the

initial state (5) above, we entangle it with its environment and hence interlink it with the
EMO. According to the linear Schrödinger equation, the evolution will be given by

|ÂiÍ =
1
u |øÍ + v |¿Í

2
¢ |W0Í (18)

æ |ÂfÍ = u |øÍ ¢ |WøÍ + v |¿Í ¢ |W¿Í,

where Wø and W¿ denote “worlds” in which the spin is measured and perceived ø or ¿,
respectively. As in every scenario, decoherence is key, since it is responsible for the selection
of the basis of these “worlds”, i.e., the ‡

z basis in |ÂfÍ above. The only reason to keep both
amplitudes in |ÂfÍ is the linearity of Schrödinger’s equation. We have no reason to expect,
however, that this linearity will prevail once gravity is included. The “worlds” are given
by the EMO, which has a scale where gravity cannot possibly be neglected. Therefore,
MWIs are based on extrapolation of a set of equations to a regime where we have no reason
to assume validity. While Many Worlds seem inevitable when one thinks along the von
Neumann chain, there is no need to invoke them in the framework I advocate here.

Let us now, for the sake of discussion, assume that a collapse occurs, due to non-
linearities we have not yet been able to include in our equations describing the time
evolution in quantum theories, and assign a frequentist probability to it. Then the final
state in (18) will evolve into one of the two amplitudes in the superposition, that is, into
either |øÍ ¢ |WøÍ or |¿Í ¢ |W¿Í. The spin, which was disentangled from the EMO initially,
became entangled and immediately disentangled again. During the measurement process,
it gained and lost entanglement entropy. The evolution of the spin is adequately described
by Schrödinger’s equation before and after the measurement.

Note that the only assumption this framework depends on from the list above is the
“All is  ” assumption (i). The (approximate) evolution according to a linear equation in (ii)
is experimentally verified and undisputed, and the entanglement within our universe in (iii)
follows through the ETH from the applicability of statistical mechanics and thermodynamics.
Nothing depends on (iv) anyway. Note also that in (i), we do not require that our universe
is in a pure quantum state  , since we can always purify any mixed state through additional
degrees of freedom we subsequently trace out [14]. So the only assumption we have really
made is that the fundamental theory is a quantum theory.

The resulting picture implies that when a spin is measured here on earth, the wave
function will become interlinked instantly with stars on the other side of our galaxy.
Does this contradict the principle of relativity? The answer is no, as no information is
transmitted. Interlinking happens in Hilbert space, not in real space, and has no classical
or observable consequences. When we calculate amplitudes in functional integrals, the
choice of paths we integrate over is likewise not constrained by the principle of relativity.
This appears to indicate that Hilbert space is fundamental, while the physical space subject
to the principle of relativity is is an emergent (tensor product) structure within this space.
The possibility that space-time emerges from entanglement has recently been explored in
anti-de Sitter space [65–71].

Another broad implication of the present proposal for the collapse of wave functions
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interference phenomena. Since the number of baryons (protons and neutrons) in the visible
universe is of the order of 1080, it is very plausible that all systems we will ever be able to
prepare in a laboratory will evolve to the greatest precision we will ever be able to access
according to linear equations, while the corrections to them become meaningful only at
much larger scales. This is significant as we are dealing with scales at which the e�ects of
(quantum) gravity, which do not necessarily share the linearity of Schrödinger’s equation,
need to be taken into account.

Let us recapitulate what we understand so far. When we measure the spin ‡
z of the

initial state (5) above, we entangle it with its environment and hence interlink it with the
EMO. According to the linear Schrödinger equation, the evolution will be given by

|ÂiÍ =
1
u |øÍ + v |¿Í

2
¢ |W0Í (18)

æ |ÂfÍ = u |øÍ ¢ |WøÍ + v |¿Í ¢ |W¿Í,

where Wø and W¿ denote “worlds” in which the spin is measured and perceived ø or ¿,
respectively. As in every scenario, decoherence is key, since it is responsible for the selection
of the basis of these “worlds”, i.e., the ‡

z basis in |ÂfÍ above. The only reason to keep both
amplitudes in |ÂfÍ is the linearity of Schrödinger’s equation. We have no reason to expect,
however, that this linearity will prevail once gravity is included. The “worlds” are given
by the EMO, which has a scale where gravity cannot possibly be neglected. Therefore,
MWIs are based on extrapolation of a set of equations to a regime where we have no reason
to assume validity. While Many Worlds seem inevitable when one thinks along the von
Neumann chain, there is no need to invoke them in the framework I advocate here.

Let us now, for the sake of discussion, assume that a collapse occurs, due to non-
linearities we have not yet been able to include in our equations describing the time
evolution in quantum theories, and assign a frequentist probability to it. Then the final
state in (18) will evolve into one of the two amplitudes in the superposition, that is, into
either |øÍ ¢ |WøÍ or |¿Í ¢ |W¿Í. The spin, which was disentangled from the EMO initially,
became entangled and immediately disentangled again. During the measurement process,
it gained and lost entanglement entropy. The evolution of the spin is adequately described
by Schrödinger’s equation before and after the measurement.

Note that the only assumption this framework depends on from the list above is the
“All is  ” assumption (i). The (approximate) evolution according to a linear equation in (ii)
is experimentally verified and undisputed, and the entanglement within our universe in (iii)
follows through the ETH from the applicability of statistical mechanics and thermodynamics.
Nothing depends on (iv) anyway. Note also that in (i), we do not require that our universe
is in a pure quantum state  , since we can always purify any mixed state through additional
degrees of freedom we subsequently trace out [14]. So the only assumption we have really
made is that the fundamental theory is a quantum theory.

The resulting picture implies that when a spin is measured here on earth, the wave
function will become interlinked instantly with stars on the other side of our galaxy.
Does this contradict the principle of relativity? The answer is no, as no information is
transmitted. Interlinking happens in Hilbert space, not in real space, and has no classical
or observable consequences. When we calculate amplitudes in functional integrals, the
choice of paths we integrate over is likewise not constrained by the principle of relativity.
This appears to indicate that Hilbert space is fundamental, while the physical space subject
to the principle of relativity is is an emergent (tensor product) structure within this space.
The possibility that space-time emerges from entanglement has recently been explored in
anti-de Sitter space [65–71].

Another broad implication of the present proposal for the collapse of wave functions
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the universe, with          baryons

<latexit sha1_base64="qm5Hq1jDsfKGvou1UhL/Mfp1tUw="></latexit>

1080

38



Remarks

1. From our assumptions, only the “All is    “ assumption (i) is required.
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In the process, the spin first gains and then looses (entanglement) entropy.  
If it was entangled with other degrees of freedom beforehand, the 
measurement reduces its entropy.

2. If a collapse takes place, the spin we measured will be in a disentangled 
state        or        again.  The evolution is linear before and after the 
measurement.
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3. Interlinking is instantaneous, but this does not violate causality as there 
are no classical ramifications.  
Interlinking happens in Hilbert space, while relativity applies to spacetime.

Remarks

1. From our assumptions, only the “All is    “ assumption (i) is required.
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If it was entangled with other degrees of freedom beforehand, the 
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measurement.
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3. Interlinking is instantaneous, but this does not violate causality as there 
are no classical ramifications.  
Interlinking happens in Hilbert space, while relativity applies to spacetime.

4. If the non-linearities in QM are due to gravity, there cannot be a canonical 
quantization of gravity, as canonical quantization is inherently linear. 

Remarks

1. From our assumptions, only the “All is    “ assumption (i) is required.
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In the process, the spin first gains and then looses (entanglement) entropy.  
If it was entangled with other degrees of freedom beforehand, the 
measurement reduces its entropy.

2. If a collapse takes place, the spin we measured will be in a disentangled 
state        or        again.  The evolution is linear before and after the 
measurement.
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Summary (1)
1. We assume that the fundamental theory is a quantum theory.

2. The classical reality we perceive is given by the ensemble a macroscopic 
objects (EMO).  Due to interlinking, the wave function of all these objects 
cannot be factorized.  

3. Therefore, we observe quantum behavior only for (microscopic) degrees 
of freedom disentangled from the EMO. 

4. A measurement occurs whenever a microscopic degrees of freedom 
becomes entangled with its environment and thereby interlinked with the 
EMO, which includes the visible universe.

5. Even though we lack a microscopic understanding how a collapse occurs, 
it is reasonable to assume it does.
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The fundamental assumptions resemble MWIs.  The difference is 
that we introduce interlinking, abandon the von Neumann chain, 
and take into account that the scales relevant for non-linearities in 
the quantum evolution are currently inaccessible to us.

The phenomenology resembles Copenhagen.  The difference is 
that we do not embed the quantum theory in a classical domain, 
but find the classical domain within the quantum theory.

Summary (2)
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