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1. Eigenstate thermalization hypothesis

Josh Deutsch 1991, Marc Sredenicki
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More concise statement of the ETH:

entire system in eigenstate |10, H |¥n) = Ay [¢hy,) S B

sub-)system

| A~
ps(B) = Tri p(5) with p(8) = e "
|

thermal density matrix

ETH

) 9 )
inverse temperature (8 fixedby (H)z = — 5 InZ =M, Z=Tre " (x

thermal energy = energy of eigenstate

The local properties of eigenstates are indistinguishable from those of a thermal state!

The ETH does not (fully) apply to systems with extensive symmetries
(integrable systems, many-body localization, quantum scars).



2. Consistency requirements

If we place the entire system in a thermal state X
. S deceeees k coo B
R _BE, wea
p(B) = m Z e’ [thn) (¥n coupling

and apply the ETH to each of them, we get a weighted sum of canonical distributions with
different temperatures (3,, for the subsystem S:

1 .
Trp [tn) (Yn| = ZS(Bn) Z e P ’¢;SL> <§b/§’ H> ‘(/5§> = &u ‘¢/€>
7

1 1
Trpp(8) = L o~ BEn e Pnen ‘¢S> <¢s’
2 7 2w

7= L e

Zs(B)

A sum of exponential functions usually does not give a single exponential!




However, it works out if the eigenvalue density of the entire system is given by a Gaussian,
and the bath B >> subsystem S

Theorem (Hartmann, Mahler, Hess (2005), Hofmann, Helbig, Thomale, MG, to appear):

The eigenvalue density of a locally interacting quantum system approaches a Gaussian in
the limit of large systems

p(A)
p(A) =[5 e 3N
27

1 2 .
where — = o is the (matrix)

Q
variance of the entire system

[
An A
Expansion around A, yields:
Oln p(\
p()\) x P with Bn = ai( )A—A = —a\, (>|<>|<)

why this is the (inverse) temperature (3,, will become clear below!



another consistency condition:

According to the ETH, 53, will also be connected to \,, via (*):

N/d)x,() Nexp(?i)

A 0 n
An = <H>5n = — %111 Z(ﬁ)‘ﬁﬁ = —% is equivalent to (xx) |

This condition relates the derivative of p(A) to a weighted integral over p(\) .

It is hard to see how any eigenvalue distribution different from the Gaussian p(\)
{with arbitrary width and normalization) can satisfy this.



3. Statistical mechanics from the microcanonical

ensemble
A El‘ in B
% Np(E) ~ ePE
system E very large
\lé = bath

€u n S | ’T E A — €1
A —
€ infinitesimal _
coupling —

same probability for all states with energy in [\, A 4+ 4] - probability of level 1: w,, X e Pen



4. Numerical decomposition of eigenstates

entire system H=HS+HB+ X

basis: H |1, = En [th,)

(sub-)system bath
< X
1" eak B
coupling
HY |6) = eu|d):) HE|67) = Ei |677) B} = |0) @ |07
w=1,. , Ng 1=1,...,Np

calculate the overlap

(Pl tn)|”

for 2000 states for 2 x 50 different random
couplings for a single spin coupled to a bath

of 15 interacting spins to obtain the statistical
expectations values

subsystem S



€y S

€]

[ ilnd|”

We find perfect Lorentzians for the ensemble averages of the overlap curves, which differ in
width and height, but enclose exactly the same area, and are shifted relative to \,, — Ep-

Shifts are due to (1) “level repulsion” (2) > = Jfot increases due to the coupling.
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This implies that we obtain canonical distributions for the (sub-)system S, but with
probabilities according to shifted levels.
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5. Results form Dyson-Brownian motion random
matrix theory

overlaps X in = EU (Dui|Pn) \2] are given by Cauchy-Lorentz distributions

T
(@i — A — 77#)2 +

Xpimn X where a,; = ¢, + F;

To first order in the matrix variance ¢ of the perturbation X
1

t = NE[Tr()A(Q)]
we find:
. . VT 2 X
1. The shifts are given by 7, = —tm z,,: e “rerfi(€,,)
where: erfi(z) = —ierf(iz) is the imaginary error function

~ — 1 — — 1
Epuy = Zg,uz/ o b) Euv = Eu — Ev, b = ZﬁAa

A =~ bandwidth of the part of the bath X couples to.
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2. The half-widths of the Lorentzians are given by

3. While the widths and heights of the Lorentzians depend on the index u,
the integrated areas beneath them do not.

Since expansion of the Gaussian eigenvalue density yields pg(E) o eP%,

the reduced density matrix of the system S has diagonal entries

(65 ps |¢) oc e P len=m)

AT . : 1 . .
The off-diagonal entries vanish as NI and hence exponentially, with

the size of the bath B.

4. When we spectroscopically observe level spacings in S, we do not
observe the bare levels €, but the shifted levels €, — n,. Therefore it is
appropriate that they, and not the bare levels, enter the distribution.



6. Remarks and Summary

1. Eigenstate thermalization

(a) requires a Gaussian eigenstate density, which is always the case
for locally interacting quantum systems.

(b) can be derived using Dyson-Brownian motion random matrix
theory.

2. Our analysis provides a derivation of statistical mechanics which
requires neither the concept of ergodicity or typicality, nor that of
entropy. Thermodynamic behaviour follows solely from the
applicability of guantum mechanics to large systems, locality, and
the absence of integrability.

14



Lecture 2

Interlinking and the Emergence of
Classical Physics in Quantum Theory

Part |

1. Review of Quantum Mechanics
2. Problems with Copenhagen
3. Many Worlds Interpretations

Part |

4. Interlinking and the ensemble of macroscopic objects (EMO)
5. Measurements, Schrodinger's cat, and EPR
6. Is there a collapse?
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1. Review of Quantum Mechanics

(a) At any fixed time, the state of a system is described
by a (normalized) vector in Hilbert space, |¢).

(b) The state vector evolves according to Schrodinger’s
equation,

.0
o 0) = H ), (1

where the Hamilton H of the system is a linear,
self-adjoint operator.

16



(c)

Observables are likewise described by linear, self-

adjoint operators. If |¢) is in an eigenstate of an
observable A, A |y) = a|vy), the observed value of
A is a.

Every measurement of A with a device described
by classical physics yields one of the eigenvalues
of A. The probability of finding a particular eigen-
value @ when measuring |) is || P(A, a) |¢)|?, where
P(A,a) is the projection operator on the subspace
of states with eigenvalue a (Born’s rule). If A is
measured again thereafter, the observed value will
be a again.

17



According to the Copenhagen interpretation of 1927,
(d) implies that the state of the system after the first
measurement is given by

P(A,a) )
1P(A,a) [)]

(3)

This is referred to as the “collapse” of the wave function.

The probability in the process is assumed to be frequentist,
i.e., due to the occurence of random events, as opposed to
a Bayesian probability, which is a subjective probability
an observer assigns due to inaccessibility of information.

18



2. Problems with Copenhagen

1. Schrodingers equation is deterministic, does not describe a collapse

2. When should a collapse occur? Schrodinger’s cat

19



.. or more generally: Where is the quantum-classical boundary?
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20



3. Einstein-Podolsky-Rosen (EPR) Paradox

tA

prepare a spin singlet state T =ct
1
=~ 5 ® — ® .
oy NG (1) @ [J2) = [J1) @ [12)).
R B

measure 0?1) and 0 fQ) in space-like separated regions R and R.
— product of eigenvalues will always be —1 when compared later on.

— probabilities cannot be both frequentist.

This led EPR to believe in hidden variables, a possibility ruled out since

through tests of Bell’s inequality.

A pedagogically outstanding way how this can be done in principle is due
to Greenberger, Horne, and Zeilinger (GHZ, 1989)

21



send out samples to three space-like separated stations, where we measure either A or B:

We obtain records like
A =1 By, = —1 Bz = —1

A1:1 A2:—1 Bg_
By =1 By =1 As

-
= |
—_

We find whenever we have measured A; B2Bs it is +1.

Likewise fOI‘ BlAng and Bl BzAg.

If the outcomes were predetermined, this would imply

A1A2As = A1BoBs - BiAasBs - B1 B2 A3z = +1

22



send out samples to three space-like separated stations, where we measure either A or B:

We obtain records like

A =1 By = —1 Bs = —1

A =1 Ay = —1 By = —1
By =1 By =1 A3 =1
o We find whenever we have measured A; B> B3 it is +1.
/@\ Q Likewise fOI‘ BlAng and BleAg.
O/ A If the outcomes were predetermined, this would imply
® OFF
- A1A2As = A1B>Bs - BiAsBs - BiB2As = +1

for GHZ states, however, we measure A;AsA3; = —1

22



How does this work?

_ 1

V2

Al = 0531) B, = 0?51) etc.

) 1) = D)

A1B3Bs [¢) = oMo @ 6 |y = |
etc. for BlAng and BlBQA3.

But ...
A1AAs [Y) = 09(61)0;2)(7;3) ) = —[¥)

What spooky action-at-a-distance?

23



3. Many Worlds Interpretations

The idea is simply that there is only quantum me-
chanics, and only deterministic evolution according to
Schrodinger’s equation. Measurements do not entail a
projection or collaps of the wave tunction. The definite-
ness of our daily life experience is subjective only. All
probabilities are Bayesian.

consider a spin half particle |¢) =u|f) +v]||)

measuring device M = {|Mo) , [My), [My)}

observer consciousness C={|Co),|Cs),|Cy)}

world W = {|Wo),[W+), W)}

24



Measurements in Many Worlds

A measurement evolves the initial state

i) = (ut) +v|I)) ®@|Mo) ® |Co)

following the von Neumann chain via the intermediate states
Ym) = (u[h) @ My) + v [) @ M) |Co)
) = ulh) @ [My) @ |Cp) +o[l) @ [My) ©|Cy)

into the final state

1Y) =ul 1) @ [My) @ [Cp) @ [Wy) + v ]) @ M) ®[C)) @ [Wy).

25



Measurements in Many Worlds

A measurement evolves the initial state

i) = (ut) +v|I)) ®@|Mo) ® |Co)

following the von Neumann chain via the intermediate states
Ym) = (u[h) @ My) + v [) @ M) |Co)
) = ulh) @ [My) @ |Cp) +o[l) @ [My) ©|Cy)

into the final state

1Y) =ul 1) @ [My) @ [Cp) @ [Wy) + v ]) @ M) ®[C)) @ [Wy).

Definiteness operator D

has eigenvalue 1 if C perceives a definite outcome, eigenvalue O otherwise:

D |CT> — \CT>> D ’CU — |C¢> due to David Albert

25



EPR in Many Worlds

measuring devices M and M , . . _
in spacetime regions R and R

observer consciousnesses C and C

Hilbert space of the world W = {\W0>, |WT1T2>7 ‘WT1¢2>7 |W¢1T2>a ‘W¢1¢2>}

initial state
B 1

) = 5 (111 ® [12) = [4) @ [12)) @ [Mo) @ [Co) @ [Mo) @ [Co) & [Wo)

will evolve following the von Neumann chain into

) = <5 (1) 4a) ® My} (C1)  [BL) @ [C1) Wi,

— same term with T < ¢)

regardless which world we find ourselves in, o(;y05) = —1

26



Problems with Many Worlds interpretations

1. Which branch of the multiverse do I find myself in?

— collapse is pushed back to the level of consciousness

2. All attempts to derive the Born rule (probabilities) have failed.

3. There 1s a universe for every possible outcome of measurements, no

matter how unlikely they are.

02° spin which were aligned to a precision of 107"

e.g. measure o“ for 1
in 0% = +1 direction. There is a universe in which all these 10%°

measurements yield ¢” = —1, even though the probability for this is

(10-3)"""

cf. age of universe = 4 - 10%° secs., size of universe = 1.3 - 10°° m

27



4. Interlinking and the ensemble of macroscopic

objects (EMO)

Assumptions:

(i)

The fundamental theory is a quantum theory. The
entire universe can be described by a solution of
this quantum theory, which for simplicity we call
wave function V.

The evolution of W is, to an approximation we have
not been able to challenge, given by the linear regime
of the quantum theory. For simplicity, let us assume
time is fundamental (as opposed to emerging) and
let us refer to the theory describing this evolution
as the Schrodinger equation. For time to be mean-
ingful, ¥ must not be an eigenstate of the time
evolution operator.

28



(iii)

The universe started with the big bang, and at that
time, many degrees of freedom of the universe were
entangled with their environments. We expect that
there is still significant entanglement.

For simplicity, we further assume that at a time we

refer to as the present, there is only one “world”.

Since all the branchings into other “worlds”, should
they have occurred in the past, have no influence on
our perception of the present, any consistent theory
based on this assumption will be sufficient.

29



Our daily life experience, however, is mostly described by either
classical dynamics or statistical physics.

30



Our daily life experience, however, is mostly described by either
classical dynamics or statistical physics.

statistical behavior can be explained by the eigenstate thermalization
hypotheses of Deutsch and Srednickai:

partition a system in a pure state [(t)) A B
into a subsystem A and an environment B.

Then the reduced density matrix of A:  pa(t) = trp (W(t» (¥(t) D

will converge towards a Boltzmann distribution

1

pa(B) =trp(p(B)) with p(B) = — exp (—=5H)

where [ is determined by (H); = Ey.
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Our daily life experience, however, is mostly described by either
classical dynamics or statistical physics.

statistical behavior can be explained by the eigenstate thermalization
hypotheses of Deutsch and Srednickai:

partition a system in a pure state [(t)) A B
into a subsystem A and an environment B.

Then the reduced density matrix of A:  pa(t) = trp (W(t» (¥(t) D

will converge towards a Boltzmann distribution

1

pa(B) =trp(p(B)) with p(B) = — exp (—=5H)

where [ is determined by (H); = Ey.

— thermal entropy = entanglement entropy

30



assumption (1) “All 1s W* — all of entropy is entanglement entropy

(2nd law of TD: entanglement entropy increases under usual circumstances)
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interlinked as it is not possible to factorize W

31



assumption (1) “All 1s W* — all of entropy is entanglement entropy

(2nd law of TD: entanglement entropy increases under usual circumstances)

macroscopic objects carry entropy — are entangled with other objects

— all macroscopic objects are connected through chains of entangled links

@ ‘ entangled . ‘ entangled - @ ‘ entangled - @

| no entanglement, no mutual information, classically independent |

interlinked as it is not possible to factorize W

classical reality = ensemble of macroscopic objects (EMO)

rule of thumb: objects which have a temperature belong to the EMO

31



Example for interlinking: four qubits A, B, C, D with states

n1;n9;n3;M4) = [N1)A Q [N2)B ® In3)c @ [n4)D

1
= - |i; (i + k) mod 2;k; k)

1=0 k=0

DO | — N)Ir—l

VR

0;050;0) + (05 1; 15 1) + [1;1;0; 0) + [1;05 1;1))
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Example for interlinking: four qubits A, B, C, D with states

n1;n9;n3;M4) = [N1)A Q [N2)B ® In3)c @ [n4)D

1
= - |i; (i + k) mod 2;k; k)

1=0 k=0

DO | — N)Ir—l

VR

0;050;0) + (05 1; 15 1) + [1;1;0; 0) + [1;05 1;1))

entropy of A: S(A) = —tra(palnpa) with py = treep ([¢)(¥))

joint entropy of Aand D:  S(A,D) = —trap(pap In pap)
- SA)=5D)=1In2, S(A,D)=2In2

mutual information between A and D:

S(A:D) = S(A) + S(D) — S(A,D) = 0

32



5. Measurements, Schrodinger's cat, and EPR

A measurement occurs when one or several microscopic degrees of freedom,
which were previously disentangled from the EMO, become entangled with

degrees of freedom belonging to the EMO, and hence interlinked with all of
them.

(This 1s when the collapse occurs in the Copenhagen interpretation.)

The process, however, is not as envisioned by von Neumann in 1932:

The correct initial state is  |¢;) = (u B |¢>) ® |Mp, Co, Wo)

and not |¢;) = (U 1) + v H>) ® [Mp) ® |Co) ® [Wp)

33



An 1nitial state

) = (u]t) + v ) ® Mo, Co, Wo)

evolves via

into the final state

[Yr) = u | 1) @ My, Cp, Wy) +0[]) @ [M,Cp,W)).

The “bifurcation into two worlds” occurs when the spin becomes entangled
with the measuring device M, and hence interlinked with a world.

34



Schrodinger’s cat: The measurement occurs when the alpha ray becomes
entangled with the detector, and hence interlinked with
the cat, the box, and the observer outside.

/////

= -

o X
At“\DV

all macroscopic objects are interlinked

2P

35



EPR:

measuring devices are interlinked = one W

A

spins are entangled — one w

A\ 4

36



EPR:

measuring devices are interlinked = one W

A
A

spins are entangled — one
01 < P 9 w > 0-2

after the “first” measurement, everything is described by a single ¥ = W0

— when we measure one spin, we have measured both!

36



EPR: @ ~measuring devices are interlinked = one , @

O1 <

spins are entangled — one w

;0'2

after the “first” measurement, everything is described by a single ¥ = W0

— when we measure one spin, we have measured both!

(111) ® [42) = [41) ® [12)) © [Mo, Co, Mo, Co, W)

evolves after measurement of spin 1 into

1
i) = NG
1
i) = 5

) ®
) ®

J2) ®
T2) ®

M, Co, Mo, Co, Wr, 1)

M, Co, My, Co, W¢1T2>)
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6. Is there a collapse?

A collapse requires a non-linearity in the time evolution of QM.

Models in the literature, like Ghirardi, Rimini, and Weber (1986), or Di6si
(1987) and Penrose (1996), assume that a collapse takes place locally.

There 1s no experimental evidence for this - the systems we are able to
probe become larger and larger, but linear QM works just fine!

37



Interlinking, however, changes the scale. Recall our measurement process:

) = (ul )+ 01 D) @ Wo) = ) =u 1) ® W) +v|4) © W)

1S a superposition of two states of
the universe, with 10°° baryons

38



Interlinking, however, changes the scale. Recall our measurement process:

) = (ul )+ 01 D) @ Wo) = ) =u 1) ® W) +v|4) © W)

1S a superposition of two states of
the universe, with 10°° baryons

So we may assume a collapse takes place, due to non-linearities of QM at
length scales we are unable to access.

It 1s very possible that linear QM works just fine for every system we will

ever be able to access in a laboratory (be it 10°° or 10°° baryons), but non-

linearities appear at much larger scales.

These non-linearities might be related to gravity.
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Remarks
1. From our assumptions, only the “All 1s W* assumption (1) is required.

2. If a collapse takes place, the spin we measured will be in a disentangled

state |1) or ||) again. The evolution is linear before and after the
measurement.

In the process, the spin first gains and then looses (entanglement) entropy.

It 1t was entangled with other degrees of freedom beforehand, the
measurement reduces its entropy.
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Remarks

1.

2.

From our assumptions, only the “All is W* assumption (i) is required.

If a collapse takes place, the spin we measured will be in a disentangled

state |1) or ||) again. The evolution is linear before and after the
measurement.

In the process, the spin first gains and then looses (entanglement) entropy.
It 1t was entangled with other degrees of freedom beforehand, the
measurement reduces its entropy.

. Interlinking 1s instantaneous, but this does not violate causality as there

are no classical ramifications.

Interlinking happens in Hilbert space, while relativity applies to spacetime.
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Remarks

. From our assumptions, only the “All is W* assumption (i) is required.

. If a collapse takes place, the spin we measured will be in a disentangled
state |1) or ||) again. The evolution is linear before and after the
measurement.

In the process, the spin first gains and then looses (entanglement) entropy.
It 1t was entangled with other degrees of freedom beforehand, the
measurement reduces its entropy.

. Interlinking 1s instantaneous, but this does not violate causality as there
are no classical ramifications.

Interlinking happens in Hilbert space, while relativity applies to spacetime.

. I the non-linearities in QM are due to gravity, there cannot be a canonical
quantization of gravity, as canonical quantization is inherently linear.
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Summary (1)
. We assume that the fundamental theory 1s a quantum theory.

. The classical reality we perceive is given by the ensemble a macroscopic
objects (EMO). Due to interlinking, the wave function of all these objects
cannot be factorized.

. Therefore, we observe quantum behavior only for (microscopic) degrees
of freedom disentangled from the EMO.

. A measurement occurs whenever a microscopic degrees of freedom
becomes entangled with its environment and thereby interlinked with the
EMO, which includes the visible universe.

. Even though we lack a microscopic understanding how a collapse occurs,
it 1s reasonable to assume it does.
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Summary (2)

The fundamental assumptions resemble MWIs. The difference 1s
that we introduce interlinking, abandon the von Neumann chain,
and take into account that the scales relevant for non-linearities in
the quantum evolution are currently inaccessible to us.

The phenomenology resembles Copenhagen. The difference is
that we do not embed the quantum theory 1n a classical domain,
but find the classical domain within the quantum theory.
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