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outline
 What is a jet?

Jet “fragmentation” process
Jet finder

 Looking under the hood
Parton splitting & rearrangement by the QGP

 Correlations among jet fragments
Energy-energy correlators and hadronization

 Color screening in quark gluon plasma
 Vorticity
 Initial stage of the collision
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Many thanks to Ezra Lesser, Rey Cruz Torres, 
Preeti Dhankher, Wenqing Fan



Quark & gluon probes
 Produced by hard scattering among incoming q, g

Scatter out of the beam direction

 The partons produce a “shower” of secondary photons
Radiate gluons (just as in bremsstrahlung)
Gluons can split into two 
Partons can collide with q, g in any medium they 

encounter (e.g. underlying event in pp, or QGP)

 Shower particles also evolve, creating a cascade
Especially in the presence of large, dense medium

 At the end, hadrons form from all of the produced 
partons
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Where does the lost energy go?
 Several possibilities

extra gluons at small 
angles (in/near jet cone)

radiated gluons thermalize in  
medium (i.e. they’re gone!)

remain correlated with leading
parton, but broaden/change jet
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Look inside and around the jet

 Precise measurement of energy loss by tagging with a 
photon or vector boson (which do not interact with the 
plasma)

 Longitudinally: jet fragmentation function

 Also transverse to the jet axis: jet substructure 
observables
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What, actually, IS a jet??
 No such object! (despite the cartoons)
 We define a “jet” 
         by choosing algorithm and size scale
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 Which hadrons belong to the same jet?
In Pb+Pb: many particles from other than the hard parton
In p+p the underlying event is smaller, but not zero

 Reconstruct jets from all hadrons, or charged ones only



Jet algorithm of choice: “anti-kT”

 Seed is hardest hadron or calorimeter tower
 Calculate distance to other particles:

Clusters softer particles with harder ones, until no more 
remain within distance of 2R               
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and

Typically, use R ~ 0.4 to allow statistical 
subtraction of the underlying event. But 
this misses some of the parton’s energy.
R = 1.0 is better. Feasible in e+A 

arXiv:1802.1189

Theorists can do this at the parton 
level, so jets are calculable with 
perturbation theory



Jet spectrum
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Power law shape:

Due to distribution of 
partons inside nucleons
fa and fb

+ combinatorics of finding 
partons of similar 
momentum fraction xa~xb

We will come back to the 
fragmentation function D

PRC101, 034911 (2020)



Under the hood: parton shower evolution
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Rey Cruz Torres

Calculable in pQCD Not calculable in pQCD



Perturbative QCD calculation
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Coupling constant runs with momentum transfer, becomes small
Expand interaction cross section in powers of as



Jet energy and shape modification
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Energy unbalanced in g, Z – tagged jets
 With photon or Z, you know the initial energy

 Plasma reduces the jet’s energy. Jet and boson pT no 
longer balance
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Look inside: Jet Fragmentation function
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D(z) = 1/Njet dN(z)/dz; z = phad/pjet

Count jet fragments as fraction of 
the jet’s momentum   

               zT = pTa/pTg  ~ z for g trigger

               x = ln(1/zT)

Modification factor similar to RAA:



g-jet data: jets get wider & softer in plasma
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Pb+Pb/
p+p:
Jets are 
wider in
Pb+Pb 

Pb+Pb/p+p:
Extra low momentum
particles; high momenta
suppressed

Medium induced radiation!



Jet structure more differentially
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 Excess soft hadrons at large jet radius
 Narrowing of high pT particle distribution
 Energy loss (and medium response?) 

arXiv: 1908.05264

See also: CMS
arXiv: 1803.00042

r

Pb+Pb/ 
p+p

pT vs. r of jet fragments



Connect to QCD
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High energy q, g fragment 
mostly outside the plasma

Collide in the plasma & 
radiate extra gluons. These 
produce secondary showers
 
Lower energy jets start to 
fragment in medium – can 
rearrange particles or add 
stuff from medium

 q,g undergo probabilistic cascade of g emissions
 Total color charge & flavor are conserved
 Successive branchings are ordered in angle
 Color coherence suppresses large angle soft radiation



But – 3 problems in connecting data & QCD

1. Measure hadrons but QCD calculates quarks and gluons
Hadronization is non-perturbative and so intractable

2. Singularities

3. Particles from underlying event
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Look at (calculable) parton splittings
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 Find observables that avoid singularities 
e.g. jet axis, zg, 𝛉g, jet mass, angularities, n-sub jettiness, 

energy-energy correlators, etc.
 Groom away softest particles to remove underlying 

event and minimize hadronization effects, using 
combination of momentum & angle

Lund Plane



Grooming jets

 Collect particles into subjets
 Use “soft drop” algorithm to remove soft subjets

 Removes soft radiation & non perturbative effects
Allow access to perturbative splittings
Also grooms away remaining underlying event
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:

 typically, zcut ~ 0.1-0.2 , b=0 or 1



Grooming effect on Lund Plane
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Cutting away low z and low 
DR particles makes holes in 
the Lund Plane

Allows looking at jet 
splittings in IR safe region 
and comparing to pQCD 
calculations



Jet axis
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Rey Cruz Torres

How aligned is hardest 
fragment with the jet axis?



Why measure this observable?
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Axis difference can be calculated perturbatively
Especially if jets are groomed to remove the soft particles at 
large angles.



Does grooming change the jet axis?
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Not much! 
Results in pp are well reproduced by Pythia & Herwig

arXiv:2303.13347arXiv:2211.08928



In Pb+Pb
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Evolution of jet axis difference
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Jets narrow in PbPb
Larger effect in softer jets
Quark jets start out narrower. Are the gluon 
jets more modified? C: relative probability to emit a gluon



Medium resolution length

28



Interactions appear to be incoherent
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Look at the parton splittings
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Lund Plane in pp data
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Early gluon splitting
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Useful to 
quantify 
energy, pT 
transport.
See significant 
dependence 
on jet E, 
grooming.

Recluster & groom jet
Use 2 leading clusters



Is there a mass effect on g radiation?
 Soft gluon radiation spectrum 

Large M suppresses small angle 
radiation (phase space effect)
Known as “dead cone effect”
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ALICE D-tagged vs. inclusive 
jets in p+p

Dokshitzer, et al. J.Phys.G17,1602 (1991)
Dokshitzer & Kharzeev, PL B519, 199 (2001) 

qg

H
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arXiv:2106.05713Yes!



Combine pT & θ: Angularity
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(shape) Calculable in pQCD
               data, model agree

Ezra Lesser, Preeti Dhankher

Let’s groom away the 
soft stuff



Why is angularity safe for pQCD?
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Ezra Lesser



Groomed jets well described by NLL QCD
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Ezra Lesser



In Pb+Pb
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Recall:
Jets narrow in PbPb
Quark jets are narrower. Are the gluon jets 
more modified?
Models depend on QGP evolution too!

Angularity in groomed Pb+Pb jets: 
large l depleted, small l enhanced.
Expect this if jets narrow in QGP

Ezra Lesser



Jets initiated by a charm quark
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Preeti Dhankher



Reconstructing D jets

 Reconstruct D0 meson 
from K & p

 Find charged jet around 
the D

 Calculate angularity
 Correct for D efficiency 

& background
 Unfold for energy 

resolution and missing 
neutral particles
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Preeti Dhankher



Compare D jet with light parton jets

 D jets are narrower 
(smaller angularity)

 Increasing a (weight of 
angular term) decreases 
the difference

 Comparison dominated 
by jet core

 Observation is exactly 
what we would expect 
from dead cone:
Fewer & harder jet 

fragments
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Preeti Dhankher



Fly in the ointment: hadronization
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How do the partons become hadrons?
 String breaking (e.g. Pythia)
String carries flavor correlations
Partons tunnel out of the string

 Cluster hadronization (e.g. Herwig)
Cluster locally connected partons
After the shower is finished

 Coalescence or Statistical Hadronization?
Connect partons which end up close by in phase space
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String breaking

                                
 Pythia Monash tune 

for LHC
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Stefan Prestel

arXiv: 1404.5630Based on ideas of linear confinement

@ end of shower, color-connected 
partons form string pieces w/ quark 
endpoints; gluons = transverse kinks

String junctions are asymmetric color 
tensor carrying baryon number
Strings break by tunneling; 
“string tension” = energy



Cluster hadronization
 Non-perturbative splitting follows pQCD shower
 Cluster color-connected partons together
      heavy clusters fission
      randomly fill shower & beam remnant mass distribution
      Color-connections more local than in string breaking
 Clusters decay into hadrons 

  ensure sufficient cluster mass for hadron masses
  draw flavor k from vacuum

44



45

Coalescence in quark gluon plasma

transverse KE

 dressed quarks are born of flowing field
 hadronize by (simple) coalescence of co-moving quarks
 quarks (miraculously?) dressed by gluons

 valence quarks, not 
hadrons, are present 
when collective flow 
develops 

Recombination from thermal 
distribution:
Fries, Mueller, Nonaka & Bass, 
PRC68, 044902 (2003) 
Fries, J. Phys. G32, S151 (2006)



Explore with jet energy-energy correlators
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Energy-energy correlator definition

 Experimentally, sum over all hadron pairs within the jet:

   = 
 This is a weighted two-particle correlation; plot vs. RL
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 < e(n1) e(n2)>

Where e(n) = 

   Tmn is the stress energy tensor

    e  is the asymptotic energy flow operator



Exchanged pT ~ 
pTjet x RL  

     

 = 

500 GeV jets

Separates pQCD & non-perturbative regions

 At large RL: universal scaling w/ perturbative quark and gluon 
interactions

 At small RL: for uniformly distributed hadrons 

RL ds/dRL ~ RL
2

 Transition region = correlator at hadronization
48

Komiske, Moult, Thaler, Zhu. arXiv:2201.07800



Quark-gluon region calculable
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Kyle Lee, Bianca Mecaj, Ian Moult; arXiv:2205.03414

ds
/d

R
L
 

When the virtuality 
approaches 𝓞(ΛQCD), 

EEC undergo transition 
into confinement 

region 

𝑅L∼𝒪(ΛQCD )/𝑝𝑇 , jet



Compare data to models Pythia & Herwig

 Herwig (hadronization via clusters) agrees better with the data
 But data are somewhat broader than Herwig. Longer time 

needed to form hadrons? 50



Check for scaling
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 Recall pT*RL is order of LQCD

 Common shape for all jet energies – transition region is 
universal 

 HWHM = 1.8 ± 0.2 GeV/c



Separate pQCD, hadronization & hadron gas
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 Deviation between data and NLL: non-perturbative onset
 Agreement between data and free hadron scaling: hadron gas phase
 Transition region physics – stay tuned!



Is there a relevant screening length?

 Plasma: interactions among charges of multiple particles
spreads charge into characteristic (Debye) length, lD

particles inside Debye sphere screen each other
 Strongly coupled plasmas: few (~1-2) particles in Debye sphere

Partial screening -> liquid-like properties
   sometimes even crystals!

 Test QGP screening with heavy quark bound states
Do they survive? 
All? None? Some? Which size?

 Are residual correlations important?

53
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Low pT

J/y vs. system size, √s

To quantify color screening in 
quark gluon plasma: study as 
function of √s, y, pT, ronium 

Measure J/y in p+A to account 
for cold matter effects: gluon 
shadowing, energy loss 

More suppression at y=2 
  Breakup in hadron gas?   
  Final state coalescence of qq!
Make many c-cbar pairs at LHC

@ 2.76 TeV direct J/y lower at mid-y, above at forward y



Cold nuclear matter also affects J/y

 J/y suppressed at low pT in a nucleus (at midrapidity)
 Can reproduce this with realistic PDFs and some energy 

loss in cold nuclear matter
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Initial or final state effect in p+A?

 p+Pb D meson data reproduced with known parton 
distribution functions

 Gluon shadowing -> lower gluon density -> less gluon 
fusion -> fewer charm – anti-charm quark pairs

 + small (but not zero) energy loss
 p+Pb suppression is an initial state effect 56



J/y added by coalescence and removed by QGP

 Suppression decreases with increasing √s
 Flow magnitude is substantial
 Expect both effects from final state c-cbar recombination57



Suppression vs. binding energy

 A+A J/y more suppressed than in p+A
 Trend: less suppression for more tightly bound species

58
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Is there a relevant screening length?

ru
n
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g

coupling drops off for r > 0.3 fm

Karsch, et al.Lattice: 

 Strongly coupled 
matter: few particles in 
Debye sphere - 
decreases screening!

Ding, et al.

arXiV:

1107.0311

LQCD spectral functions show 
correlation remaining at T>Tc  
Partial screening?



Vorticity in QGP?
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Vortex aligns spins of emitted particles
So, reconstruct L & anti-L
Observe global polarization via proton 
angle vs. reaction plane

aL = 0.732 ± 0.014; L decay constant

Extract w ~ 1021

Largest at L threshold (hadron gas 
phase); hydro agrees 😱
Longer life (h damped) at high E?
Background effects?
Stay tuned!!

L ~ 105



Impact of the initial state
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Inside nucleons and nuclei
 Discovery at RHIC:

Spin of the nucleon is spread out among the quarks and 
gluons! 

quarks & gluons in polarized proton also polarized
 Implications:

Cold nuclear matter also strongly interacting when density 
of quarks and gluons is large

 Initial state of colliding Pb nuclei already has many-body 
interactions
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Probe cold, dense matter: Collide e + A
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p

p/A p/A

Hadron-Hadron Electron beam: deep 
inelastic scattering

Probe is a gluon
Probe has structure!
Dynamics of the probe 

mixed up with structure of 
the nucleus

RHIC & LHC

Point-like probe
No strong interaction before 

high momentum transfer 
process

Control probe kinematics by 
measuring scattered electron

Electron-Ion Collider

We’ll also find out: will there be hydrodynamic flow if we excite 
a hot spot with a point particle??!



Electron-ion collider at Brookhaven
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Add electrons to the 
ions at RHIC

          Hadron Storage Ring
          Electron Storage Ring
          Electron Injector Synchrotron
          Possible on-energy Hadron 
          injector ring
          Hadron injector complex

• √s = 30 to 140 GeV

p/A

e e’, 

q

Z,W

p remnant

Scatter electrons from 
nuclei!



See quarks & gluons with electron beam?
 Deep inelastic scattering
  scatter virtual g off the q charge
 “See” gluons when quark distributions 

don’t scale with energy transfer from 
the electron
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 Seeing gluons more directly:
in p+p: QCD Compton scattering

in e+p: g + g -> cc
photon-gluon fusion

-

q

g

g

q



Deep in a nucleus: gluons are numerous

 At high density, what?
     gluon # saturates? 

Satu
ratio
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DGLAP

Increasing probe energy 
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Nuclear PDF’s 
 Inside nucleus: densities modified

q, g from different nucleons interact
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arXiv:1708.01527

Inclusive DIS off 
nuclear beams
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 backup slides
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√s dependence of suppression effects
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Cold matter

effective absorption
√s

√s

Shadowing in CNM

Screening in QGP

√s

Final state recombination
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 Is there a relevant color 
screening length?



Deep inelastic scattering off dense QCD 
matter at low-x
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10
0

Y. Song, M. Arratia

Probe nucleon 
or nucleus at 
x=10-2 with 5-15 
GeV jets  



Electron tags original jet energy, angle

73

e+p, DIS; Pythia 8. Require W2 > 4 GeV2, 

Youqi Song, M. Arratia

electron

struck 
parton

reconstructed jet

momentum

  electron 
direction

proton/ion  
direction

Rest of the event is very clean (we can find these jets!)
How much energy is lost to the cold, dense matter?



Jet’s fate in cold, dense QCD matter 
 Energy & angle balance

 via lepton-jet correlations
 compare energy loss to

hot, denser QCD matter

 Jet broadening?

 Jet substructure
Energy flow/shower development 
Quantum # correlation in jets
Hadron formation in jets
Jet angularities
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Figure it out at EIC
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Hadron yields

And correlations



2 hadronization pictures
 Cluster hadronization

Based on idea of “pre-confinement”
@ end of shower, all gluons split into q-qbar pairs
Color-connected quark pairs form clusters
Large cluster fission into smaller clusters
Small clusters decay isotropically into 2 hadrons

 String hadronization
Based on ideas of linear confinement
@ end of shower, color-connected partons form string pieces 

w/ quark endpoints; gluons transverse kinks.
String junctions are asymmetric color tensor carrying baryon 

number
Strings break by tunneling; “tension” = energy

 Small strings         clusters
Both Pythia and Herwig tuned to reproduce data well
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Same message from LHC
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Is coalescence in phase space the whole story?



Results from ALICE

 Correct for detector and 
reconstruction effects

 Peak shifts to lower RL for 
higher pT jets

 Width is related to the time 
required for hadrons to 
form

78



Connect observations to QCD

79

Can’t see a single quark or gluon in the detector
Partons radiate gluons, which collect into final state hadrons
  (which we call “fragmentation”)
The hadrons are co-moving and boosted by quark’s momentum
We detect them as jets of hadrons

Y. Mehtar-Tani: 
1602.01047
Blaizot, et al, PRL114, 
222002 (2015)
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