Schwinger Model (1962)

 Quantum Electrodynamics in 1+1 dimensions
coupled to N; Dirac fermions of mass m.
Admits a theta-a ngle Coleman, Jackiw, Susskind (1975)
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* One-flavor model exactly solvable for m=0
where it reduces to the free massive
Schwinger boson.

* |tis atightly bound state of electron and
positron.



Lattice Hamiltonian Approach

e Using the staggered fermions sanks, Susskind, Kogut
(1975) )
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e The Gauss Law Constraints Hamer, zheng, Oitmaa (1997)
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* The lattice approach revisited with the

surprising result Dempsey, IRK, Pufu, Zan, arXiv: 2206.05308
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* At m=0 the Hamiltonian is preserved by a
“discrete chiral symmetry:” shift by one lattice
unit accompanied by ¢ -6+

 The mass shift greatly improves the
extrapolation of strong coupling expansions
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In earlier work the massless Schwinger model

was assumed to be described by u=0, and
extrapolation to large x did not seem to give good
results.

We instead set ;= —-1/4 to obtain
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Pade extrapolating to weak coupling we find
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This reproduces the mass of Schwinger boson
with error < 0.1 %.



* Exact diagonalizations on lattices with periodic
boundary conditions also produced excellent
results
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% lattice Continuum

e The DMRG methods give very precise results at
the shifted mass. Connections with cold atoms.



Two-Flavor Schwinger Model

* For m=0 it is a conformal field theory coupled
to a massive field. The CFT is a free massless
boson at the self-dual radius where it has
SU(2) x SU(2) symmetry.

* Charge conjugation symmetry
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* |s preserved by the lagrangian for theta=0 or

pi. At ¢=r= it can be broken spontaneously.

This is reminiscent of spontaneous T breaking
In QCD. Dashen; Gaiotto, Kapustin, Komargodski, Seiberg



Phase Diagram at Zero Temperature

e Qur proposal Dempsey, IRK, Pufu, Soegaard, Zan, arXiv: 2305.04437
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* |n particular, Cis broken along the SU(2) invariant
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Bosonized 2-flavor model

e Form two combinations of scalar fields
by = 2712(¢y + ¢y + Ln1/20)
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. Integratmg out the gauge field, makes the plus
field massive, but there is also a massless minus

field.



For generic theta, the effective Lagrangian is
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The mass term is a relevant operator of
dimension % which induces RG flow to a
theory with mass gap ~ |mcos(6/2)2/3¢g1/?

This vanishes for ¢ == Could this theory be
gapless?!

No, but the energy gap is non-perturbatively
small.



e When ¢=r
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* This was derived by Coleman in 1976, but he
did not study the logarithmic RG flow of the
two nearly marginal operators.

 This is the Berezinkii-Kosterlitz-Thouless flow
in the sine-Gordon model

£="20.00 +

MQNM cos(V8mp)



e The beta functions are

= 1
65220557 63:32 2

e The SU(2) invariant RG flow is along the line

B =M % — _ Z;I; R
* Starting with the bare values o= 86118 ,,;; .
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* This exponentially small scale seems
analogous to the appearance of Ay

Numerical evidence in support of the
exponentially small gap and our proposed
phase diagram is provided by the

Entanglement Entropy
* Calculated using

0. Mere 0.5 0.75 1.



Lattice Hamiltonian calculation

* Analogously to the 1-flavor case, we adopt
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* The mass shiftis "lat.a = Ma 3

* Very important in the 2-flavor case. For m=0 a

discrete chiral symmetry is preserved. It is the
lattice translation by one site.



Euclidean Lattice SU(N) Theory

The gauge field kinetic term is encoded in the
plaquette terms.
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In the strong coupling expansion where these :

terms are treated as perturbations, the Area Law
of the Wilson loop is obvious.
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To obtain the continuum limit, one needs to
interpolate to the weak coupling limit on lattice
scale due to Asymptotic Freedom I
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Can confinement disappear in this limit? Monte
Carlo simulations strongly suggest that the
answer is “No.” Lattice sizes beyond ~100* now.



Dimensional Transmutation

* The QCD scale is exponentially small
compared to inverse lattice spacing

Aoep = a~ e 200/ g

* This follows from the Asymptotic Freedom
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D. Gross, F. Wilczek; D. Politzer (1973)




The AdS/CFT Duality

Maldacena; Gubser, IRK, Polyakov; Witten

Relates conformal gauge theory in 4 dimensions to
string theory on 5-d Anti-de Sitter space times a 5-d
compact space. For the =4 SYM theory this

compact space is a 5-d sphere.

The geometrical symmetry of the AdS. space realizes
the conformal symmetry of the gauge theory.
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The AdS space-time is a generalized -» g»
hyperboloid. It has negative curvature. %
Where does this come from?! &
33’
Stacking D3-branes. @'m
. : ﬁq’& @%& o
Reviewed in hep-th/0009139 1 P L
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* When a gauge theory is strongly coupled, the radius
of curvature of the dual AdS; and of the 5-d compact
space becomes large: 2

e String theory in such a weakly curved background
can be studied in the effective (super)-gravity
approximation, which allows for a host of explicit
calculations. Corrections to it proceed in powers of

K
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* Feynman graphs instead develop a weak coupling
expansion in powers of A. At weak coupling the dual
string theory becomes difficult.



The quark anti-quark potential

* The z-direction of AdS is dual to the Z
energy scale of the gauge theory: o
small z is the UV; large z is the IR.

* The quark and anti-quark are placed
at the boundary of Anti-de Sitter
space (z=0), but the string connecting
them bends into the interior (z>0).
Due to the scaling symmetry of the
AdS space, this gives Coulomb
pOte ntial Maldacena; Rey, Yee
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Confining = Fundamental

* The quark anti-quark potential
is linear at large distances but
nearly Coulombic at small
distances.

e The 5-d metric should have a
warped form Polyakov
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* The space ends at a maximum
value of z where the warp
factor is finite. Then the
confining string tension is
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Confinement and Warped Throat

* To break conformal invariance,
change the gauge theory: add to the
N D3-branes M D5-branes wrapped
over the sphere at the tip of the

-

conifold. B-cyle @
* The 10-d geometry dual to the gauge |
theory on these branes is the warped |
deformed conifold (Irk, strassler) - %

dsiy = h_lﬂ(yj( — (dz")? + (d.;r'ijg) + h'2(y)ds?

* 452 is the metric of the deformed
conifold, a Calabi-Yau space defined Lo
by the following constraint on 4 Z T
complex variables: |



 The quark anti-quark potential is
qualitatively similar to that found

INn nume
(graph s
by G. Ba

e The dua

rical simulations of QCD
nows lattice QCD results
i et al with r, ~ 0.5 fm).

gravity provides a

‘hyperbolic cow” approximation,
i.e. a toy model, for QCD.
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