Lecture 3 - Quantum Amplification and Linear Detectors

A. N. Jordan

Quantum physics allows amplification, but puts stringent requirements on how the amplification can be carried out. Beginning with theoretical preliminaries of how much noise a quantum limited amplifier must add to the measured signal, I will overview the linear response theory of detectors, and give examples of amplifier designs in superconducting circuits.

(a) Three-wave Mixing $\omega_{p} = \omega_{s} + \omega_{i}$

(b) Four-wave Mixing $2\omega_p = \omega_s + \omega_i$

non-degenerate

