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Two sets of lattice field theory talks

Michael Creutz: three talks
Zoltan Fodor: four talks

"computational details ... might be better for Zoltan to cover, i.e. things
like hybrid monte carlo, the hadron spectrum ... g-2" and QCD
thermodynamics.

• Scalar theory, Higgs bound & Monte Carlo

• QCD and hadron spectrum (Wilson)

• QCD thermodynamics (staggered & overlap)

• g-2 of the muon (staggered)
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Outline

1 Yang–Mills & (Fermions)

2 Hadron spectrum

3 Isospin splitting

Z. Fodor Quantum Field Theory on the Lattice 3 / 23



Yang–Mills & (Fermions)

Yang–Mills theories on the lattice

Regularization has to maintain lattice version of gauge invariance.

Gauge fields −→ on links connecting neighboring sites.
Continuum: Aµ, .
Lattice: Uµ = eiagAµ , elements of group SU(3) itself.

Ux+µ̂;−µ = U−1
x ;µ = U†

x ;µ

Lattice gauge transformation:
U ′

x ;µ = GxUx ;µG†
x+µ̂

ψ′
x = Gxψx

ψ
′
x = ψxG†

x
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Yang–Mills & (Fermions)

Gauge invariant quantities on the lattice

Gluon loops

Tr [Ux1;µ Ux1+µ̂;ν · · ·Ux1−ϵ̂;ϵ]

Gluon lines connecting q and q

ψx1
Ux1;µ Ux1+µ̂;ν · · ·Uxn−ϵ̂;ϵψxn
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Yang–Mills & (Fermions)

Gauge action

Continuum gauge action:

Scont.
g = −

∫
d4x

1
4

FµνFµν

Simplest gauge invariant lattice action: Wilson action

SWilson
g = β

∑
x

ν<µ

(
1 − 1

3
Re [Px ;µν ]

)
, β =

6
g2 , Slatt .

g = Scont
g + O(a2),

where Px ;µν is the plaquette:

Px ;µν = Tr
[
Ux ;µ Ux+µ̂;ν U†

x+ν̂;µ U†
x ;ν

]

Z. Fodor Quantum Field Theory on the Lattice 6 / 23



Yang–Mills & (Fermions)

Gauge action – Symanzik improvement

Add 2 × 1 gluon loops to Wilson action:

SSymanzik
g = β

∑
x

ν<µ

{
1 − 1

3
(
c0 Re[Px ;µν ] + c1 Re

[
P2×1

x ;µν
]
+ c1 Re

[
P2×1

x ;νµ
])}

Consistency condition: c0 + 8c1 = 1.

c1 = − 1
12

gives tree level improvement =⇒ Slatt .
g =Scont .

g +O(a4)
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Yang–Mills & (Fermions)

Fermion doubling
Continuum fermion action

Sf =

∫
d4x ψ(γµ∂µ + m)ψ.

Naively discretized:

Snaive
f = a4

∑
x

ψx

4∑
µ=1

γµ
ψx+µ̂ − ψx−µ̂

2a
+ mψxψx


Inverse propagator:

G−1
naive(p) = iγµ

sinpµa
a

+ m.

Extra zeros at pµ = 0,±π
a =⇒ 16 zeros in 1st Brillouin zone.

In d dimensions 2d fermions instead of 1 =⇒ fermion doubling.
Wilson, staggered (domain wall, overlap) solves it “somehow”
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Yang–Mills & (Fermions)

List of most common fermionic actions

(Fermions will be discussed in detail by Michael Creutz)

From the cheapest to the most expensive ones:

• staggered: computationally the least demanding
"rooting" because Nf = 4 (use: thermodynamics, muon’s g-2)

• Wilson: about 4-10 times more expensive than staggered
chiral symmetry is explicitely broken at a>0 (use: hadron spectrum,
g-2)

• domain wall: about 20-50 times more expensive than Wilson
(use: for g-2 of the muon)

• overlap: similar to domain wall but even more expensive
most elegant (use: thermodynamics, g-2)
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Yang–Mills & (Fermions)

FLAG review of lattice results Colangelo et al. Eur.Phys.J. C71 (2011) 1695
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mud,MS(2GeV) ms,MS(2GeV)

PACS-CS 10 P ⋆ ■ ■ ⋆ a 2.78(27) 86.7(2.3)
MILC 10A C • ⋆ ⋆ • − 3.19(4)(5)(16) –
HPQCD 10 A • ⋆ ⋆ ⋆ − 3.39(6)∗ 92.2(1.3)
BMW 10AB P ⋆ ⋆ ⋆ ⋆ b 3.469(47)(48) 95.5(1.1)(1.5)
RBC/UKQCD P • • ⋆ ⋆ c 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum et al. 10 P • ■ • ⋆ − 3.44(12)(22) 97.6(2.9)(5.5)
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Yang–Mills & (Fermions)

Importance sampling with fermions
Fermions can integrated out: determinant of the fermion matrix

Z=
∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

again: we do not take into account all possible gauge configurations
each of them is generated with a probability ∝ its weight

Metropolis algorithm is the easiest importance sampling:
(all other algorithms are based on importance sampling)

P(U → U ′) = min
[
1, exp(−∆Sg) det(M[U ′])/ det(M[U])

]
gauge part: trace of 3×3 matrices (easy, without M: quenched)
fermionic part: determinant of 108 × 108 sparse matrices (hard)

determinant: represent it by a bosonic integral of pseudofermions
more efficient way than direct evaluation (inversion Mx=a), but still hard

detM[U] ∝
∫
[dψ̄][dψ] exp(−ψ̄M−1[U]ψ)
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Hadron spectrum

Hadron spectroscopy in lattice QCD

Determine the transition amplitude between:
having a “particle” at time 0 and the same “particle” at time t
⇒ Euclidean correlation function of a composite operator O:

C(t) = ⟨0|O(t)O†(0)|0⟩

insert a complete set of eigenvectors |i⟩

=
∑

i⟨0|eHt O(0) e−Ht |i⟩⟨i |O†(0)|0⟩ =
∑

i |⟨0|O†(0)|i⟩|2 e−(Ei−E0)t ,

where |i⟩: eigenvectors of the Hamiltonian with eigenvalue Ei .

and O(t) = eHt O(0) e−Ht .

t large ⇒ lightest states (created by O) dominate: C(t) ∝ e−M·t

t large ⇒ exponential fits or mass plateaus Mt=log[C(t)/C(t+1)]
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Hadron spectrum

Quenched results

QCD is 50 years old ⇒ properties of hadrons (Rosenfeld table)
non-perturbative lattice formulation (Wilson) immediately appeared
needed 20 years even for quenched result of the spectrum (cheap)
instead of det(M) of a 106×106 matrix trace of 3×3 matrices
always at the frontiers of computer technology:
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GF11: IBM "to verify QCD"
(10 Gflops = 1e10, ’92)

CP-PACS: Hitachi QCD machine
(614 Gflops, ’96)

the ≈10% discrepancy was believed
to be a quenching effect

iPhone 14: 2000 Gflops (2e12)
Aurora supercomputer Argonne (2e18)

CPU is essentail but theory development is at least as important
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Hadron spectrum

Scale setting and masses in lattice QCD
in meteorology, aircraft industry etc. grid spacing is set by hand
in lattice QCD we use g,mud and ms in the Lagrangian (’a’ not)
measure e.g. the vacuum mass of a hadron in lattice units: MΩa
since we know that MΩ=1672 MeV we obtain ’a’
masses are obtained by correlated fits (choice of fitting ranges)
illustration: mass plateaus at the smallest Mπ ≈190 MeV (noisiest)

4 8 12
t/a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

a 
M

K

N

volumes and masses for unstable particles: avoided level crossing
decay phenomena included: in finite V shifts of the energy levels
⇒ decay width (coupling) & masses of the heavy and light states
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Hadron spectrum

Dynamical Nf =2+1 QCD with continuum extrapolation
altogether 15 points for each hadrons
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N

a~~0.085 fm

a~~0.065 fm

a~~0.125 fm

smooth extrapolation to the physical pion mass (or mud )
small discretization effects (three lines barely distinguishable)

continuum extrapolation goes as c · an and it depends on the action
in principle many ways to discretize (derivative by 2,3... points)
goal: have large n and small c (in this case n = 2 and c is small)
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Hadron spectrum

(Various) finite volume effects: resonance states

parameters, for which resonances would decay at V=∞
at V=∞ the lowest energy state is a two-particle scattering state
hypothetical case with no coupling ⇒ level crossing as V increases
realistic case: non-vanishing decay width ⇒ avoided level crossing

E E

scattering state

bound state

ground state

excited state

level crossingavoidedlevel crossing 

L L
M. Luscher, Nucl. Phys. B364 (1991) 237

self-consistent analysis: width is an unknown quantity and we fit it
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Hadron spectrum

Analysis: avoid arbitrarinesses & include systematics

extended frequentist’s method:
2 ways of scale setting, 2 strategies to extrapolate to Mπ(phys)
3 pion mass ranges, 2 different continuum extrapolations
18 time intervals for the fits of two point functions
2·2·3·2·18=432 different results for the mass of each hadron

1640 1660 1680 1700 1720
M
O
   [MeV]

0.1

0.2

0.3

median

Omega

central value and systematic error is given by the mean and the width
statistical error: distribution of the means for 2000 bootstrap samples
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Hadron spectrum

Final result for the hadron spectrum 2008
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Isospin splitting

Introduction to isospin symmetry

Isospin symmetry: 2+1 or 2+1+1 flavor frameworks
if ’up’ and ’down’ quarks had identical properties (mass,charge)
Mn = Mp, MΣ+ = MΣ0 = MΣ− , etc.

The symmetry is explicitly broken by
• up, down quark electric charge difference (up: 2/3·e down:-1/3·e)
⇒ proton: uud=2/3+2/3-1/3=1 whereas neutron: udd=2/3-1/3-1/3=0
at this level (electric charge) the proton would be the heavier one
• up, down quark mass difference (md/mu ≈ 2): 1+1+1+1 flavor

The breaking is large on the quark’s level (md/mu ≈ 2 or charges)
but small (typically sub-percent) compared to hadronic scales.

These two competing effects provide the tiny Mn-Mp mass difference
≈ 0.14% is required to explain the universe as we observe it
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Isospin splitting

Autocorrelation of the photon field
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HMC trajectories

naive HMC
improved HMC

Standard HMC has O(1000) autocorrelation

Fourier transformed k-dependent mass terms to eliminate "knowledge"
Improved HMC has none (for the pure photon theory)
Small coupling to quarks introduces a small autocorrelation
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Isospin splitting

Isospin splittings: 2015

splittings in channels that are stable under QCD and QED:
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∆MN , ∆MΣ and ∆MD splittings: post-dictions
∆MΞ, ∆MΞcc splittings and ∆CG: predicitions
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Isospin splitting

Quantitative anthropics

Precise scientific version of the great question:
Could things have been different (string landscape)?

eg. big bang nucleosynthsis & today’s stars need ∆MN≈ 1.3 MeV
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(lattice message: too large or small md − mu would shift α)
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Isospin splitting

Summary: development within two decades

Strong + Higgs + Electro = Experiment
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high precision for non-perturbative questions (lattice formalism)

Z. Fodor Quantum Field Theory on the Lattice 23 / 23


	Yang–Mills & (Fermions)
	Hadron spectrum
	Isospin splitting

