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Two sets of lattice field theory talks

Michael Creutz: three talks
Zoltan Fodor: four talks

"computational details ... might be better for Zoltan to cover, i.e. things
like hybrid monte carlo, the hadron spectrum ... g-2" and QCD
thermodynamics.

• Scalar theory, Higgs bound & Monte Carlo

• QCD and hadron spectrum (Wilson)

• QCD thermodynamics (staggered & overlap)

• g-2 of the muon (staggered)

Z. Fodor Quantum Field Theory on the Lattice 2 / 20



Outline

1 Lattice Regularization

2 Scalar field theory

3 Algorithms

Z. Fodor Quantum Field Theory on the Lattice 3 / 20



Lattice

Lattice regularization
"Most sytematic" nonperturbative approach:

lattice QFT

I. Take a finite segment of spacetime,
put fields at vertices of hypercubic lattice with lattice spacing a:

Usual boundary conditions:

Bosons:

Periodic in all directions

Fermions:

Time direction: antiperiodic

Space directions: periodic
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Lattice

Lattice regularization
II. Path integral quantization Z =

∫
Dϕ exp(iS) (oscillates).

III. Use t→it: Euclidean action gives Boltzmann factors exp(-S)

integral over spacetime
∫

d4x −→ sum over sites a4 ∑
x

derivatives ∂µ −→ finite differences
momentum p ≤ π

a =⇒ natural UV cutoff.

At finite "a" results differ from the continuum value.
E.g. for some dimensionless quantity R.

R latt. = Rcont. + O(aν)

Many ways to discretize (∂): Symanzik improvement to increase ν

To get physical results, need to perform:

IV. Infinite volume limit (V → ∞)
V. Continuum limit (a → 0); CPU costs naively a−4 or a−5.
Reality: far worse & frozen topology (0.05 fm) ⇒ open boundary.
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Scalar field theory

Example: one component real scalar field

Continuum action:

L =
1
2
(∂µϕ)

2 +
1
2

m2
0ϕ

2 +
g0

4!
ϕ4

Simplest lattice action with µ̂: unit vector in direction µ:

S =
∑

x

a4

1
2

4∑
µ=1

[
ϕx+µ̂ − ϕx

a

]2

+
1
2

m2
0ϕ

2
x +

g0

4!
ϕ4

x


Path integral quantization Z =

∫
Dϕ exp(−S) with Euclidean S.

VI. Introduce:
√

2κφ = ϕa, (1 − 2λ)/κ− 8 = m2
0a2, 6λ/κ2 = g0

S =
∑

x

[
φ2

x + λ
(
φ2

x − 1
)2

]
−2κ

∑
<xy>

φxφy =
∑

x

u(φx)−2κ
∑
<xy>

φxφy

Lattice spacing "a" does not appear explicitly in the calculations.
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Scalar field theory

Phase diagram of the theory

Critical line in the λ versus κ plane.

For λ=0 non-interaction (free theory).
The mass is m2

0a2 = 1/κ− 8, thus κc = 1/8 is critical.
For λ = ∞ we recover the Ising model: κc = 0.0748487... is critical.
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Scalar field theory

High T (small β) expansion in 2d Ising

• 2V number of possible configurations.
• Product: actually Hamiltonian sum in the Boltzmann exponents.
• Similarly can be done for the 4-dim ϕ4 theory.
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Scalar field theory

As a→0 keep λR constant, how to change λ
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Scalar field theory

Triviality: how did we get there (summary)

• ϕ4 theory is probably the simplest ’interactive’ theory.

• Rewrite it on a Euclidean space-time grid.
⇒ use dimesionless quantities only: φ, κ and λ
• Any physical quantity will be given in lattice units ’a’
e.g. a characteristic length: ’how many times our lattice unit’.
Continuum limit: a → 0 or physical lengths → ∞ measured in ’a’.

• Using small/large κ (hopping parameter) expansion & RGE
correlation length (=inverse mass, see later) &
quartic coupling λR for all possible κ, λ values
⇒ critical line, correlation length ∞, continuum limit (is there any?)

Lines of constant physics (LCP): connecting points with the same λR.
LCPs always end on the Ising line and not on the critical line
we reach the maximal coupling before reaching the continuum limit
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Scalar field theory

mRa=0 defines the critical line (continuum limit)

construct lines of constant physics (LCP):

a→0 but mR=const., λR=const.

as "a" gets smaller along these LCPs the bare λ gets larger
actually before the LCPs reach the critical line one gets λ = ∞
(only the trivial theory λ = 0 reaches the critical line)

assume that the maximum momenta are a few times larger than MH
maximal renormalized self-coupling, thus maximal Higgs mass

is obtained at the maximal bare coupling λ = ∞
using the Higgs vacuum expectation value (overall scale)

one obtains MH<∼600 GeV

for even higher cutoffs (more than a few times) ⇒ smaller MH
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Scalar field theory

Triviality of the ϕ4 model: putting in numbers

we studied: 1 component case
similar: 4 component case (Higgs)

also trivial: renormalized quartic coupling λR →0 if a →0

quadratic term at minimum ⇒ mass
m=

√
g/3ϕ0 with ϕ0 vacuum expectation

ϕ0=(
√

2Gµ)
−1/2=246 GeV

Fermi constant Gµ from µ− =⇒ e−νµν̄e

the larger the bare λ the larger λR

what is the maximal λR with meaningful
physics?
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Scalar field theory

Triviality for the Standard Model

cutoff must be well above the mass to have meaningful physics

let us say at least > twice the mass gR < 41 ± 6 (with λ = ∞)
this leads to a mass of

√
41/3 · 246 GeV ≈ 900 GeV

using even larger cutoff (e.g. three times the mass)
brings us even closer to the critical line
reduces the largest possible renormalized coupling
this brings down the scalar (Higgs) mass

Triviality doesn’t allow Higgs to be heavier than 600-900 GeV

other discretizations: qualitatively same, numerical values differ
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Algorithms

Importance sampling

Monte Carlo simulation: calculate ⟨0| O |0⟩ stochastically.

Naive way: take random gauge configurations Uα according to the
uniform distribution and calculate the weighed average:

⟨0| O |0⟩ =

∑
α
Oα e−Sα∑
α

e−Sα

Sα: value of Seff. at Uα,
Oα: value of O at Uα.

Sα large for most configurations −→ small portion of configurations
give significant contribution.

Importance sampling: generate configurations with probability based
on their importance −→ probability of Uα is proportional to e−Sα .

Then ⟨0| O |0⟩ = 1
N

N∑
α=1

Oα with relative error
1√
N

.
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Algorithms

Metropolis algorithm

Simplest method: Metropolis algorithm.
Choose an initial configuration U0.

1 Generate Uk+1 from Uk with a small random change.
2 Measure the change ∆S in the action.
3 If ∆S ≤ 0, keep Uk+1.
4 If ∆S > 0, keep Uk+1 with a probability of e−∆S.

U0 is far from the region where e−S is significant.
=⇒ Many steps required to reach equilibrium distribution:
Thermalization time.
Uk −→ Uk+1 by small change.
=⇒ Subsequent configurations are not independent.
Number of steps required to reach next independent configuration:
Autocorrelation time.
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Algorithms

Heatbath algorithm

Metropolis is not the only single field variable changing algorithm

For illustration purposes let us use the Ising model.

Impose the condition of detailed balance in another way:
Use the probabilities of the +1 spin (P+) and that of the -1 spin (P−).

These are proportional to the Boltzmann factors
exp(−βE+) and exp(−βE−)

More specifically (their sum is 1):

P+ = exp(−βE+)/[exp(−βE+) + exp(−βE−)]
P− = exp(−βE−)/[exp(−βE+) + exp(−βE−)]

Take +1 with the probability of P+ and -1 with the probability of P−
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Algorithms

Hybrid Monte Carlo: basic idea

Introduce momenta Px for each field variable Ux as P2 =
∑

x P2
x .

⟨0| O[U] |0⟩ =

∫
[dU] O[U] e−S(U)∫

[dU]e−S(U)
=

∫
[dU] [dP] O[U] e−P2/2−S(U)∫

[dU] [dP]e−P2/2−S(U)

Importance sampling for −P2/2 − S(U): it didn’t change, we accept it
Create configurations through series of trajectories: hybrid algorithm.

1 Initial P based on its importance (m=1 but can be anything):
random from Gaussian distribution exp(−P2/2) (heatbath)

2 Keep −P2/2 − S(U) constant: obtain (P ′,U ′) via
classical time evolution with Hamiltonian: −P2/2 − S(U)
Equations of motion: U̇ = P, Ṗ = −∂S(U)/∂U
doesn’t change the exponent, always accepted
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Algorithms

Hybrid Monte Carlo: properties and accept/reject
Properties:

Reversibility: start with (P,U) −→ arrive at (P ′,U ′)
start with (−P ′,U ′) −→ arrive at (−P,U)

Liouville’s Theorem: measure [dU] [dP] is preserved
Energy H(P,U) is preserved (Metropolis is always accepted)

In practice: integrate equations of motion with finite step size ∆τ

Reversibility? ✓

Area preserved? ✓

H(P,U) preserved? × ∆H = H[P ′,U ′]− H[P,U]

−→ Correct with accept–reject step at end of each trajectory:
if ∆H ≤ 0 −→ accept
if ∆H > 0 −→ accept with probability e−∆H

(computationally optimal if the accept rate is around 70%)
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Algorithms

Importance sampling with fermions
Fermions can integrated out: determinant of the fermion matrix

Z=
∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

again: we do not take into account all possible gauge configurations
each of them is generated with a probability ∝ its weight

Metropolis algorithm is the easiest importance sampling:
(all other algorithms are based on importance sampling)

P(U → U ′) = min
[
1, exp(−∆Sg) det(M[U ′])/ det(M[U])

]
gauge part: trace of 3×3 matrices (easy, without M: quenched)
fermionic part: determinant of 108 × 108 sparse matrices (hard)

determinant: represent it by a bosonic integral of pseudofermions
more efficient way than direct evaluation (inversion Mx=a), but still hard

detM[U] ∝
∫
[dψ̄][dψ] exp(−ψ̄M−1[U]ψ)

Z. Fodor Quantum Field Theory on the Lattice 19 / 20



Algorithms

Department of Physics, University of Adelaide, Australia
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