Chiral symmetry and the Theta parameter Michael Creutz

BNL

Powerful tools for non-perturbative strong interactions

- the lattice
- rigorous but computationally demanding
- chiral symmetry
- expansion in quark masses and momenta
- qualitative description of low energy physics
- provides checks on lattice ideas

$$
\begin{aligned}
& \psi_{R}=\frac{1+\gamma_{5}}{2} \psi \\
& \psi_{L}=\frac{1-\gamma_{5}}{2} \psi \\
& \bar{\psi} \not D \psi=\bar{\psi}_{R} \not D \psi_{R}+\bar{\psi}_{L} \not D \psi_{L} \\
& m \bar{\psi} \psi=m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L}
\end{aligned}
$$

Without a mass, ψ_{L} and ψ_{R} appear to be independent.

Three sources of chiral symmetry breaking in QCD

- spontaneous breaking $\langle\bar{\psi} \psi\rangle \neq 0$
- explains lightness of pions
- implicit breaking of $U(1)$ by the anomaly
- explains why η^{\prime} is not so light
- explicit breaking from quark masses
- pions are not exactly massless

Rich physics from the interplay of these effects

Venerable issues

- Dashen, 1971: possible spontaneous CP violation
- before QCD!
- 't Hooft, 1976: anomaly and gauge field topology
- Fujikawa, 1979: fermion measure and the anomaly
- Witten, 1980: connection with chiral Lagrangians

Consider QCD with N_{f} light quarks and assume

- the field theory exists and confines
- spontaneous chiral symmetry breaking $\langle\bar{\psi} \psi\rangle \neq 0$
- $S U\left(N_{f}\right) \times S U\left(N_{f}\right)$ chiral perturbation theory
- anomaly gives η^{\prime} a mass
- N_{f} small enough to avoid any conformal phase

Use continuum language

- assume a non-perturbative regulator (lattice?)
- momentum space cutoff much larger than $\Lambda_{Q C D}$
- lattice spacing a much smaller than $1 / \Lambda_{Q C D}$

Construct effective potential V for meson fields

- $V=$ vacuum energy for a fixed field expectation
- formally via a Legendre transformation
- assume regulator allows defining composite fields

For simplicity initially consider

- degenerate quarks with small mass m
- N_{f} even
- interesting subtleties for odd N_{f}

Work with composite fields

- $\sigma \sim \bar{\psi} \psi$
- $\pi_{\alpha} \sim i \bar{\psi} \lambda_{\alpha} \gamma_{5} \psi$
λ_{α} : Gell-Mann matrices
- $\eta^{\prime} \sim i \bar{\psi} \gamma_{5} \psi$

Spontaneous symmetry breaking at $m=0$

- $V(\sigma)$ has a double well structure

Ignore convexity issues

Massless theory symmetric under flavored chiral rotations

$$
\text { - } \psi \rightarrow e^{i \phi \gamma_{5} \lambda^{\alpha}} \psi
$$

$$
\begin{aligned}
& N_{f}=2: \\
& \text { - } \sigma \rightarrow \cos (\phi) \sigma+\sin (\phi) \pi^{\alpha} \\
& \text { - } \pi^{\alpha} \rightarrow \cos (\phi) \pi^{\alpha}-\sin (\phi) \sigma
\end{aligned}
$$

V should be symmetric under this rotation

Potential has $N_{f}^{2}-1$ "flat" directions

- one for each generator of $S U\left(N_{f}\right)$

Excitations in the π direction don't raise energy

- pions become massless

Small mass selects vacuum

- $V \rightarrow V-m \sigma$
- $\langle\sigma\rangle \sim+v \quad\langle\pi\rangle=0$
- Goldstones acquire mass $\sim \sqrt{m}$

The vacuum is not empty

- pions are waves on σ background

Anomaly: $V\left(\sigma, \eta^{\prime}\right)$ not symmetric under

- $\psi \rightarrow e^{i \phi \gamma_{5}} \psi$
- $\sigma \rightarrow \sigma \cos (\phi)+\eta^{\prime} \sin (\phi)$
- $\eta^{\prime} \rightarrow-\sigma \sin (\phi)+\eta^{\prime} \cos (\phi)$

Near the vacuum state $\sigma \sim v$ and $\eta^{\prime} \sim 0$

- $V\left(\sigma, \eta^{\prime}\right)=m_{\sigma}^{2}(\sigma-v)^{2}+m_{\eta^{\prime} \prime^{\prime 2}}+O\left((\sigma-v)^{3}, \eta^{\prime 4}\right)$
- both masses of order $\Lambda_{Q C D}$

In quark language

Classical symmetry $\left[\gamma_{5}, \not D\right]_{+}=0$ implies

- $\psi \rightarrow e^{i \phi \gamma_{5} / 2} \psi$
- $\bar{\psi} \rightarrow \bar{\psi} e^{i \phi \gamma_{5} / 2}$
- mixes σ and η^{\prime}
- $\sigma \rightarrow \sigma \cos (\phi)+\eta^{\prime} \sin (\phi)$
- $\eta^{\prime} \rightarrow-\sigma \sin (\phi)+\eta^{\prime} \cos (\phi)$

This symmetry is "anomalous"

- any valid regulator must break it

Fujikawa: Variable change alters fermion measure

$$
d \psi \rightarrow\left|e^{-i \phi \gamma_{5} / 2}\right| d \psi=e^{-i \phi \operatorname{Tr} \gamma_{5} / 2} d \psi
$$

But doesn't $\operatorname{Tr} \gamma_{5}=0 ? ? ?$
Not in the regulated theory!!!

$$
\text { - i.e. } \quad \operatorname{Tr} \gamma_{5} \equiv \lim _{\Lambda \rightarrow \infty} \operatorname{Tr}\left(\gamma_{5} e^{-D^{2} / \Lambda^{2}}\right) \neq 0
$$

Use eigenstates of D to define $\operatorname{Tr} \gamma_{5}$

- $D\left|\psi_{i}\right\rangle=\lambda_{i}\left|\psi_{i}\right\rangle$
- $\operatorname{Tr} \gamma_{5}=\sum_{i}\left\langle\psi_{i}\right| \gamma_{5}\left|\psi_{i}\right\rangle e^{-\left|\lambda_{i}\right|^{2} / \Lambda^{2}}$

Topology and the index theorem

Require $F_{\mu \nu} \rightarrow 0$ at spatial infinity

- A_{μ} goes to pure gauge $A_{\mu}(x) \rightarrow i h^{*}(x) \partial_{\mu} h(x)$

For $S U(2) \quad h=a_{0}+i \vec{a} \cdot \vec{\sigma} \quad$ with $a_{\mu}^{2}=1$

- infinity and the group space are both 3 -spheres, S_{3}
$h(x=\infty)$ can wrap non-trivially about the group
- defines a "winding number ' ν '" for any gauge field
"Instanton": example of winding number 1 configuration
- $A_{\mu}=\frac{-i x^{2}}{g\left(x^{2}+\rho^{2}\right)} h^{\dagger} \partial_{\mu} h$
- where $h\left(x_{\mu}\right)=\frac{t+i \overrightarrow{7} \cdot \vec{x}}{\sqrt{x^{2}}}$
- group $S U(2) \quad \rho$ is the instanton size
- minimizes action with winding 1
- a classical solution of the Yang-Mills equations

General $S U(N)$: use $S U(2)$ subgroups

Index theorem:

- with winding ν, D has ν zero modes $D\left|\psi_{i}\right\rangle=0$
- modes are chiral: $\gamma_{5}\left|\psi_{i}\right\rangle= \pm\left|\psi_{i}\right\rangle$
- $\nu=n_{+}-n_{-}$

Non-zero eigenvalues in chiral pairs

- $D|\psi\rangle=\lambda|\psi\rangle$
- $D \gamma_{5}|\psi\rangle=-\lambda \gamma_{5}|\psi\rangle=\lambda^{*} \gamma_{5}|\psi\rangle$
$|\psi\rangle$ and $\left|\gamma_{5} \psi\right\rangle$ cancel for $\operatorname{Tr} \gamma_{5}$
- only the zero modes count!

$$
\operatorname{Tr} \gamma_{5}=\sum_{i}\left\langle\psi_{i}\right| \gamma_{5}\left|\psi_{i}\right\rangle=\nu
$$

Where did the opposite chirality states go?

- continuum: lost at "infinity"
- "above the cutoff"
- Wilson: real eigenvalues in doubler region
- overlap: modes across unitarity circle
- $D \gamma_{5}=-\hat{\gamma}_{5} D \quad \operatorname{Tr} \hat{\gamma}_{5}=2 \nu$

This phenomenon involves both short and long distances

- zero modes pair with modes lost at the cutoff

Perturbative and non-perturbative effects entangled

- small instantons can "fall through the lattice"
- lattice scheme and scale dependent

Back to effective potential language

At least two minima in the σ, η^{\prime} plane $\left(\sigma, \eta^{\prime}\right)=(\pm v, 0)$

Question:

- do we know anything else about this potential?

Yes! there are actually N_{f} equivalent minima

Define $\psi_{L}=\frac{1+\gamma_{5}}{2} \psi \quad \psi_{R}=\frac{1-\gamma_{5}}{2} \psi$

Singlet rotation of $\psi_{L} \rightarrow e^{i \phi} \psi_{L}$ alone

- not a good symmetry for generic ϕ

Flavored rotation $\psi_{L} \rightarrow g_{L} \psi_{L}=e^{i \phi_{\alpha} \lambda_{\alpha}} \psi_{L}$

- is a symmetry for $g_{L} \in S U\left(N_{f}\right)$
- $\operatorname{Tr} \lambda_{\alpha}=0$

For special discrete values of ϕ these rotations can cross

$$
\text { - } g=e^{2 \pi i / N_{f}} \in Z_{N_{f}} \subset S U\left(N_{f}\right)
$$

A valid discrete singlet symmetry:

$$
\begin{aligned}
& \sigma \rightarrow+\sigma \cos \left(2 \pi / N_{f}\right)+\eta^{\prime} \sin \left(2 \pi / N_{f}\right) \\
& \eta^{\prime} \rightarrow-\sigma \sin \left(2 \pi / N_{f}\right)+\eta^{\prime} \cos \left(2 \pi / N_{f}\right)
\end{aligned}
$$

$V\left(\sigma, \eta^{\prime}\right)$ has a $Z_{N_{f}}$ symmetry

- N_{f} equivalent minima in the $\left(\sigma, \eta^{\prime}\right)$ plane
- $N_{f}=4$:

At the chiral Lagrangian level

- Z_{N} is a subgroup of both $S U(N)$ and $U(1)$

At the quark level

- measure gets a contribution from each flavor
- $\psi_{L} \rightarrow e^{2 \pi i / N_{f}} \psi_{L}$ is a valid symmetry

Mass term $m \bar{\psi} \psi$ tilts effective potential

- picks one vacuum $\left(v_{0}\right)$ as the lowest

Anomalous rotation of the mass term

- $m \bar{\psi} \psi \rightarrow m \cos (\phi) \bar{\psi} \psi+i m \sin (\phi) \bar{\psi} \gamma_{5} \psi$
- twists tilt away from the σ direction

An inequivalent theory!

- as ϕ increases, vacuum jumps between minima

This rotation is the strong CP parameter Θ

- here each flavor has been given the same phase
- conventional notation uses $\Theta=N_{f} \phi$
- the $Z_{N_{f}}$ symmetry implies 2π periodicity in Θ

Degenerate light quarks \Rightarrow first order transition at $\Theta=\pi$

Odd number of flavors, $N_{f}=2 N+1$

- -1 is not in $S U(2 N+1)$

- $m>0$ and $m<0$ not equivalent!
- $m<0$ represents $\Theta=\pi$
- an inequivalent theory
- spontaneous CP violation: $\quad\left\langle\eta^{\prime}\right\rangle \neq 0$

In perturbation theory m and $-m$ equivalent

$$
\text { - } \gamma_{5} \gamma_{\mu} \frac{1}{p+m} \gamma_{5}=\gamma_{\mu} \frac{1}{p-m}
$$

- Theta dependence invisible to perturbation theory!

Inequivalent theories have identical perturbative expansions!

$$
N_{f}=1
$$

No chiral symmetry at all!

- one minimum, unique vacuum
- $\langle\bar{\psi} \psi\rangle \sim\langle\sigma\rangle \neq 0$ from 't Hooft vertex
- not a spontaneous symmetry breaking

No singularity at $m=0$

- $m=0$ not protected: "renormalon" ambiguity

For small mass

- no first order transition at $\Theta=\pi$

Summary

QCD with N_{f} massless flavors

- flavor singlet discrete $Z_{N_{f}}$ chiral symmetry
- non-perturbative parameter Θ
- first order transition at $\Theta=\pi$ when $m \neq 0$

Sign of mass significant for N_{f} odd

- not seen in perturbation theory

No symmetry for $N_{f}=1 \quad m=0$ unprotected

