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Quantum Many-Body Scars

* Over the past few years have been an active
area in Condensed Matter Physics. Several

reviews Serbyn, Abanin, Papic; Moudgalya, Bernevig, Regnault;
Chandran, ladecola, Khemani, Moessner

e Scars do not thermalize with the rest of the
states and constitute a violation of the
Eigenstate Thermalization Hypothesis.

* The Hilbert space breaks up into two sectors

H = cherm D Hscar



* Schematic equidistant scar spectrum for a
special scarred Hamiltonian: serbyn et al.; schecter and
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* The scars are characterized by lower
entanglement entropy than the typical states.

* In a number of models, the scar sector is
invariant under a “large” group whose rank is

proportional to the number of lattice sites.
Pakrouski, Pallegar, Popov, IRK, PRL 125 (2020) 230602



Melonic O(N)? Tensor Model

* Quantum Mechanics of N3 Majorana fermions
IRK, Tarnopolsky

, NN e L
{,.I?vabc? Ua b'c } — jaa {jbb Jee

9 abe abd 1 a'be’ o'V e g 4
H = Lypabeyabte ypave yatve _ 9 py
4¢ (R R 12 T:

 Has O(N) xO(N)be(N) symmetry under
D — MY MY Mg, My, My, Mz € O(N)
. The SO(N) symmetry charges are

aa’ _ “abc a'be bb' _ E “abc abe cc’ _ _ abc _; abc’
Ql __.[. _._'L ] QQ _.[. :tr ] QS 2[ :{L ]



* The 3-tensors may be
associated with

indistinguishable vertices
of a tetrahedron.

* This is equivalent to ] A
& %
Cba;
* The triple-line Feynman
graphs are produced E E

using the propagator



O(N)3 vs. SYK Model

Using composite indices I = (abrck)
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The couplings take values 0,+1
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e The number of distinct terms is
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* No SO(N)3 invariant states for odd N.

* Their number grows very rapidly for even N &k,
Milekhin, Popov, Tarnopolsky

N | # singlet states
2 2

4 30

6 595354780

Table 1: Number of singlet states in the O(N)? model

. N3 3N?
Hsinglet states ~ exp (7 log 2 — 5

log N + O(NQ))

* Large N dynamics in the singlet sector is similar
to SYK. Same melonic Schwinger-Dyson eqgns.
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The Hamiltonian

* Convenient to introduce operator basis which
breaks the third O(N) to U(N/2)
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* The Hamiltonian couples N/2 sets of N2 dof
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The Cartan generators of U(N/2) are
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For the oscillator vaccuum

N?
Capk [Vac) =0, Q. |vac) = 5 vac)

The SO(N)3 invariant states appear in the sector
where all these charges vanish: each set of N?
qubits is at

This reduces the number of states but it still
grows rapidly. For N=4 there are 165636900,
while for N=6 over 7.47 * 10729



Singlet Energies for N=4
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* For N=6, over 595 million states packed into
energy interval <1932. The singlet gaps should be
tiny. Pakrouski, IRK, Popov, Tarnopolsky

e To find the spectrum need a 108 qubit quantum
computer. Requires a large number of gates.



From Tensor Models to Scars

* Generalize the Majorana tensor model to have
O(i\vl) X O(i\}) X 0(4\73) symmetry
* The traceless Hamiltonian is
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H — %_E.‘abct.‘ab c E,-,a be _Uja b'e ﬁ:\‘lj\Q*\?:(*\l _ i\'g + :\3}
{E—',abr:_ H:ﬁa"b"c”} _ O‘aa" 556"60.{'.’

* The Hilbert space has dimension 2/"1"2"3/2

* The eigenstates of H form irreducible
representations of the symmetry.



A Fermionic Matrix Model

* For N;=2 this is a fermionic matrix model with
symmetry O(N;) x O(No) x U(1)
7 1 ( bl 4 o/ ub?) by = L (_L__.:-f_,abl _ _?-__?_____.i_,abz)

Fab — \/E

{?_ab '?;afbf} = {Vap, Vo } = 0, {?_ab Vo't } = OqarOpiy

* Describes qubits on a N; x N, lattice with non-local
couplings. IRK, Milekhin, Popov, Tarnopolsky

* A useful example for studying bounds on

eigenvalues of fermionic Hamiltonians. Hastings,
O’Donnell



* The SO(N)? singlets “scar” the histogram.

Complete Spectrum
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Towards Hubbard Model

* Can also think of the first index as labeling the
lattice site, and the second as labeling spin.
When N,=2, there are two spin states, up and
down. The model is beginning to resemble a
non-local Hubbard model, but need to add
quadratic hopping terms. pakrouski, Pallegar, Popov, IRK

* Imaginary hopping terms are SO(N) generators
IA(I) — "Z(('Zn(‘/” o (‘;r(r(';"”) g :T.‘ J/

* Adding them to H keeps SO(N) singlets as
eigenstates but mixes up the non-singlets.



* A simple transformation leads to a model with
a real nearest neighbor hopping parameter:

Hon = Y. (el Gzt hic)
(ij)o

* This transformation is possible on a bi-partite
lattice



Scars without Pain

* There are Hamiltonians that are not symmetric
under a large group G, yet some of their
eigenstates are invariant. These are the scars!

 Examples include (deformations of) the
Hubbard model
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 The SO(4) symmetry of the Hubbard model is
made manifest by introducing 4 Majorana
fermions on each lattice site
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* Add symmetry breaking terms which
annihilate the SO(N) singlets, e.g. TOT terms
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Pseudospin

* The scars are states of maximum pseudospin or
spin.

e After transforming to imaginary hopping, the
pseudospin SU(2) is generated bV C.N. Yang, S.C. Zhang

0= Z"JH"L 9 Z o ClorCare

}UU N
=, = 5@-N) Q=3 n

nit = CITC?:T s Ny = C’j LGl s T = T + Ny

* |t commutes with the rotation group SuU(2) and
with the SO(N) that acts on the lattice index.



Eta-pairing states

There are N+1 states that are SU(2) invariant and form
a multiplet of pseudospin N/2 Yang, Zhang

iy = — %y 0. N
N!n!
(N—n)!
The fact that they are also O(N) invariant was pointed
out only recently. pakrouski, Pallegar, Popov, IRK

In fact, they are invariant under a bigger group Sp(V)

The bi-partite entanglement entropy can be calculated
anaIyticaIIy. Vafek, Regnault, Bernevig

They are highly excited, equally spaced states that play

the role of scars in the (deformed) Hubbard model.
Mark, Motrunich; Moudgalya, Regnault, Bernevig




Low Entanglement

* The scar states are distinguished by their low
entanglement entropy when the system is
divided into two parts. For the 6 site chain:
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Majorana Scars

* Consider a lattice system with an even
number M of Majorana fermions on each
lattice site z sun, F. Popov, IRK, K. Pakrouski, arXiv: 2212.11914

Vi A=1,2,- M (it vfy =176,
 The generators of SO(N) and SO(M) are

1, a8 L= 4
1 = 5 Z (Wi s, JTT = 2 Z[U} ;]
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 Complex fermions
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Scars as SO(N) singlets

* Constructed by acting with

Positive roots : (g, = chﬁcﬂ, ?78,)/ Zcﬂgcﬂ
J

* For VI=6 the generalizations of eta-pairing
states are explicitly written as nakagawa, Katsura, Ueda

K12, k13, k) = Cr(N) (1) 512 (15)%12 (d5) 722 |0)

Y
kr = kio+kia+kos < N Cr(N) = \/N'(;CV ’kkj;l)c ’
121323

* There are (Af) such eta-states.



* There are also <\ +3) zeta-states:
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* They are generalizations of the spin N/2 states
for M=4 (the usual Hubbard model).

* |tis not hard to do the counting of SO(N)
invariants for M>6, but the wave functions
cannot be written as explicitly.



Entanglement Entropy of Eta States

* Divide the lattice into two disjoint subsets, the
first consisting of Vi sites, and the second of

NQ — N — leites.

* Split the vacuum \0) = [0); ® \0)2 and eta-
operators .
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* Each subsystem has its own eta-states
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Each eta-state [k) = [ki2. ki3, k23) may be written
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* The reduced density matrix is
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from which the Entanglement Entropy follows.



* |n the limit of large N, we may replace the sum

by an integral
Sy, (k) ~ — / d>m A\ (m) log A\ (m) ~ glog(Nl)

* As expected, the EE of scars exhibits a sub-
volume growth, but for the other states it has

the volume growth.



Spectrum of M=6 with 4 sites
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Humpty Dumpty is Frowning

For the Hubbard model, M=4, the eta-scars
are equidistant in energy. For M=6, this is no
longer the case. For M=8, there are some
degeneracies that typically cannot be lifted by
local interactions. s
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Non-Hermitian Hamiltonians

 The group theoretic approach to scars
continues to work when non-Hermitian terms
are added to the Hamiltonians, e.g. the tJU
model. Pakrouski, Pallegar, Popov, IRK

 The energies of scars continue to be real
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Comments

The many-body scar states, which are invariant under the
large Lie group acting on the lattice sites, are decoupled
from all the non-singlet states. Only the latter thermalize.

This decoupling is preserved by the TOT perturbations
and may approximately survive some other
perturbations.

While the energies of scars are equidistant in a number
of models, this is not generally true.

The Group singlet approach to scars applies to non-
Hermitian Hamiltonians.

Need a deeper understanding of the general principles
behind the scars (see recent work by Moudgalya and
Motrunich).
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