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Quantum Many-Body Scars

• Over the past few years have been an active 
area in Condensed Matter Physics. Several 
reviews Serbyn, Abanin, Papic; Moudgalya, Bernevig, Regnault; 
Chandran, Iadecola, Khemani, Moessner

• Scars do not thermalize with the rest of the 
states and constitute a violation of the 
Eigenstate Thermalization Hypothesis.

• The Hilbert space breaks up into two sectors



• Schematic equidistant scar spectrum for a 
special scarred Hamiltonian: Serbyn et al.; Schecter and 
Iadecola

• The scars are characterized by lower 
entanglement entropy than the typical states.

• In a number of models, the scar sector is 
invariant under a “large” group whose rank is 
proportional to the number of lattice sites. 
Pakrouski, Pallegar, Popov, IRK, PRL 125 (2020) 230602



• Quantum Mechanics of N3 Majorana fermions 
IRK, Tarnopolsky

• Has O(N)axO(N)bxO(N)c symmetry under

• The SO(N) symmetry charges are

Melonic O(N)3 Tensor Model 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron. 

• This is equivalent to

• The triple-line Feynman 
graphs are produced 
using the propagator



O(N)3 vs. SYK Model
• Using composite indices

The couplings take values 

• The number of distinct terms is

• Much smaller than in SYK model with 



• No SO(N)3 invariant states for odd N.
• Their number grows very rapidly for even N IRK, 

Milekhin, Popov, Tarnopolsky

• Large N dynamics in the singlet sector is similar 
to SYK. Same melonic Schwinger-Dyson eqns.



The Hamiltonian
• Convenient to introduce operator basis which 

breaks the third O(N) to U(N/2)

• The Hamiltonian couples N/2 sets of N2 dof



• The Cartan generators of U(N/2) are

• For the oscillator vaccuum

• The SO(N)3 invariant states appear in the sector 
where all these charges vanish: each set of N2 

qubits is at half filling. 
• This reduces the number of states but it still 

grows rapidly. For N=4 there are 165636900, 
while for N=6 over 7.47 * 10^29



Singlet Energies for N=4

• For N=6, over 595 million states packed into 
energy interval <1932. The singlet gaps should be 
tiny. Pakrouski, IRK, Popov, Tarnopolsky 

• To find the spectrum need a 108 qubit quantum 
computer. Requires a large number of gates.



From Tensor Models to Scars
• Generalize the Majorana tensor model to have

symmetry
• The traceless Hamiltonian is

• The Hilbert space has dimension
• The eigenstates of H form irreducible 

representations of the symmetry. 



A Fermionic Matrix Model

• For N3=2 this is a fermionic matrix model with 
symmetry

• Describes qubits on a N1 x N2 lattice with non-local 
couplings. IRK, Milekhin, Popov, Tarnopolsky

• A useful example for studying bounds on 
eigenvalues of fermionic Hamiltonians. Hastings, 
O’Donnell



Complete Spectrum
• The SO(N)2 singlets “scar” the histogram.



Towards Hubbard Model
• Can also think of the first index as labeling the 

lattice site, and the second as labeling spin. 
When N2=2, there are two spin states, up and 
down. The model is beginning to resemble a 
non-local Hubbard model, but need to add 
quadratic hopping terms. Pakrouski, Pallegar, Popov, IRK

• Imaginary hopping terms are SO(N) generators

• Adding them to H keeps SO(N) singlets as 
eigenstates but mixes up the non-singlets.



• A simple transformation leads to a model with 
a real nearest neighbor hopping parameter:

• This transformation is possible on a bi-partite 
lattice



Scars without Pain

• There are Hamiltonians that are not symmetric 
under a large group G, yet some of their 
eigenstates are invariant. These are the scars!

• Examples include (deformations of) the 
Hubbard model



• The SO(4) symmetry of the Hubbard model is 
made manifest by introducing 4 Majorana
fermions on each lattice site

• For special values 

• Add symmetry breaking terms which 
annihilate the SO(N) singlets, e.g. TOT terms



Pseudospin
• The scars are states of maximum pseudospin or 

spin.
• After transforming to imaginary hopping,  the 

pseudospin            is generated by C.N. Yang, S.C. Zhang

• It commutes with the rotation group            and 
with the SO(N) that acts on the lattice index.



Eta-pairing states
• There are N+1 states that are SU(2) invariant and form 

a multiplet of pseudospin N/2 Yang, Zhang

• The fact that they are also O(N) invariant was pointed 
out only recently. Pakrouski, Pallegar, Popov, IRK

• In fact, they are invariant under a bigger group
• The bi-partite entanglement entropy can be calculated 

analytically. Vafek, Regnault, Bernevig

• They are highly excited, equally spaced states that play 
the role of scars in the (deformed) Hubbard model. 
Mark, Motrunich; Moudgalya, Regnault, Bernevig



Low Entanglement
• The scar states are distinguished by their low 

entanglement entropy when the system is 
divided into two parts. For the 6 site chain: 



Majorana Scars
• Consider a lattice system with an even 

number M of Majorana fermions on each 
lattice site Z. Sun, F. Popov, IRK, K. Pakrouski, arXiv: 2212.11914 

• The generators of SO(N) and SO(M) are

• Complex fermions



Scars as SO(N) singlets

• Constructed by acting with

• For M=6 the generalizations of eta-pairing 
states are explicitly written as Nakagawa, Katsura, Ueda

• There are             such eta-states.



• There are also            zeta-states:

• They are generalizations of the spin N/2 states 
for M=4 (the usual Hubbard model).

• It is not hard to do the counting of SO(N) 
invariants for M>6, but the wave functions 
cannot be written as explicitly.



Entanglement Entropy of Eta States

• Divide the lattice into two disjoint subsets, the 
first consisting of        sites, and the second of

sites.
• Split the vacuum                                 and eta-

operators

• Each subsystem has its own eta-states   



• Each eta-state                            may be written  

• The reduced density matrix is

from which the Entanglement Entropy follows.



• In the limit of large N, we may replace the sum 
by an integral

• As expected, the EE of scars exhibits a sub-
volume growth, but for the other states it has 
the volume growth.



Spectrum of M=6 with 4 sites 



Humpty Dumpty is Frowning
• For the Hubbard model, M=4, the eta-scars 

are equidistant in energy. For M=6, this is no 
longer the case. For M=8, there are some 
degeneracies that typically cannot be lifted by 
local interactions.



Non-Hermitian Hamiltonians
• The group theoretic approach to scars 

continues to work when non-Hermitian terms 
are added to the Hamiltonians, e.g. the tJU
model. Pakrouski, Pallegar, Popov, IRK

• The energies of scars continue to be real



Comments
• The many-body scar states, which are invariant under the 

large Lie group acting on the lattice sites, are decoupled 
from all the non-singlet states. Only the latter thermalize. 

• This decoupling is preserved by the TOT perturbations 
and may approximately survive some other 
perturbations.

• While the energies of scars are equidistant in a number 
of models, this is not generally true.

• The Group singlet approach to scars applies to non-
Hermitian Hamiltonians.

• Need a deeper understanding of the general principles 
behind the scars (see recent work by Moudgalya and 
Motrunich). 
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