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Overview

• Lecture 1 (Monday)
• The requirements for quantum gates and quantum simulation

• Introducing the ‘doped atom toolbox’
• Donor and acceptor states, their description by effective-mass theory
• Implantation chemistry and its limitations
• Comparison to artificial quantum dots

• [Break]

• The physics of donors, simulations of Mott insulators, molecular analogues

• Topological states and the bulk-edge correspondence

• 1-d topological structures with donors

• Comparison with cold-atom approaches
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Overview (continued)

• Lecture 2 (Wednesday)
• Quantum gates and other quantum simulation results with donors

• Need for spin-orbit interactions for TIs, examples of engineered and ‘natural’ structures

• Spherical and non-spherical models of acceptors

• Quantum Information Processing with acceptors – advantages (and disadvantages) of hole 
states

• The honeycomb Topological Insulator

• [Break]

• Detection of topological states via local probes

• Comparison with cold-atom systems
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Quantum computing and quantum simulation

• Quantum computing requires:
• A set of well defined basis states 

(qubits)

• Ability to initialize to a well-
defined state

• Long decoherence times

• Universal set of quantum gates 
(usually single-qubit and an 
entangling two-qubit operation)

• Ability to read out the qubit state

• Quantum simulation requires:
• A well-defined target system 

(typically with a simple ‘model 
Hamiltonian)

• A scalable quantum system with 
controllable parameters whose 
state space and other properties 
can be mapped to the target 
system

• A means of verifying output (e.g. 
the Hamiltonian simulated and/or 
final state)
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The logic of quantum simulators

Daley et al. Nature 607 667-676 (2022)
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‘Digital’ and ‘analogue’ simulation

• ‘Digital’ simulation • ‘Analogue’ simulation
Apply a controlled sequence of 
gates to represent unitary dynamics

With full fault tolerance, only 
remaining source of error is 
Trotter error from time slicing

Find mapping from (usually low-
energy) state space of physical 
system to the model Hilbert space

Arrange ‘natural’ interactions to 
match those in the desired model 

Prepare initial state and carry 
out evolution in (continuous) 
time
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Outputs and verification
State tomography: seek full characterization of state (exponential classical effort, or comparison with 
reference state via quantum teleportation) 

Classical shadows: random state rotation, then measurement in computational basis to 
give a bit string   

with

Sample of N such results (the ‘shadow’ of the state) gives unbiased estimator and efficient predictions of M 
linear targets via a ‘median of means’ approach:

with additive error  provided 

(or                        for products of k single-qubit observables)

Relevant operator norm is strongly constrained for local targets: for support on  
k qubits 

(optimal scaling)

N-qubit state → -1 measurements (or perfect 2N-qubit entangled state for teleportation and 
comparison)

Scales exponentially in k (not 
overall number of qubits)

Huang, Keung and Preskill Nat. 
Phys. 16 1050 (2020)
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Hamiltonian learning

Time-independent

Time-dependent

Expectation values of 
observables A having 
support only on L0 in 
stationary states satisfy

Expand in a local basis

Then coefficients satisfy

Bairey et al. Phys. Rev. Lett. 122 020504 (2019)
Solve as N linear equations for M 
unknowns (typically with ) 

Replace with time-averaged expectation 
values: if

with

Daley et al. Nature 607 667-676 (2022)
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Summary

Daley et al. Nature 607 667-676 (2022)
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Some example systems

Ion traps

Cold atoms

Rydberg atoms

Superconducting circuits

Linear optics
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An alternative system (these lectures)

• Donors and acceptors in simple 
semiconductors

• In simple cases, form ‘shallow 
donors’ or ‘shallow acceptors’ where 
an additional positive  (or negative) 
nuclear charge weakly binds an 
additional electron (or hole)

• Choose Si as host material because 
of

• Existing material processing 
technologies

• Low density of nuclear spins (natural Si 
is only 4.7% 29Si)

III IV V VI VII

DonorsAcceptors
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Si Quantum Information & Atomic Precise Doping  

Kane, Nature 393, 133 (1998)

• Kane scalable quantum computer in silicon 

• isolated 31P nuclear spin qubits

• isolate donors ~20 nm apart,  ~20 nm below surface

A.M. Stoneham, et al., J. of Phys.: Cond. Matter., 15, 
L447 (2003)

• Stoneham, Fisher, Greenland Scheme
      optically controlled quantum gates

• deep donor electron spin qubits
• qubit coupling controlled by orbital excited states

• ~10 - 20 nm spacing of 2 donor species
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Importance and potential

Thanks to: Taylor Stock, Neil Curson

Quantum gates

Quantum simulators

New types of classical device

Playground for molecular and 
spin physics in new regimes

He et al Nature 571 371 (2018)

Salfi et al Nat. Comms 7 11342 (2016)
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Motivations and challenges for solid-state systems

• Potential advantages
• Natural scalability (hence 

accessibility of thermodynamic 
limit)

• Compatibility with existing 
semiconductor electronics 
(depending on materials 
system)

• Access to strong interaction 
scales

• Likely challenges
• Small scale of components 

(addressability)

• Readout/detection

• Maintaining coherence (hance 
need for cryogenics)

• Full controllability
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Example: the (Fermi-)Hubbard model

• Single-band model for hopping 
fermions with on-site local interactions

• Doping away from half-filling:

• Believed to describe
• Mott metal-insulator transition

• Possibly superconducting cuprates

• Other strongly correlated phenomena

Bohrdt et al. arXiv:2107.08043
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Effective mass theory for shallow dopants
Write perturbed potential within otherwise crystalline material as

Expand in terms of perfect-crystal solutions as

where the Bloch functions satisfy

with

Then the expansion coefficients satisfy

where the potential matrix elements are

Periodic function
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Multivalley effects for indirect-gap materials
For donors in an indirect-gap material (e.g. Si, Ge) expect dominant 
contributions from k near conduction-band minima

Fourier transform to real-space envelope functions Fj(r) for each minimum:

These envelope functions obey

With inverse effective mass tensor

Note spin-orbit effects very weak in conduction band, since 
c.b. consists mainly of s–states in tetrahedral semiconductors

Different valleys coupled by inter-valley matrix 
elements of potential (dominated by rapid variations 
in U(r) and hence long-range contributions to )

Sum goes over conduction band 
minima (1 for GaAs, 4 for Ge, 6 for Si)

Shindo and Nara J Phys Soc Jpn 
40 640 (1976)
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Donors: effective mass theory for the extra 
electron

Advantages and challenges for simulators

• Cold atoms 
• Allow easy control of hopping

• Can reach only temperatures of the 
order of the hopping

• Transport measurements challenging

• Doping determined when trap loaded

• Semiconductor defects
• Allow (relatively) easy control of doping 

via electrostatic gates

• Able to reach low temperatures 

• Transport measurements possible

• Parameters fixed by fabrication of device

‘Envelope function’
Conduction-
band minima

Scaled hydrogen atom solutions: for silicon donors

Length 

Energy 

Hubbard-like 
physics from 
lowest 1s states 
(splitting from 
intervalley 
coupling)

Hydrogenic orbital 
physics from 
excited states

Assuming screened 
electric field
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Silicon
Hydrogen Phosphine PH3

Phosphorus

STM Lithography for Atomic Precision Doping

Atomically Clean Si(001) H Termination
 (‘resist’)

STM Lithography

Gas Exposure
(Mol. Dissociation)

Dopant Incorporation
(Mol. Dissociation)

Si Encapsulation

Process developed at UNSW - CQC2T

Simmons, et al, Molecular Simulation, 31 505-515 (2006)
Stock et al., ACS Nano 14 3316-3327 (2020) Arsenic

Arsine AsH3

different donors 
different: atomic radii, 

nuclear spins, 
orbital excited states

Thanks to: Taylor Stock, Neil Curson
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PH3 Dissociation & Incorporation on Si(001)

Wilson, et al, PRB 74, 195310 2006

McDonell, et al, Phys. Rev. B, 72 (19), 193307 (2005)

Analogous structures for AsH3 calculated to be thermodynamically preferred

Dimer row
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Can large arrays be created using phospine?

Problem for scale-up to large number of qubits!
• Probability for fabricating  qubit device: 
• 50 qubit fabrication probability: 1 in 100 million. 

(1) STM Patterned (4a) Incorporation

* *

(3) Adsorption

* *

(2) Exposure

*

*

*

*
*

*

*

(5) Encapsulation

* *

350°C

30%
*

*

70%

Ivie et al., Phys. Rev. Appl. 16, 054037 (2021) – Sandia group
Martin Füchsle PhD Thesis (UNSW, 2011) – UNSW group

Studies of P incorporation probability in Si

HydrogenSilicon Phosphorus*Tucker & Shen, Solid. State. 
Electron. 42 1061 (1998)

STM tip

(4b) Desorption
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Hydrogenic states in semiconductors: As in Si

Advantages of As over P:
• Lower diffusivity.
• Larger ionisation energy.
• Spin 3/2
Disadvantages 
• Smaller Bohr radii

III IV V VI VII

Donor 1s(A1) 
(meV)

Nuclear 
spin

Bohr 
radius 
(nm)

Atomic 
radius (Å)

P 46 1/2 1.1 1.0

As –54 3/2 0.8 1.15

(Si 1.1 Å)

Slater, J. Chem. Phys. 41, 3199 (1964)

Donor 1s(A1) 
(meV)

Nuclear 
spin

Bohr 
radius 
(nm)

Atomic 
radius (Å)

P –46 1/2 1.1 1.0

Properties of donors in silicon

Phosphine Arsine

Larger nuclear spin
• Protocols mapping electron to nuclear 

spins must be implemented differently
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AsH3 Molecule Dissociation on Si(001)

• Isolated AsH3 desorbs across 2 dimer rows
• inter-row end-bridge structure

• Alternate desorption structure is kinetically 
preferred for AsH3 (As less diffusive than P)

• AsHx do not diffuse during dissociation.

10-10 sec
10-1 sec

10-3 sec

Immediate dissociation at landing site

Wilson, PRB 74, 195310 2006PH3 

AsH3
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Conclusions (Lecture 1)

• Quantum simulations may play a role in understanding otherwise intractable model 
Hamiltonians in the medium term

• There are computationally efficient (and practical) methods to benchmark their 
effectiveness, e.g. based on classical shadows and Hamiltonian learning

• Deterministic doping provides a route to controlled, well-localized quantum states within 
conventional semiconductor materials

• We have a well developed theoretical machinery to describe the resulting bound 
electronic states, based on envelope functions and effective mass theory

• Well developed for donors, possible in near term for acceptors
• Provides a natural route to analogue quantum simulations of

• Molecular systems

• Fermionic Mott-Hubbard models



25

Overview (continued)

• Lecture 2 (Wednesday)
• Proposed (and realized) simulations with donors:

• Molecular analogues
• 1-d topological structures

• Quantum gates and other quantum simulation results with donors

• Need for spin-orbit interactions for TIs, examples of engineered and ‘natural’ structures

• Spherical and non-spherical models of acceptors

• Quantum Information Processing with acceptors – advantages (and disadvantages) of hole 
states

• The honeycomb Topological Insulator

• Detection of topological states via local probes

• Comparison with cold-atom systems
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Dopants vs quantum dots

• Individual dopants
• Nominally identical (though 

environments may vary)

• Localised states (scale set by 
Bohr radius) and relatively large 
binding energies

• Location can be determined by 
implantation, properties 
perturbed by applied fields 
(electric, magnetic, strain)

• Not otherwise controllable

• Quantum dots
• Can produce by

• Local clustering to relieve strain 
during material growth

• Electrostatic fields from gate 
electrodes

• Not identical, depend on details of 
fabrication

• Typically larger regions, less 
localized states and smaller 
binding energies

• More broadly controllable
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Artificial molecules

• Isolated donor is an 
(electronic) analogue of the H 
atom

• So N nearby donors are an 
analogue of an HN molecule

• Donors are fixed by 
interactions with host Si lattic 
so there is no nuclear 
dynamics

• Consequence: atoms can be 
frozen into far-from 
equilibrium arrangements 
inaccessible to conventional 
molecular physics

• Examples here: lines and 2D 
arrays
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2-donor ‘molecules’ - experiment and theory

Gonzalez-Zalba, M. F. et al. Nano 
Letters 14, 5672–5676 (2014).Observe charged and neutral 

excitations by transport measurements

Consistent with computed excitations at 
2.3nm As-As bond length
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Optical excitations of dimers and trimers

Wu et al. Phys Rev B, 97 035205 (2018) doi:10.1103/PhysRevB.97.035205 

Oscillator strength as a function of frequency and geometry shows 
analogues of molecular transitions

1s->2p 
transition

Inter-donor 
charge 
transfer 
(Hubbard-
like)H atom analogue
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Optical response of longer chains

Wu et al. Phys Rev B, 97 035205 (2018) doi:10.1103/PhysRevB.97.035205 

Time-dependent density functional theory (TDDFT)
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Multi-valley treatment

• Vcc is the donor-dependent central-cell correction
• Acts along [100], [110], [111] directions in terms of fcc primitive unit cell.
• Different light polarization directions along x, y, or z.
• Time-dependent Hartree-Fock methods (equivalent to RPA) implemented to 

compute excited states.

Donor dependent

Single-valley Multi-valley

Wu and Fisher Phys Rev B 104 035433 (2021)
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Multi-valley excitation calculations for a pair

X-polarization

1s->2p0

1s->2px,y

1s E

1s T

Interaction between 
intervalley and charge 
transfer

A pair of P donors along [: broken-symmetry state 

Converge to 
single-donor 
intervalley 
transitions (dark)

X-polarization

Singlet state Triplet state
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Comparison with experiment

Thomas, PRB, 1981.
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Feasibility study (with ‘classical’ theory)

Dusko et al NPJ Quantum Info 4 (2018) doi:10.1038/s41534-017-0051-1

Theoretical prediction of charge and spin correlations for uniformly 
spaced 1D array (with periodic boundary conditions)

Charge

Spin



50

First steps (experiment)

Salfi, Mol et al. Nature Comms. (2016) DOI: 10.1038/ncomms11342

Experimental simulation of the Hubbard model using serendipitous 
pairs of randomly placed acceptors, inferring tunneling processes 
from STM images
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Realizations of 2D arrays

4.1nm

6.6nm

10.7nm

Wang et al. (NIST group) 
Nature Comms 13 6824 (2022)Stock et al. UCL (unpublished)

4x4 array

3x3 arrays

Metal

Insulator

Spacing:
2x2 array
(single atoms)

Dopant: As Dopant: P
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Topological matter

• States characterized by their 
topology (in some space) 
rather than by their symmetry

• Non-interacting crystalline 
case: relevant electronic 
topology is that of the band 
structure

• In this case the connection 
between the quantum states 
at different Bloch 
wavevectors k within the 1BZ 
is given by the Berry 
connection
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The bulk-edge correspondence

Bulk invariant Surface property

Surface charge

Surface current

Surface spin current

Bulk interpretation

Ferro-electric 
polarization

Hall 
conductance

Magneto-electric 
polarization

Examples where a topologically invariant bulk property has 
measurable consequences at the boundary of the system
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Non-interacting SSH chain

P P P PP P P P P P

• trivial phase,  no edge states, 
• non-trivial phase,  localized edge states exist, mid-gap energy levels,  

𝑑1 𝑑2

𝑑1 𝑑2
e

1) single-particle energy spectrum of 
the bulk:

¿ 𝑑2 − 𝑑1∨¿

2) Zak phase: a topological
 property of the bulk 

𝑑=𝑑∮𝑑𝑑 ⟨ 𝑑𝑑∨𝑑𝑑 𝑑𝑑 ⟩

3) Topological phase transition: 

bonding, 

anti-bonding, 
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Interactions and edge states

• Beenakker’s rate equations for quantum 
dots

• Conductance spectrum reveals the 
addition energy spectrum

 

D

S

Γ ≈ 0.05 𝑑𝑑𝑑

𝑑≈ 5 𝑑𝑑𝑑
P P P P P P P

Mott gap

Peaks due to edge states

Quarter-filling

Exact diagonalization 
for 10 sites

trivial phase

Upper Hubbard

Lower Hubbard

Non-trivial 
phase

Le et al NPJ Q Info 6 24 (2020)
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: number of electrons in the chain
: number of electrons at the edges

P P

𝑑1=0 𝑑2>0

e

Non-trivial phase, 

Charge-sector edge states go from half filling to quarter filling in large-U limit

P PP P P PP P

Edge populations (charges)

e e e
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SSH-Hubbard phase diagram (half-filling)

𝑑/ 𝑑

Δ 𝑑=𝑑2− 𝑑1

0

0

-0.5 0.5

5

SSH trivial SSH non-trivial 
(with edge state)

Metallic

AFM Mott insulating

? ?

Add on-site 
interactions:
Hubbard 
model
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unique ground 
state

4 degenerate ground 
states

Two edges: 
 

Strong interaction limit

Half-filling, Heisenberg spin chain with  

electrons form a singlet in each dimer, the spin at the edges are free

P PP P P PP PP P

Bulk dimers: Le et al NPJ Q Info 6 24 (2020) 
doi:10.1038/s41534-020-0253-9

Hubbard 
model
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 non-trivial phase (), half filling, 

Ground state spin correlation

P PP P P PP PP P
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Spin correlation

Ground state spin correlation

P PP P P PP PP P

P PP P P PP P P P

Le et al NPJ Q Info 6 24 (2020) 
doi:10.1038/s41534-020-0253-9
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SSH-Hubbard phase diagram (half-filling)

𝑑/ 𝑑

Δ 𝑑=𝑑2− 𝑑1

0

0

-0.5 0.5

5

SSH trivial

SSH non-
trivial (charge 
edge state)

Metallic

AFM Mott insulating

? ?

Dimer I Dimer II (with 
spin edge state) 

Magnetic edge 
excitationsCharge 

excitations

Le et al NPJ Q Info 6 24 (2020) 
doi:10.1038/s41534-020-0253-9

𝑑𝑑=arg (𝑑𝑑 )=arg(𝑑𝑑∏
𝑑=1

𝑑−1

𝑑𝑑(𝑑𝑑))Reduced (many-
body) Zak phase 

()

𝑑𝑑=𝑑
𝑑 2𝑑

𝑑 ∑
𝑑∈ 𝑑

❑

𝑑𝑑
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Experimental realization

Kyczynski et al (UNSW group) Nature 
606 694-9 (2022)

Line of 
deterministically 
implanted multi-
donor quantum 
dots

Controlling 
gates tuned 
for maximum 
conductance

Trivial phase: transport 
whenever two charge 
states are degenerate 
(Coulomb blockade)

Topological phase: 
only edge states 
have weight at chain 
ends and can 
connect to source 
and drain
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A cold-atom approach

• Direct measurement of Zak phase with  
1D lattice of bosonic atoms (87Rb)

1. Prepare in 2. Apply opposite 
forces to  and  with a 
field gradient

using  microwave pulse

3.  Invert spin (using -
pulse) and change 
sense of dimerization, 
swapping lower and 
upper bands

4.  Evolve back to k=0 (cancelling phase 
differences from Zeeman effect) and 
measure final phase difference

Atala et al. Nat. 
Phys. 9 795 (2013)



Donors and cold atoms - comparison

Cold atoms Donors

Atomic positions not 
determined by inter-
atomic interactions

Y Y

Ability to vary lattice 
spacings dynamically Y

Ability to control disorder 
locally Y

Scalable to large lattices Y (Y)

Freedom from noise Y (Y)

Individual readout Y (Y)

Access to transport 
measurements Y

Long-range Coulomb 
interactions Y

Global interference 
measurements Y

20nm

vs
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Further topological effects

• This shows we can simulate 
the simplest non-trivial 
topological model of fermions

• Richer models require further 
interactions, e.g.

• Anyons (strong magnetic fields 
or non-trivial superconducting 
states)

• Spin-orbit interactions

Band structure of Si

Conduction band (electrons): 
derived from s-states, spin-orbit 
coupling small

Valence band (holes): 
derived from p-states, 
strong spin-orbit effects

𝑑=
3
2

𝑑=
1
2



69

Opportunities for Group III (acceptor) doping
B deposition by STM lithography using 
BCl3 and Si-Cl ‘resist’

Dwyer et al. ACS Appl. Mater. 
Interfaces 13, 41275−86 (2021)

Well-defined nanowires and delta-layers 
(not yet controlled at single-atom level)

Al deposition using AlCl3

Evidence for AlCl ‘chains’ and their 
decomposition to form surface Al

Radu et al. J. Phys. Chem. C, 
125 11336−11347 (2021)
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Spin-orbit coupling

• Unlike the conduction band, states at the valence-band maximum (-point) 
are derived from p states having intrinsic (orbital) angular momentum L=1

• To quadratic order, cubic symmetry allows only certain combinations of I 
and k

Spin-orbit coupling implies states at valence-band maximum are labelled by , not I:

where
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The spherical model

Hamiltonian breaks into a spherical part 
(including the spin-orbit coupling and terms 
generating heavy-hole light-hole splitting) 
and non-spherical perturbations

In the presence of the potential from a 
negatively charged (ionized) acceptor at the 
origin, we obtain

Defining trace-free rank-2 tensors

the Hamiltonian becomes

and the spherical part is

Scalar product of two rank-2 tensors 
(rotationally invariant)

Here F is a vector of envelope 
functions satisfying

Use zone-centre Bloch 
functions here, since they are 
the basis used for 

If the envelope function carries orbital 
angular momentum L then  is a 
conserved quantity

Baldareschi and Lipari Phys Rev B 8 
2697 (1973)
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States of individual acceptors

Spherical model Cubic model
HH-LH splitting Spin-orbit Cubic anisotropy

Si Si

• Linear combinations of these states provide a 
basis for calculations of clusters

Need to account for
• Valence-band degeneracy
• Spin-orbit coupling

All energies displayed as 
electron energies above the 
valence band, so ground 
states are at the top!

For Si: effective units
Length: =2.55 nm

Energy: =24.8 meV
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Finite acceptor chains (along [110])
Large separations: d1+d2=6a0

CI total energies, 4-acceptor chain, first 50 states

Non-
degenerate

4-fold 
degenerate

CI, UHF and H-L energies, 4-acceptor chain

UHF eigenvalues:

4-acceptor chain

6-acceptor chain2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4
10,3

10,4

10,5

10,6

10,7

10,8

10,9

11

11,1

11,2

11,3

11,4

11,5

11,6

11,7

d1

En
er

gy

16 states 
(4,8,4)

2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4
9,5

10

10,5

11

11,5

12

CI UHF H-L

d1

En
er

gy

2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4
0

0,5

1

1,5

2

2,5

3

d1

E

2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6 3,8 4

-3

-2

-1

0

1

2

3

d1
E

Edge 
states

Edge 
states
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Time-reversal invariant topological insulators

• Insulators that are fundamentally different (in a 
topological sense) from the vacuum

• Arise when ordering of bands is changed by spin-
orbit coupling

• At a surface (interface with non-topoogical 
vacuum) there must be an odd number of bands 
of each spin (more generally, odd number of 
time-reversed pairs) crossing the Fermi energy

• In 2D there are 4 k-points in the 1BZ which are 
time-reversal invariant:

• If the material has inversion symmetry, can 
associate with each the product of the parities of 
each Kramers-degenerate pair of occupied bands

2D Z2 topological invariant

A surface band pair must join any 
two projections Λa for which 
products πa of δi differ
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Example – graphene and related 2D materials

• Graphene – the original 
candidate TI

Nearest-neighbour 
hopping (produces 
semi-metallic state)

Spin-orbit coupling 
(opens ‘opposite’ gaps 
at K, K’ points)

Problem: SOC in C too 
small to generate 
significant splittings

Kane and Mele PRL 95 
226801 (2005)

• Other honeycomb materials

Si, Ge form buckled 2d structures with 
larger spin-orbit coupling, increasing 
predicted gap

Liu et al. PRL 107 
076802 (2011)
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The honeycomb acceptor lattice

• Graphene-like arrangement of 
acceptor atoms, two acceptors 
per unit cell

• Four states on each site:
• Degenerate in limit of isolated 

impurity,
• Formed by spin-orbit coupling
• Transform like the  components 

of a  multiplet

(010) plane
[100]

[001]



86

Band structure of excitations

• Spherical model for acceptors (no 
cubic anisotropy)

• Difference in hopping between  
and states along each nn bond 

• Hopping interaction becomes

Model is a (topological) insulator beyond 
a critical value of 
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A Hubbard-like model

• Spherical model for acceptors (no cubic 
anisotropy)

• Along each nn bond have hopping

• On-site Coulomb interaction

• Mean-field theory for one hole per 
acceptor

• Mean-field order parameters

Metal

AFM insulator

TI TI

𝑑𝑑=±
1
2

𝑑𝑑=±
3
2

(quadrupole)

(magnetization)

(3/2-1/2 alignment)

Energy gap

Anisotropy

Interaction 
strength

Quadrupole Magnetization
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Symmetry of the interactions

• Original ‘graphene’ TI
• Gap generated by spin-orbit term 

(spin-dependent hopping between 
next-nearest neighbours)

• Odd under both reversal of spatial 
motion and reversal of spins

• Hence even under time-reversal

• ‘Acceptor’ TI
• Gap generated by differential 

hopping along bonds 
(quadrupole-dependent hopping 
between nearest neighbours)

• Even under both reversal of 
spatial motion and reversal of 
spins

• Hence even under time-reversal

Two different routes to create time-reversal invariant 
topological insulators in the honeycomb lattice:

Kane and Mele Phys Rev Lett 95 226801 (2005)
Rachel and Le Hur Phys Rev B 82 075106 (2010)  
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Topological edge states
• Should be able to observe topological 

edge states directly in the TI phase:
• Confirmation that the edge states are 

protected by time reversal symmetry:

….

….

× 𝑑

× ∞

z
‘Armchair’ edge

Non-magnetic phase

Edge states

AFM phase

No edge states

Static magnetic order breaks 
T symmetry

Non-interacting



93

Robustness to placement errors

Robust region of 
topological phase 
around 
{s1,s2,s3}={15,13,8}

Honeycomb lattice must be distorted 
to be commensurate with Si growth 
plane (square symmetry)
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Observation: edge states

• Local density of states of shows 
regions where all states localized 
around edges of island

• Predict these should be visible in 
STM

• Already visible for small islands 
(e.g. 48 acceptors) but 
increasingly clear for larger 
islands

Local density of 
states throughout 
topological gap

48 and 196 
acceptors
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Proposed detection in cold atoms

Challenge: the number of atoms 
occupying edge states of a TI is 
often a small fraction of the total

Ideas for detection (not so far realised):

Edge states of a Hoftstadter model (with 
artificial magnetic flux for neutral atoms) 
in a cylindrical geometry

Bragg spectroscopy (sensitive to angular 
momentum): matrix element is

Goldman et al. Phys Rev Lett. 
108 255303 (2012)

Direct imaging (combined with 
propagation of edge states into 
new regions after a quench and 
differencing of opposite fluxes)

Goldman et al. 
PNAS 110 6736 
(2013)
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Conclusions

• Donors
• Charge transfer transitions as 

dominant low-energy excitations
• Including multi-valley effects alters 

the physics and introduces new 
spin-selective excitations

• Topological states in dimerized 
chains have different characters 
either side of the Mott transition

• Experimental realizations now 
possible

• Acceptors
• Rich spin-orbit physics gives a larger 

low-energy manifold
• Correspondingly richer manifolds of 

topological edge states
• 2D topological insulator phase 

produced by spin-orbit coupling
• Existence of local probes with 

energy sensitivity gives options for 
detection

• Experimental realizations awaited…

mailto:andrew.fisher@ucl.ac.uk
www.london-nano.com

www.compasss.net

mailto:andrew.fisher@ucl.ac.uk
mailto:andrew.fisher@ucl.ac.uk
mailto:andrew.fisher@ucl.ac.uk
http://www.london-nano.com/
http://www.compasss.net/


99

Thanks to collaborators

• Wei Wu
• Jianhua Zhu
• Nguyen Le
• Eran Ginossar

• Neil Curson
• Ben Murdin
• Steven Schofield
• Taylor Stock Advanced Technology 

Institute

University College London


	Slide 1
	Overview
	Overview (continued)
	Quantum computing and quantum simulation
	The logic of quantum simulators
	‘Digital’ and ‘analogue’ simulation
	Outputs and verification
	Hamiltonian learning
	Summary
	Some example systems
	An alternative system (these lectures)
	Si Quantum Information & Atomic Precise Doping
	Importance and potential
	Motivations and challenges for solid-state systems
	Example: the (Fermi-)Hubbard model
	Effective mass theory for shallow dopants
	Multivalley effects for indirect-gap materials
	Advantages and challenges for simulators
	STM Lithography for Atomic Precision Doping
	PH3 Dissociation & Incorporation on Si(001)
	Can large arrays be created using phospine?
	Hydrogenic states in semiconductors: As in Si
	AsH3 Molecule Dissociation on Si(001)
	Conclusions (Lecture 1)
	Overview (continued)
	Dopants vs quantum dots
	Artificial molecules
	2-donor ‘molecules’ - experiment and theory
	Optical excitations of dimers and trimers
	Optical response of longer chains
	Multi-valley treatment
	Multi-valley excitation calculations for a pair
	Comparison with experiment
	Feasibility study (with ‘classical’ theory)
	First steps (experiment)
	Realizations of 2D arrays
	Topological matter
	The bulk-edge correspondence
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Experimental realization
	A cold-atom approach
	Donors and cold atoms - comparison
	Further topological effects
	Opportunities for Group III (acceptor) doping
	Spin-orbit coupling
	The spherical model
	States of individual acceptors
	Finite acceptor chains (along [110])
	Time-reversal invariant topological insulators
	Example – graphene and related 2D materials
	The honeycomb acceptor lattice
	Band structure of excitations
	A Hubbard-like model
	Symmetry of the interactions
	Topological edge states
	Robustness to placement errors
	Observation: edge states
	Proposed detection in cold atoms
	Conclusions
	Thanks to collaborators

