

Emergent axion response in metamaterials

Maxim Gorlach, ITMO University

L. Shaposhnikov, M. Mazanov, D.A. Bobylev, F. Wilczek, M.A. Gorlach. "Emergent axion response in multilayered metamaterials", arXiv: 2302.05111 (2023)

m.gorlach@metalab.ifmo.ru

June 2023

The concept of axions

from sta

10,000

20,000

30,000

Distance (light years)

100

Velocity (km s⁻¹)

Axions were originally introduced to resolve strong CP problem in quantum chromodynamics [1,2]

name of the hypothetic particle suggested by Frank Wilczek comes from the mark of laundry detergent

Axion is one of the promising dark matter candidates

Astronomers postulated some invisible or **dark mass**

currently its origin **remains unclear**, multiple candidates have been suggested

None of the candidate particles is detected so far

40,000

Different approaches to cosmic axion searches

¹I. Irastorza, J. Redondo. Progress in Particle and Nuclear Physics **102**, 89-159 (2018). ²A.J. Millar, *et al.* "ALPHA: Searching For Dark Matter with Plasma Haloscopes", Phys. Rev. D **107**, 055013 (2023). alpha

Description of the axion field

Equations of motion can be recovered from the least action principle

 $S = \int \mathcal{L} \, d^3 \boldsymbol{r} \, c dt \qquad \text{action}$

Landau, Lifshitz. The Classical Theory of Fields.

4

Lagrangian of axion electrodynamics. Should be scalar and Lorentz invariant

$$\mathcal{L} = \frac{1}{8\pi c} \left(\mathbf{E}^2 - \mathbf{B}^2 \right) - \frac{1}{c} \rho \varphi + \frac{1}{c^2} \mathbf{A} \cdot \mathbf{j} + \mathcal{L}_m + \mathcal{L}_a + \frac{\kappa}{4\pi c} a \left(\mathbf{E} \cdot \mathbf{B} \right)$$

Lagrangian of classical electrodynamics

~

free axion field axion coupling to the electromagnetic field

$$\mathcal{L}_{a} = \frac{1}{8\pi c} \left(\frac{1}{c^{2}} \left(\frac{\partial a}{\partial t} \right)^{2} - (\nabla a)^{2} - m_{a}^{2} a^{2} \right) \qquad \qquad m_{a} \text{ axion mass}$$

Time reversal $t \to -t$:
 $E \to E$, $B \to -B$ Spatial inversion $r \to -r$:
 $E \to -E$, $B \to B$ Axion field a is odd under T and P
(pseudoscalar). But it is even under PT operationhence $a \to -a$ hence $a \to -a$ hence $a \to -a$ hence $a \to -a$

Equations of axion electrodynamics

$$\begin{bmatrix} \operatorname{rot} \left(\mu^{-1} \mathbf{B} \right) = \frac{1}{c} \frac{\partial (\varepsilon \mathbf{E})}{\partial t} + \frac{4\pi}{c} \mathbf{j} + \varkappa \left[\nabla \mathbf{a} \times \mathbf{E} \right] + \frac{\varkappa}{c} \frac{\partial \mathbf{a}}{\partial t} \mathbf{B} \\ \operatorname{div} \left(\varepsilon \mathbf{E} \right) = 4\pi \rho - \varkappa \left(\nabla \mathbf{a} \cdot \mathbf{B} \right) \\ \operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \qquad a \text{ is a pseudoscalar axion field (P-odd, T-odd)} \\ \operatorname{div} \mathbf{B} = 0 \qquad \text{Homogeneous axion field is not manifested} \end{bmatrix}$$

Gradients in the axion field or its temporal variation are detectable

Can we realize this physics in some material platform?

F. Wilczek. Phys. Rev. Lett. 58, 1799-1802 (1987)

Maxwell's equations in the medium

We bring the equations to the form

$$\int \operatorname{rot} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + \frac{4\pi}{c} \mathbf{j}$$
$$\operatorname{div} \mathbf{D} = 4\pi\rho$$
$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$
$$\operatorname{div} \mathbf{B} = 0$$
$$\int \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$$

Where the constitutive relations

$$\begin{bmatrix} \mathbf{D} = \varepsilon \, \mathbf{E} + \chi \, \mathbf{B} \\ \mathbf{H} = -\chi \, \mathbf{E} + \mu^{-1} \, \mathbf{B} \end{bmatrix}$$

 $\chi \ = \ \varkappa \, \mathfrak{a} \quad$ plays the role of the effective axion field

Photonics: bianisotropic media, Tellegen-type bianisotropy

Condensed matter: magneto-electrics, multiferroics

 Cr_2O_3 is a canonical example, multiple other materials have been suggested

Want to tailor the effective axion response on demand

A. P. Pyatakov and A. K. Zvezdin. Uspekhi Fizicheskih Nauk 182, 593 (2012).

Deriving predictions of axion electrodynamics

If χ is homogeneous and time-independent, electrodynamics of such media is identical to isotropic media with ϵ and μ

The difference arises in two cases:

1. $\chi(t)$ - dynamic axion field

2. $\chi(z)$ – boundaries or gradients

Stepwise time-independent axion field

Effects of axion electrodynamics

What kind of field is perceived by the observer? (consider the static case for simplicity)

Effects of axion electrodynamics

F. Wilczek. Phys. Rev. Lett. 58, 1799-1802 (1987)

The concept of axion metamaterials

Metamaterials are artificial media with unconventional electromagnetic properties

Typically $a \ll \lambda$ (subwavelength period)

effective material parameters could be applied

What if we tailor the metamaterial such that it is described by the constitutive relations $D = \varepsilon E + \chi B$ $H = -\chi E + \mu^{-1} B$

That would provide a tabletop platform to test the effects of axion electrodynamics controlling the strength of the axion response

Axion metamaterial

Designing axion metamaterial

Each layer is made of the conventional gyrotropic material

off-diagonal terms due to static magnetization

Magnetization of the layers is periodically modulated with period a

$$g(z) = \sum_{n \neq 0} g_n e^{inbz} \qquad b = \frac{2\pi}{a}$$

Floquet expansion

 $\xi = \frac{a}{\lambda} = \frac{q}{b} \ll 1$ $q = \omega/c$

Key idea of derivation

Microscopic fields at the boundary of metamaterial are continuous

$$\begin{bmatrix} \sum_{n=-\infty}^{\infty} e_{z} \times E_{n} = e_{z} \times E^{out} \\ \sum_{n=-\infty}^{\infty} e_{z} \cdot B_{n} = e_{z} \cdot B^{out} \end{bmatrix}$$
calculate higher-order
Floquet harmonics
$$\begin{bmatrix} e_{z} \times E_{0} = e_{z} \times E^{out} \\ e_{z} \cdot B_{0} = e_{z} \times B^{out} \end{bmatrix}$$

$$E_{z} \times B_{n} = e_{z} \times B^{out}$$
keep the terms up to ~ ξ

$$E_{0z} - B_{t}^{out} = \chi E_{0t}$$

$$E_{0z} - E_{z}^{out} = -\chi B_{0z}$$
there is a discontinuity of the average

quantifies the strength of the effective axion response

$$\chi = -i\frac{a}{\lambda}\sum_{n\neq 0}\frac{g_n}{n} \longleftrightarrow \qquad \chi = \frac{1}{\lambda}\int_0^a g(z)(\pi - bz) dz$$

ere is a discontinuity of the averaged fields! Boundary conditions for axion electrodynamics!

Gradients of axion response

Examine slowly varying effective axion response

At the boundary between the blocks we have: $\begin{cases} \mathbf{B}_{2t} - \mathbf{B}_{1t} = (\chi_2 - \chi_1) \mathbf{E}_t, \\ \varepsilon \mathbf{E}_{2z} - \varepsilon \mathbf{E}_{1z} = -(\chi_2 - \chi_1) \mathbf{B}_z \end{cases}$

Hence, there are some surface and currents

e charges
$$\begin{cases} \frac{4\pi}{c} \mathbf{j}_s = \mathbf{e}_z \times [\mathbf{B}_2 - \mathbf{B}_1] = (\chi_2 - \chi_1) \ [\mathbf{e}_z \times \mathbf{E}] \\ 4\pi \rho_s = \varepsilon E_{2z} - \varepsilon E_{1z} = -(\chi_2 - \chi_1) \ B_z \ . \end{cases}$$

After averaging
$$\mathbf{j}_s/L \to \mathbf{j}, \, \rho_s/L \to \rho, \, (\chi_2 - \chi_1) \, \mathbf{e}_z/L \to \nabla \chi \longrightarrow \frac{4\pi}{c} \, \mathbf{j} = [\nabla \chi \times \mathbf{E}]$$

This yields the equations of axion electrodynamics $4\pi \rho = -\nabla \chi \cdot \mathbf{B}$

$$\begin{aligned} &\operatorname{rot} \mathbf{B} = \frac{1}{c} \frac{\partial}{\partial t} \left(\varepsilon \, \mathbf{E} \right) + \left[\nabla \chi \times \mathbf{E} \right] \,, \\ &\operatorname{div} \left(\varepsilon \, \mathbf{E} \right) = -\nabla \chi \cdot \mathbf{B} \,, \\ &\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \,, \ \operatorname{div} \mathbf{B} = 0 \,. \end{aligned}$$

Thus, our structure is indeed an axion metamaterial

Manipulating effective axion response

$$\chi = -i\frac{a}{\lambda}\sum_{n\neq 0}\frac{g_n}{n} = \frac{2\pi}{\lambda}\int_0^a \left(\frac{1}{2} - \frac{z}{a}\right)g(z)dz$$

 χ vanishes in the static case

1. By tailoring magnetization distribution, we can tailor effective χ $\chi = \alpha_g g_{\text{max}} \frac{a}{\lambda}$

2. Effective axion response depends on the termination of the structure (unlike other bulk material parameters)

For instance, if $g(z) = g_{\max} \sin(bz + \gamma)$

$$\chi = -g_{\max} \frac{a}{\lambda} \cos \gamma$$

So the effective axion response can be continuously varied in a wide range by changing the termination of the structure

new and powerful degree of freedom to shape axion response

Validating effective description

We examine the reflection of light from the free-standing slab of axion metamaterial

Prediction of effective medium theory:

$$r_{xx} = r_{yy} = -\frac{\left(\chi^2 + \varepsilon - \varepsilon_0\right)\sin\tilde{L}}{\left(\chi^2 + \varepsilon + \varepsilon_0\right)\sin\tilde{L} + 2i\sqrt{\varepsilon\varepsilon_0}\cos\tilde{L}}, \quad \left] \quad \text{co-polarized reflectance} \\ r_{xy} = -r_{yx} = \frac{2\chi\sqrt{\varepsilon_0}\sin\tilde{L}}{\left(\chi^2 + \varepsilon + \varepsilon_0\right)\sin\tilde{L} + 2i\sqrt{\varepsilon\varepsilon_0}\cos\tilde{L}}, \quad \left] \quad \text{cross-polarized reflectance} \\ \tilde{L} = 2\pi\sqrt{\varepsilon}L/\lambda_0 = 2\sqrt{\varepsilon\pi}Na/\lambda_0 \end{aligned}$$

We compare this result with the rigurous numerical calculation

How well does the effective medium approach work?

Validating effective description

Scenario of oblique incidence

Oblique incidence: effective medium picture works well for all incidence angles

Gradient of the effective axion response

Amplitude of the layers magnetization varies linearly from 0 to $g_{\text{max}} = 0.01 \frac{L}{400\lambda}$

Effective electric and magnetic dipoles

Discussion

Implications for metamaterials physics

Consistent theory of effective axion response, classical derivation, role of the structure termination

Implications for condensed matter:

Pathways to achieve tunable effective axion response

Implications for axion physics:

Possible detection scheme: conversion of dark matter axions into the emergent ones (?) Need to realize dynamic axion fields for that

Other recent highlights

Topological multiphoton states & quantum simulations

A.A. Stepanenko, M.D. Lyubarov, M.A. Gorlach. Physical Review Letters **128**, 213903 (2022).

I.S. Besedin, M.A. Gorlach, et al. Physical Review B **103**, 224520 (2021).

Novel strategy to tailor and tune photonic topological states

D.A. Bobylev, *et al*, M.A. Gorlach. Laser & Photonics Reviews 2100567 (2022) Z. He, D.A. Bobylev, D.A. Smirnova, D.V. Zhirihin, M.A. Gorlach, V.R. Tuz, ACS Photonics 9 (7), pp. 2322-2326 (2022).

Theory: M. Mazanov, M.A. Gorlach. Physical Review B **105**, 205117 (2022).

Experiment: A. Mikhin, M.A. Gorlach, *et al.* Nano Letters. DOI: 10.1021/acs.nanolett.2c04182 (2023)

Our team at ITMO

Thank you for attention

https://physics.itmo.ru/ru/research-group/5427

m.gorlach@metalab.ifmo.ru

L. Shaposhnikov, M. Mazanov, D.A. Bobylev, F. Wilczek, M.A. Gorlach. arXiv: 2302.05111 (2023)

