

Physics setup

DarkSUSY 4.2 (pre-release, trunk @ rev 231)

DarkSUSY day, Stockholm, June 16, 2008

Supersymmetric models

- Input parameters at EW scale (MSSM), or
- Input parameters at GUT scale (mSUGRA)
- Higgs sector with FeynHiggs
- Higgs decay widths from Hdecay
- mSUGRA interfaces: ISASUGRA
- Les Houches Accord 2 currently being implemented

SUSY model setup

We work in the framework of the minimal N = 1 supersymmetric extension of the standard model defined by, besides the particle content and gauge couplings required by supersymmetry, the superpotential

$$W = \epsilon_{ij} \left(-\hat{\mathbf{e}}_R^* \mathbf{Y}_E \hat{\mathbf{l}}_L^i \hat{H}_1^j - \hat{\mathbf{d}}_R^* \mathbf{Y}_D \hat{\mathbf{q}}_L^i \hat{H}_1^j + \hat{\mathbf{u}}_R^* \mathbf{Y}_U \hat{\mathbf{q}}_L^i \hat{H}_2^j - \mu \hat{H}_1^i \hat{H}_2^j \right)$$
(2)

and the soft supersymmetry-breaking potential

$$V_{\text{soft}} = \epsilon_{ij} \left(-\tilde{\mathbf{e}}_{R}^{*} \mathbf{A}_{E} \mathbf{Y}_{E} \tilde{\mathbf{l}}_{L}^{i} H_{1}^{j} - \tilde{\mathbf{d}}_{R}^{*} \mathbf{A}_{D} \mathbf{Y}_{D} \tilde{\mathbf{q}}_{L}^{i} H_{1}^{j} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{A}_{U} \mathbf{Y}_{U} \tilde{\mathbf{q}}_{L}^{i} H_{2}^{j} - B \mu H_{1}^{i} H_{2}^{j} + \text{h.c.} \right) + H_{1}^{i*} m_{1}^{2} H_{1}^{i} + H_{2}^{i*} m_{2}^{2} H_{2}^{i} + \tilde{\mathbf{q}}_{L}^{i*} \mathbf{M}_{Q}^{2} \tilde{\mathbf{q}}_{L}^{i} + \tilde{\mathbf{l}}_{L}^{i*} \mathbf{M}_{2}^{2} \tilde{\mathbf{l}}_{L}^{i} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{M}_{U}^{2} \tilde{\mathbf{u}}_{R} + \tilde{\mathbf{d}}_{R}^{*} \mathbf{M}_{D}^{2} \tilde{\mathbf{d}}_{R} + \tilde{\mathbf{e}}_{R}^{*} \mathbf{M}_{E}^{2} \tilde{\mathbf{e}}_{R} + \frac{1}{2} M_{1} \tilde{B} \tilde{B} + \frac{1}{2} M_{2} \left(\tilde{W}^{3} \tilde{W}^{3} + 2 \tilde{W}^{+} \tilde{W}^{-} \right) + \frac{1}{2} M_{3} \tilde{g} \tilde{g}.$$

$$(3)$$

Here *i* and *j* are SU(2) indices ($\epsilon_{12} = +1$), Y's, A's and M's are 3×3 matrices in generation space, and the other boldface letter are vectors in generation space.

Neutralinos

$$\tilde{\chi}_{i}^{0} = N_{i1}\tilde{B} + N_{i2}\tilde{W}^{3} + N_{i3}\tilde{H}_{1}^{0} + N_{i4}\tilde{H}_{2}^{0}.$$

$$\mathcal{M}_{\tilde{\chi}^{0}_{1,2,3,4}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & +m_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & +m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ -m_{Z}s_{W}c_{\beta} & +m_{Z}c_{W}c_{\beta} & \delta_{33} & -\mu \\ +m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & \delta_{44} \end{pmatrix},$$

Charginos

$$\mathcal{M}_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}m_W \sin\beta \\ \sqrt{2}m_W \cos\beta & \mu \end{pmatrix},$$

$$\tilde{\chi}_{i}^{-} = U_{i1}\tilde{W}^{-} + U_{i2}\tilde{H}_{1}^{-},$$

 $\tilde{\chi}_{i}^{+} = V_{i1}\tilde{W}^{+} + V_{i2}\tilde{H}_{1}^{+}.$

Squarks and sleptons

We then obtain the general $6 \times 6 \tilde{u}$ - and \tilde{d} -squark mass matrices:

$$\mathcal{M}_{\tilde{u}}^{2} = \begin{pmatrix} \mathbf{M}_{Q}^{2} + \mathbf{m}_{u}^{\dagger}\mathbf{m}_{u} + D_{LL}^{u}\mathbf{1} & \mathbf{m}_{u}^{\dagger}(\mathbf{A}_{U}^{\dagger} - \mu^{*}\cot\beta) \\ (\mathbf{A}_{U} - \mu\cot\beta)\mathbf{m}_{u} & \mathbf{M}_{U}^{2} + \mathbf{m}_{u}\mathbf{m}_{u}^{\dagger} + D_{RR}^{u}\mathbf{1} \end{pmatrix},$$
(26.10)

$$\mathcal{M}_{\tilde{d}}^{2} = \begin{pmatrix} \mathbf{K}^{\dagger} \mathbf{M}_{Q}^{2} \mathbf{K} + \mathbf{m}_{d} \mathbf{m}_{d}^{\dagger} + D_{LL}^{d} \mathbf{1} & \mathbf{m}_{d}^{\dagger} (\mathbf{A}_{D}^{\dagger} - \mu^{*} \tan \beta) \\ (\mathbf{A}_{D} - \mu \tan \beta) \mathbf{m}_{d} & \mathbf{M}_{D}^{2} + \mathbf{m}_{d}^{\dagger} \mathbf{m}_{d} + D_{RR}^{d} \mathbf{1} \end{pmatrix},$$
(26.11)

and the general sneutrino and charged slepton mass matrices

$$\mathcal{M}_{\tilde{\nu}}^2 = \mathbf{M}_L^2 + D_{LL}^{\nu} \mathbf{1}$$
(26.12)

$$\mathcal{M}_{\tilde{e}}^{2} = \begin{pmatrix} \mathbf{M}_{L}^{2} + \mathbf{m}_{e}\mathbf{m}_{e}^{\dagger} + D_{LL}^{e}\mathbf{1} & \mathbf{m}_{e}^{\dagger}(\mathbf{A}_{E}^{\dagger} - \mu^{*}\tan\beta) \\ (\mathbf{A}_{E} - \mu\tan\beta)\mathbf{m}_{e} & \mathbf{M}_{E}^{2} + \mathbf{m}_{e}^{\dagger}\mathbf{m}_{e} + D_{RR}^{e}\mathbf{1} \end{pmatrix}.$$
(26.13)

Here

$$D_{LL}^{f} = m_Z^2 \cos 2\beta (T_{3f} - e_f \sin^2 \theta_w), \qquad (26.14)$$

$$D_{RR}^f = m_Z^2 \cos 2\beta e_f \sin^2 \theta_w. \tag{26.15}$$

In the chosen basis, $\mathbf{m}_u = \operatorname{diag}(m_u, m_c, m_t)$, $\mathbf{m}_d = \operatorname{diag}(m_d, m_s, m_b)$ and $\mathbf{m}_e = \operatorname{diag}(m_e, m_\mu, m_\tau)$.

CKM mixing

We follow the conventions of the particle data group [32] and put the mixing in the left-handed d-quark fields, so that the definition of the Cabibbo-Kobayashi-Maskawa matrix is $\mathbf{K} = \mathbf{V}_1 \mathbf{V}_2^{\dagger}$, where \mathbf{V}_1 (\mathbf{V}_2) rotates the interaction left-handed u-quark (d-quark) fields to mass eigenstates. For

In low-energy phenomenological MSSM, we usually assume:

$$egin{aligned} \mathbf{A}_U &= ext{diag}(0,0,A_t)\ \mathbf{A}_D &= ext{diag}(0,0,A_b)\ \mathbf{A}_E &= 0\ \mathbf{M}_Q &= \mathbf{M}_U &= \mathbf{M}_D &= \mathbf{M}_E &= \mathbf{M}_L &= m_0 \mathbf{1}. \end{aligned} \qquad egin{aligned} M_1 &= rac{5}{3} an^2 heta_w M_2 &\simeq 0.5 M_2,\ M_1 &= rac{5}{3} an^2 heta_w M_2 &\simeq 0.5 M_2,\ M_2 &= rac{lpha_{ew}}{\sin^2 heta_w lpha_s} M_3 &\simeq 0.3 M_3. \end{aligned}$$

Note, however, that this specific choice is not needed by DarkSUSY, more general models are possible.

- One can also set these low-energy parameters with an external program, like ISASUGRA e.g.
- For consistency, in that case we use the spectrum calculation by that external program and just transfer these values to DarkSUSY

Other masses

Higgs masses are calculated with FeynHiggs
Higgs decay widths are calculated with HDecay.

- dsgive_model: sets an MSSM-7 model
- dsgive_model13: sets an MSSM-13 model
- dsgive_model_isasugra: sets an mSUGRA model

Typical program

call dsinit [make general settings] [determine your model parameters your way] call dsgive_model [or equivalent] call dssusy [or equivalent]- to set up DarkSUSY for that model

[then calculate what you want]

Generality of expressions

- We try to be as general as possible when including new physics, but it is hard to be overly general all the time
- Hence, most of our expressions and setups in DarkSUSY are more general than typical use would indicate
- We will here summarize where general forms are OK and not

General forms

- The sfermion mass parameters can be general 3x3 (real) matrices, even if some other parts of the code (e.g. annihilation cross sections) rely on them at least being diagonal
- No GUT relation needs to be assumed for M₁, M₂ and M₃.

Complex parameters

- All input parameters are currently real, (MSSM-63) but many of our expressions are general enough to go complex (e.g. all vertices are already complex)
- In future versions, we expect to make most (all?) of our input parameters complex to get to MSSM-124.