

Physics setup

DarkSUSY 4.2
 (pre-release, trunk @ rev 23 I)

DarkSUSY day, Stockholm, June I6, 2008

Supersymmetric models

- Input parameters at EW scale (MSSM), or
- Input parameters at GUT scale (mSUGRA)
- Higgs sector with FeynHiggs
- Higgs decay widths from Hdecay
- mSUGRA interfaces: ISASUGRA

SUSY model setup

We work in the framework of the minimal $N=1$ supersymmetric extension of the standard model defined by, besides the particle content and gauge couplings required by supersymmetry, the superpotential

$$
\begin{equation*}
W=\epsilon_{i j}\left(-\hat{\mathbf{e}}_{R}^{*} \mathbf{Y}_{E} \hat{\mathbf{l}}_{L}^{i} \hat{H}_{1}^{j}-\hat{\mathbf{d}}_{R}^{*} \mathbf{Y}_{D} \hat{\mathbf{q}}_{L}^{i} \hat{H}_{1}^{j}+\hat{\mathbf{u}}_{R}^{*} \mathbf{Y}_{U} \hat{\mathbf{q}}_{L}^{i} \hat{H}_{2}^{j}-\mu \hat{H}_{1}^{i} \hat{H}_{2}^{j}\right) \tag{2}
\end{equation*}
$$

and the soft supersymmetry-breaking potential

$$
\begin{align*}
V_{\mathrm{soft}}= & \epsilon_{i j}\left(-\tilde{\mathbf{e}}_{R}^{*} \mathbf{A}_{E} \mathbf{Y}_{E} \tilde{\mathbf{1}}_{L}^{i} H_{1}^{j}-\tilde{\mathbf{d}}_{R}^{*} \mathbf{A}_{D} \mathbf{Y}_{D} \tilde{\mathbf{q}}_{L}^{i} H_{1}^{j}+\tilde{\mathbf{u}}_{R}^{*} \mathbf{A}_{U} \mathbf{Y}_{U} \tilde{\mathbf{q}}_{L}^{i} H_{2}^{j}-B \mu H_{1}^{i} H_{2}^{j}+\text { h.c. }\right) \\
& +H_{1}^{i *} m_{1}^{2} H_{1}^{i}+H_{2}^{i *} m_{2}^{2} H_{2}^{i} \\
& +\tilde{\mathbf{q}}_{L}^{i *} \mathbf{M}_{Q}^{2} \tilde{\mathbf{q}}_{L}^{i}+\tilde{\mathbf{l}}_{L}^{i *} \mathbf{M}_{L}^{2} \tilde{\mathbf{L}}_{L}^{i}+\tilde{\mathbf{u}}_{R}^{*} \mathbf{M}_{U}^{2} \tilde{\mathbf{u}}_{R}+\tilde{\mathbf{d}}_{R}^{*} \mathbf{M}_{D}^{2} \tilde{\mathbf{d}}_{R}+\tilde{\mathbf{e}}_{R}^{*} \mathbf{M}_{E}^{2} \tilde{\mathbf{e}}_{R} \\
& +\frac{1}{2} M_{1} \tilde{B} \tilde{B}+\frac{1}{2} M_{2}\left(\tilde{W}^{3} \tilde{W}^{3}+2 \tilde{W}^{+} \tilde{W}^{-}\right)+\frac{1}{2} M_{3} \tilde{g} \tilde{g} . \tag{3}
\end{align*}
$$

Here i and j are $\operatorname{SU}(2)$ indices $\left(\epsilon_{12}=+1\right), \mathbf{Y}$'s, A's and M's are 3×3 matrices in generation space, and the other boldface letter are vectors in generation space.

Neutralinos

$$
\tilde{\chi}_{i}^{0}=N_{i 1} \tilde{B}+N_{i 2} \tilde{W}^{3}+N_{i 3} \tilde{H}_{1}^{0}+N_{i 4} \tilde{H}_{2}^{0} .
$$

$$
\mathcal{M}_{\tilde{\chi}_{1,2,3,4}}=\left(\begin{array}{cccc}
M_{1} & 0 & -m_{Z} s_{W} c_{\beta} & +m_{Z} s_{W} s_{\beta} \\
0 & M_{2} & +m_{Z} c_{W} c^{2} & -m_{Z} c_{W} s_{\beta} \\
-m_{Z} s_{W} c_{\beta} & +m_{Z} c_{W} c_{\beta} & \delta_{33} & -\mu \\
+m_{Z} s_{W} s_{\beta} & -m_{Z} c_{W} s_{\beta} & -\mu & \delta_{44}
\end{array}\right) \text {, }
$$

Charginos

$$
\begin{gathered}
\mathcal{M}_{\tilde{\chi}^{ \pm}}=\left(\begin{array}{cc}
M_{2} & \sqrt{2} m_{W} \sin \beta \\
\sqrt{2} m_{W} \cos \beta & \mu
\end{array}\right), \\
\tilde{\chi}_{i}^{-}=U_{i 1} \tilde{W}^{-}+U_{i 2} \tilde{H}_{1}^{-} \\
\tilde{\chi}_{i}^{+}=V_{i 1} \tilde{W}^{+}+V_{i 2} \tilde{H}_{1}^{+}
\end{gathered}
$$

Datk Susk Susp

We then obtain the general $6 \times 6 \tilde{u}$ - and \tilde{d}-squark mass matrices:

$$
\begin{gather*}
\mathcal{M}_{\tilde{u}}^{2}=\left(\begin{array}{cc}
\mathbf{M}_{Q}^{2}+\mathbf{m}_{u}^{\dagger} \mathbf{m}_{u}+D_{L L}^{u} \mathbf{1} & \mathbf{m}_{u}^{\dagger}\left(\mathbf{A}_{U}^{\dagger}-\mu^{*} \cot \beta\right) \\
\left(\mathbf{A}_{U}-\mu \cot \beta\right) \mathbf{m}_{u} & \mathbf{M}_{U}^{2}+\mathbf{m}_{u} \mathbf{m}_{u}^{\dagger}+D_{R R}^{u} \mathbf{1}
\end{array}\right), \tag{26.10}\\
\mathcal{M}_{\tilde{d}}^{2}=\left(\begin{array}{cc}
\mathbf{K}^{\dagger} \mathbf{M}_{Q}^{2} \mathbf{K}+\mathbf{m}_{d} \mathbf{m}_{d}^{\dagger}+D_{L L}^{d} \mathbf{1} & \mathbf{m}_{d}^{\dagger}\left(\mathbf{A}_{D}^{\dagger}-\mu^{*} \tan \beta\right) \\
\left(\mathbf{A}_{D}-\mu \tan \beta\right) \mathbf{m}_{d} & \mathbf{M}_{D}^{2}+\mathbf{m}_{d}^{\dagger} \mathbf{m}_{d}+D_{R R}^{d} \mathbf{1}
\end{array}\right), \tag{26.11}
\end{gather*}
$$

and the general sneutrino and charged slepton mass matrices

$$
\begin{gather*}
\mathcal{M}_{\tilde{\nu}}^{2}=\mathbf{M}_{L}^{2}+D_{L L}^{\nu} \mathbf{1} \tag{26.12}\\
\mathcal{M}_{\tilde{e}}^{2}=\left(\begin{array}{cc}
\mathbf{M}_{L}^{2}+\mathbf{m}_{e} \mathbf{m}_{e}^{\dagger}+D_{L L}^{e} \mathbf{1} & \mathbf{m}_{e}^{\dagger}\left(\mathbf{A}_{E}^{\dagger}-\mu^{*} \tan \beta\right) \\
\left(\mathbf{A}_{E}-\mu \tan \beta\right) \mathbf{m}_{e} & \mathbf{M}_{E}^{2}+\mathbf{m}_{e}^{\dagger} \mathbf{m}_{e}+D_{R R}^{e} \mathbf{1}
\end{array}\right) . \tag{26.13}
\end{gather*}
$$

Here

$$
\begin{gather*}
D_{L L}^{f}=m_{Z}^{2} \cos 2 \beta\left(T_{3 f}-e_{f} \sin ^{2} \theta_{w}\right) \tag{26.14}\\
D_{R R}^{f}=m_{Z}^{2} \cos 2 \beta e_{f} \sin ^{2} \theta_{w} \tag{26.15}
\end{gather*}
$$

In the chosen basis, $\mathbf{m}_{u}=\operatorname{diag}\left(m_{\mathrm{u}}, m_{\mathrm{c}}, m_{\mathrm{t}}\right), \mathbf{m}_{d}=\operatorname{diag}\left(m_{\mathrm{d}}, m_{\mathrm{s}}, m_{\mathrm{b}}\right)$ and $\mathbf{m}_{e}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)$.

CKM mixing

We follow the conventions of the particle data group [32] and put the mixing in the left-handed d-quark fields, so that the definition of the Cabibbo-Kobayashi-Maskawa matrix is $\mathbf{K}=\mathbf{V}_{1} \mathbf{V}_{2}^{\dagger}$, where $\mathbf{V}_{1}\left(\mathbf{V}_{2}\right)$ rotates the interaction left-handed u-quark (d-quark) fields to mass eigenstates. For

In low-energy phenomenological MSSM, we usually assume:

$$
\begin{array}{ll}
\mathbf{A}_{U}=\operatorname{diag}\left(0,0, A_{t}\right) & M_{1}=\frac{5}{3} \tan ^{2} \theta_{w} M_{2} \simeq 0.5 M_{2} \\
\mathbf{A}_{D}=\operatorname{diag}\left(0,0, A_{b}\right) & M_{2}=\frac{\alpha_{e w}}{\sin ^{2} \theta_{w} \alpha_{s}} M_{3} \simeq 0.3 M_{3} \\
\mathbf{A}_{E}=0 &
\end{array}
$$

Note, however, that this specific choice is not needed by DarkSUSY, more general models are possible.

mSUGRA

- One can also set these low-energy parameters with an external program, like ISASUGRA e.g.
- For consistency, in that case we use the spectrum calculation by that external program and just transfer these values to DarkSUSY

Other masses

- Higgs masses are calculated with FeynHiggs
- Higgs decay widths are calculated with HDecay.

Routines

- dsgive_model: sets an MSSM-7 model
- dsgive_modell3: sets an MSSM-I3 model
- dsgive_model_isasugra: sets an mSUGRA model

Typical program

call dsinit

[make general settings]
[determine your model parameters your way] call dsgive_model [or equivalent]
call dssusy [or equivalent]- to set up DarkSUSY for that model
[then calculate what you want]

Generality of expressions

- We try to be as general as possible when including new physics, but it is hard to be overly general all the time
- Hence, most of our expressions and setups in DarkSUSY are more general than typical use would indicate
- We will here summarize where general forms are OK and not

General forms

- The sfermion mass parameters can be general 3×3 (real) matrices, even if some other parts of the code (e.g. annihilation cross sections) rely on them at least being diagonal
- No GUT relation needs to be assumed for M_{1}, M_{2} and M_{3}.

Complex parameters

- All input parameters are currently real, (MSSM-63) but many of our expressions are general enough to go complex (e.g. all vertices are already complex)
- In future versions, we expect to make most (all?) of our input parameters complex to get to MSSM-I24.

