

The Relic density

DarkSUSY 4.2 (pre-release, trunk @ rev 231)

DarkSUSY day, Stockholm, June 16, 2008

Relic density simple approach (more advanced in real life)

Relic density – accurate approach

• Solve the Boltzmann equation

$$\frac{dn}{dt} = -3Hn - \langle \sigma_{\rm ann} v \rangle \left(n^2 - n_{\rm eq}^2 \right)$$

- properly taking the thermal average < ->
- including the full annihilation cross section (including all final states, resonances and thresholds)
- including all so-called coannihilations between all neutralinos, charginos and sfermions

The Boltzmann equation with coannihilations I

 $\frac{dn_i}{dt} = -3Hn_i - \sum_{j=1}^{N} \langle \sigma_{ij} v_{ij} \rangle \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right) \quad \text{annihilation/coannihilation}$ $- \sum_{j \neq i} \left[\langle \sigma'_{Xij} v_{ij} \rangle \left(n_i n_X - n_i^{\text{eq}} n_X^{\text{eq}} \right) - \langle \sigma'_{X|i} v_{ij} \rangle \left(n_j n_X - n_j^{\text{eq}} n_X^{\text{eq}} \right) \right] \quad \text{scattering}$ $- \sum_{j \neq i} \left[\Gamma_{ij} \left(n_i - n_i^{\text{eq}} \right) - \Gamma_{ii} \left(n_j - n_j^{\text{eq}} \right) \right] \quad \text{decay}$

Sum over all SUSY particles:

$$n = \sum_{i} n_{i}$$

$$\frac{dn}{dt} = -3Hn - \sum_{i,j=1}^{N} \langle \sigma_{ij} v_{ij} \rangle \left(n_i n_j - n_i^{\text{eq}} n_j^{\text{eq}} \right)$$

The Boltzmann equation with coannihilations II

Assume that $\frac{n_i}{n} \simeq \frac{n_i^{eq}}{n^{eq}}$ during freeze-out

We then get

 $\frac{dn}{dt} = -3Hn - \langle \sigma_{\rm eff} v \rangle \left(n^2 - n_{\rm eq}^2 \right)$

with

$$\langle \sigma_{\text{eff}} v \rangle = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle \frac{n_i^{\text{eq}}}{n^{\text{eq}}} \frac{n_j^{\text{eq}}}{n^{\text{eq}}}$$

The same Boltzmann equation as without coannihilations, but with the annihilation cross section replaced with an effective annihilation cross section!

The effective annihilation cross section

$$\langle \sigma_{\rm eff} v \rangle = \sum_{ij} \langle \sigma_{ij} v_{ij} \rangle \frac{n_i^{\rm eq}}{n^{\rm eq}} \frac{n_j^{\rm eq}}{n^{\rm eq}}$$

The Boltzmann suppression can be huge!

 $\sim e^{\frac{m\chi_1 - m_j}{T}} \sim e^{-20\frac{m_j - m_j}{m\chi_1}}$

 $T \sim m_{\chi_1}/20$

But the annihilation cross section can be even larger!

> Typically, coannihilations are important if either a) the mass differences are small, or b) the annihilation cross sections are large

Example of coannihilation case

Weff

W_{eff} x Boltzmann suppression

Initial state thresholds appear as final state thresholds in the effective annihilation rate!

Thermal averaging

As the SUSY particles are in thermal equilibrium (due to the vast amount of SM particles), we can insert a thermal velocity distribution and calculate the thermally averaged annihilation cross section

$$\langle \sigma_{\text{eff}} v \rangle = \frac{\int_0^\infty dp_{\text{eff}} p_{\text{eff}}^2 W_{\text{eff}} K_1\left(\frac{\sqrt{s}}{T}\right)}{m_1^4 T \left[\sum_i \frac{g_i}{g_1} \frac{m_i^2}{m_1^2} K_2\left(\frac{m_i}{T}\right)\right]^2}$$

 $W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_i g_j}{g_1^2} W_{ij} \quad ; \quad W_{ij} = 4E_1 E_2 \sigma_{ij} v_{ij}$ See Edsjö and Gondolo, PRD 56 (1997) 1879 for details.

Example: stau coannihilation in mSUGRA

Coannihilations^{-0.3} can change the relic density by more than 1000%!

m₀[GeV

Example: focus point region in mSUGRA

Without coannihilations

With coannihilations

In the focus point region coannihilations between neutralinos and charginos are important.

Relic density versus mass and composition

(No sfermion coannihilations in this plot yet)

The $m_{\chi} - Z_g$ parameter space

Relic density routines

- The main routine for SUSY neutralinos is dsrdomega that calculates the relic density of neutralinos
- However, the relic density routines are more general than that and can be used for any WIMP with a call to dsrdens.

How to call dsrdens for general WIMPs

Call

dsrdens(wrate,npart,mgev,dof,nrs,rm,rw,nt,tm,oh2,tf,ierr,iwar) where you have to supply

wrate - invariant effective annihilation rate (function)

npart - number of coannihilating particles

mgev - mass of these

dof - internal degrees of freedom of these

nrs - number of resonances

rm - mass of resonances

rw - width of resonances

nt - number of thresholds

tm - equivalent mass of thresholds

The routine then returns

oh2 - omega h^2

tf - freeze-out temperature

Note: All this is taken care of for neutralinos in dsrdomega