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Part 1

In the late 80’s, after the first “string revolution” following the Green-Schwarz paper,
there was great and rapid progress in string theory, mainly centered around performing
perturbative computations on various backgrounds using the tools of CFT’s.

Two main approaches were developed:

= 3 functional path-integral method (Polyakov; D’Hoker + Phong)

= an operator formalism

*  The operator formalism, in turn, was independently developed in three versions, which
turned out to be equivalent:

1. the “string operator formalism” (Harvard) (Alvarez-Gaumé + Gomez + Moore + Vafa)

2. the “group theory approach” (CERN) (Neveu + West)

3. the “sewing procedure” (NORDITA/NBI-Torino-Stony Brook)

(Paolo + Frau+ AL + Sciuto, + Hornfeck, + Pezzella) + (Napoli group) + (Peteresen + Sidenius)



Part 1

The operator formalism provides a nice constructive way to derive many geometric
objects that appear in multi-loop string amplitudes

It is very explicit and general, even on Riemann surfaces of higher genus
§'

@

Contrarily to what one may naively think, in the operator formalism one can do explicit
checks of modular properties (like modular invariance)

2
It allows to perform many explicit calculations @

However, for the superstring in the fermionic sectors it becomes rather involved and
unpractical beyond 1-loop .
2

\ 4



Operator formalism & sewing procedure

 The old operator approach uses as basic ingredients: Fubini + Veneziano;
Alessandrini + Amati;

Lovelace; Ademollo et al, ...

k
* Vertex operators: | Vo gmix gna kX
: 1
* Propagators: D~
Lo—1
to build amplitudes at tree level: | 5 N_1 N
Atree(la"',N):<V1PV2'-°VN_1'PVN>:< o o c‘, o
N
and at 1-loop: 1
A1—100p<17°" 7N):tr(V1PV2”-VN_1PVN) = 2



Operator formalism & sewing procedure

* However, this old operator formalism cannot work beyond 1-loop

* The solution is obtained with the construction of the N-Reggeon vertex (or N-string
vertex) which provides the coupling at tree level among N arbitrary string states

N-Reggeon vertex

* |tis a generalization to N strings of the 3-Reggeon vertex Sciuto; Caneschi + Schwimmer + Veneziano



Operator formalism & sewing procedure

The N-Reggeon vertex can be used to obtain the tree-level amplitude involving N strings

by saturating it with N physical string states

But it can be used also to compute loop amplitudes. Indeed, since the N legs are off-shell

one can sew them in pairs and obtain the multiloop N-Reggeon vertex!




Operator formalism & sewing procedure

* This sewing procedure can be made very explicit and precise. But there is a big problem:

How to eliminate the unphysical states from the loops?

* In the old days, this problem was addressed and solved by inserting suitable projections
in the propagators, which however make the entire construction quite involved.

* An elegant solution to this problem was obtained in the late 80’s with the BRST
formalism, introducing ghosts and anti-ghosts. The two basic ingredients are:

1. The BRST invariant 3-Reggeon vertex

Paolo + R. Nakayama + J.L. Petersen + S. Sciuto (1987)

2. The BRST invariant propagator

Paolo + M. Frau + AL + S. Sciuto (1987)



Operator formalism & sewing procedure

The BRST invariant 3-Reggeon vertex is an extension with ghosts and anti-ghosts of the old

Caneschi-Schwimmer-Veneziano (CSV) vertex:
/\ CcsV
3 T
_ . _ = (7)
wa = (Ll )exp[- 5 3 S 09D (UV5) 0] 61 + 2 + po)x

1=1 i1#j=1n,m=0

/\ Paolo et al
3 o0 e’s)

S: S: S: Cg)Enm(Ui‘/})b%)} X “anti-ghost d-functions”

i£j=1n=2m=—1

DO | —

X exp[—

()

oscillators.

where a,,’ are the orbital oscillators and C( ) b( ) are the BRST ghost and anti-ghost

21

The “bras” ; (€| are the SL(2) invariant vacua for the 3 strings
Z3
<2
The coefficients Dy, (U;V;) and Epp, (U; V) are related to the Koba-Nielsen variables

and have an interesting geometrical interpretation since they form a representation of the
projective group with weight 0 and -1, respectively.



Operator formalism & sewing procedure

The symbols U; and V; denote projective transformations that are related to the choice

of local coordinates around the 3 punctures.
<1

A convenient choice is the symmetric one suggested by C. Lovelace:

Ui(zil Zi Zz‘+1> | Vi<oo 0 1) <3
0 oo 1 Zi—1 R Ritl

2

Once the local coordinates are chosen, the coefficients Dnm(UiVj) and Enm(UZ-Vj)

are given by

1 am—l—l

A C Bun(2) = o et D]

m! 0z™m

Dypm(7(2)) =

V(=)

z=0

Everything is very explicit!

z=0



Operator formalism & sewing procedure

 The 3-Reggeon vertex satisfies the following properties: <1

* Itis BRSTinvariant W3 (Q1+ Q2+ Q3) =0 23
<2

* Itis cyclic symmetric  Ws(zy, 29, 23) = W5(20, 23, 21) = W3(23, 21, 22)

* |t reproduces the dual 3-point functions among 3 arbitrary physical states of the string
spectrum at tree level

W3 |phys)1 [phys)z [phys)s = Atree(1,2,3)

* At tree level, the addition of ghosts and anti-ghosts is redundant, but it is important in
the sewing procedure leading to the multiloop amplitudes.



Operator formalism & sewing procedure

The second ingredient is the BRST invariant propagator. The basic idea is to sew together
several 3-string vertices to obtain vertices with 4, 5, ... legs. For example:

twisted BRST invariant propagator

Paolo et al

 The twisted BRST invariant propagator is

! dx 0 oo 1
P = (by — by) /O i Pa@) | where P@) = (T

1 1
The “usual” BRST propagator is b_o — bo/ d_a: P(z) where P(z)= Vo
Ly 0o T 0 oo w



Operator formalism & sewing procedure

* By repeatedly sewing vertices with twisted BRST invariant propagators, we obtain the N-
Reggeon vertex:

Paolo et al

N
= (i [Ty o) vl 3 32 32 o Punt) s+

1#j=1n,m=0

N 00 00
S: S: y: Cg)Enm<Ui‘/j)b%)} x “anti-ghost d-functions”

1#Zj=1n=2m=-1

*  Now the coefficients D,,,,, (U;V;) and E,,,, (U;V;) are functions of the (N — 3) Koba-
Nielsen variables that are not fixed, over which one has to integrate to obtain the tree-

level N-string amplitude.

N | =

X exp[—

* Again, at tree-level the addition of the ghost part is redundant, but it becomes crucial for
the multi-loop amplitudes!



Operator formalism & sewing procedure

The N-Reggeon vertex:

1. is BRST invariant Wn(Q14+Q24+--+QN)=0

2. is cyclic symmetric; for example

This property is crucial for
the (s,t)-duality:

Wa(1,2,3,4) = Wy(2,3,4,1)




Operator formalism & sewing procedure

* The N-Reggeon vertex:

1. is BRST invariant Wn(Q14+Q24+--+QN)=0

2. is cyclic symmetric; for example |W4(1,2,3,4) = W4(2,3,4,1)

 The BRST invariant N-Reggeon vertex reproduces correctly the N-point amplitudes at tree
level for arbitrary physical states

Wi |phys)1 |phys)z - - - [phys) v = Atree(1,2,- -+, N)

* Most importantly, it can be used to obtain multi-loop amplitudes!



Operator formalism & sewing procedure

e By pairwise sewing the legs of a 2g-Reggeon vertex with g twisted BRST invariant
propagators, we obtain the g-loop string partition function:

g
Zg = Tr [ng X H PM] Paolo et al

p=1

. (also Petersen + Sidenius)

dz;
) — [(3g-3) integration variables

from the g-propagators

* |In each sewing one naturally
introduces g new projective
transformations

Sp=Vap—1P(x,) Uz




Operator formalism & sewing procedure

The g projective transformations S, = V5,1 P(x,) Uz, generate the so-called Schottky
group which can be used to describe a Riemann surface of genus g

Any projective transformation, and so also S,,, can be brought to a canonical form

Su(z) — TN Z =1
=k Bk <1
SM(Z)_gu g z—&, g
Nu and £, are the attractive and repulsive fixed points, &, is the multiplier

The projective transformations S, and S,Il define two isometric circles on the complex
plane whose boundaries can be identified to form a handle

In this way we build Riemann surfaces!




Operator formalism & sewing procedure

All geometric objects on the Riemann surface can be explicitly written in this Schottky
representation.

For example, the period matrix is given by

2717y, = Oy logky — Y 'log [

(0

Ny — Ta(g,u) S — Ta(nu)]
Ny — Ta(”u) Ev — Ta(gu)

where the sum is over all elements of the Schottky group (with some restrictions)

and the prime form is given by

EGw) = G- w]T'|

«

z2—To(w) w—"Ty(2) ]
2 —To(2) w—Ty(w)

where the product is over all elements of the Schottky group (with some restrictions)

Using these explicit representations, one can check many geometric properties.



Operator formalism & sewing procedure

* Using the sewing procedure, we computed the g-loop string partition function

g
Z,="Ir [WQQ X H 73”] = ... Paolo et al

p=1

W A -
<IU[ T - ko> TLa - ko]
s A

from orbital degrees of freedom from BRST ghosts and anti-ghosts

* This represents the measure of integration on the moduli space at genus g.

* Notice that the inclusion of ghosts and anti-ghosts does not lead to the simple rule
D — D — 2, as one might have expected.



Operator formalism & sewing procedure

Using the sewing procedure, we computed the g-loop string partition function

g
Z,="Ir [WQQ X H 73”] = ... Paolo et al

p=1

:/ ! H [dk dg&,, dn (1= k) ] det (ImT)_D/Qx
dvabc S g ki (77,u o f,u)2

p=1

T [ﬁ“ )P ji(l -k

1 _
5 | det (Im 7) D72y
(Mu — &)
g . /\

I' P 2\\\‘
,/' H (]‘ kﬂ) ‘\‘ This extra factor is crucial for
—(D—-2) 5' pu=1 i modular invariance (checked
) '\‘ , 5 ,," numerically by Petersen et al)

\\\H (1 _ ka) /I,'

s

~~~~~
s -
----------

proposed by Mandelstam in ‘85, but then corrected with a mysterious factor I' in ‘86. U



Operator formalism & sewing procedure

This result was immediately generalized to include the emission of N arbistrary strings. In
this way we obtained the N-Reggeon g-loop vertex which describes the overlap among N
strings on a puctured Riemann surface of genus g

Wy ~ exp{ Zi 27717{ 2771 (2) G (z,w) 0X (w) + c(2) G (2, w) b(w)}}

1,7=1

where G (z,w) and G (z,w) are the Greeen functions on the Riemann surface for
the string coordinates and the ghost/anti-ghost system, respectively:

G (z,w) = X (2) X(w) ~ log(z — w) + - - -

GO (2, w) = b(2) e(w) ~ —

This construction was readily extended to the bosonic closed string and to the fermionic
string in the NS sector (— super Schottky group with (3g — 3) bosonic moduli + (2g — 2)
fermionic moduli) Paolo et al




Operator formalism & sewing procedure

In the R sector additional subtleties appear. They are related to the presence of fermionic
zero-modes in the orbital part and of bosonic zero-modes in the super-ghost part, as well
as of \/z branch-cut singularities.

Despite these difficulties, the BRST invariant vertex for the emission of N bosonic and 2M
fermionic strings was constructed by Paolo + Hornfeck + Masden + Roland and by Petersen
+ Sidenius + Tollsten.

A multiloop fermionic vertex was formally worked out using the sewing procedure also on
the fermionic legs by Petersen + Sidenius + Tollsten (up to the zero-mode contribution)

The general structure of the contribution of the super-ghost system was fully understood
and the super-ghost correlation functions were shown by Paolo to be fully equivalent to
those derived by Verlinde + Verlinde with a path-integral approach.

However, a big problem remains unsolved: finding the fundamental domain at [f@\@
g loops and hence the range of integration over the moduli space. -




rk
ica, niversit& di Torin®

Napol:




Part 2

At each order of string perturbation theory, one does not get the large proliferation of
diagrams characteristic of field theories

* |tis well known that in the limit of infinite string tension (a’ — 0) string theories reduce
to non-abelian gauge theories (unified with gravity) order by order in perturbation
theory

* This means, in particular, that in the limit a’ = 0 one must reproduce, order by order, S-
matrix elements and ultraviolet divergences of perturbative non-abelian gauge theories

Therefore, string theory can be an efficient conceptual and
computational tool in different areas of perturbative field theory

(see also Bern + Dixon + Kosower)

* We have applied these ideas to study gluon scattering in Yang-Mills theories.

Paolo et al



Gluon amplitudes

Using the formalism of the N-Reggeon g-loop vertex we can easily obtain the scattering
amplitude for N gluons at g-loops

polarizations

e

81,p1>1"'\5N,pN>N

AN;g(pla T 7pN) — WN39

More explicitly, we have
2a'pipj

exp (G (24, 7))
=1 |V OV0)

—1=

AN;Q<p17”' 7PN) :NN;g/[dm]N;g

N
I 1
exp Z ( 2C¥/pj &y azz G(X) (Zia Zj) + §€z' " &5 821(923 G(X) (ZZ', Z]))

i7j=1 m.l.
where m.l. stands for multilinear in the ¢;’s and the integration measure is given by
N
[dm]n.g = (H de') Zg .
i=1

with Z, given by the sewing procedure. Also the normalization factor is completely fixed.

In the field theory limit @’ = 0, there are remarkable simplifications.




Gluon amplitudes at 1 loop

At 1 loop with 2 punctures, the string vertex depends on 5 parameters, 3 of which can be
fixed. We thus remain with 2 integration variables

z1 22 § n k
2 punctures: 21, 22 l l i
1 Schottky generator: k, &, n
I {22} 0 oo {k}
_______ L 5!
STV
. (KN a=t |
£ = %) N — 00

* |tis convenient to change variables and define

m=e " k=e? (0<v<7<00)



Gluon amplitudes at 1 loop

At 1 loop with 2 punctures, the string vertex depends on 5 parameters, 3 of which can be

fixed. We thus remain with 2 integration variables

z1 22 § n k
2 punctures: 21, 22 l l i
1 Schottky generator: k, &, n
I {290 0 o0 { K}

The variables T and v can be interpreted as the proper-time Schwinger parameters t;
and t, for the Feynman diagrams contributing to the 2-point function

t1 =2a'7, ty =2d'v

(Bern + Kosower)

In the field theory limit @’ — 0 the Schwinger parameters remain finite. This means that

o -0 = 7200, V— 00




Gluon amplitudes at 1 loop

* Soonlythecorner 7 — o, v — oo of the moduli space contributes to the amplitude

in the field theory limita’ - 0

* Discarding the contribution due to the tachyons, the 2-gluon amplitude becomes

2

(4m)2 \—p1 - po

A2 \€
Az (p1,p2) = —No™ 2 s (=2 ) 1o

11-7¢e I'(1 —¢)I'(1 —¢)

3—2  I(2— 2

€1 €2P1 P2

where d =4 — 2¢ and g — g u°

b1 b2
Hta -—
R

We interpret d as the number of
uncompactified dimensions, assuming that
there are d' =26—d compactified
dimensions which, in the field theory limit,
behave just as d’scalars coupled to the
gauge field (which we can safely ignore)

e The amplitude exactly agrees with the gluon polarization, computed with the
background field method, in Feynman gauge, with dimensional regularization. The
divergence in d = 4 can be removed with a standard wave-function renormalization

Za=1+

g2N 111
(4m)? 3 €




To check the consistency of the procedure and verify that gauge invariance is preserved,

Gluon amplitudes at 1 loop

we computed also the 3- and 4-gluon amplitudes at 1 loop.

In the 3-gluon amplitudes, one has to integrate with the string measure over the

following moduli

In the field theory limit ' — 0, we have 3 corners of the moduli space that contribute

2
M@i
3
)
1 megﬁi
3
2
! m@m{i
3

k=e2T zy=c¢

T — OO
Vy — OO

Vg3 — OO

T — OO
Vo — OO

Vg — QO

T — 00
Vo — OO

Vg — OQ

with

with

with

Vo — U3

Vo — U3

vy — U3

—27/2

y <3

= €

—21/3

Adding all 3 contributions leads

to
A = %1—;% Asyo
= (23125 — 1) Az
J
ds=1+ (11?21_;% — o4

in agreement with the
background field method




Gluon amplitudes at 1 loop

* The 4-gluon amplitude can be similarly discussed; in this case we have 4 types of
contributions corresponding to 4 different corners in the moduli space:

2 3 9 3 9
1 4 1 4 .
2 3 i 3¢°N 111
LT (4m)? 3 e 40
) = (Z;'Z% — 1) Aso
1 g2N 111
= | Zs=1 —— T
4 -+ (A7) 3 A 3

* The Ward identity of the background field method Z4 = Z3 = Z4 is satisfied!



Scalar amplitudes at 2 loops

The above analysis has been generalized to scalar amplitudes at 2 loops. Paolo et al

By shifthing the entire string spectrum (i.e. changing the value of the intercept) it is
possible to change the tachyon into a scalar with m? > 0 and obtain consistent results in

the limit a’ = 0.
J. Scherck

In this way we can study a massive @3 field theory using the bosonic string.

As an illustration, we consider the vacuum diagrams at 2 loops. The string measure at 2

loops is .

M] det (Tm 7) /2 x

1
2o = dk,, d&,, d K
’ /dVabc H [ o e kﬁ(nu - 5#)2

p=1

00 00 1
XH/ (1_kn — o a)
n=1 n=2

In the field theory limit, the Schottky multipliers k,, — 0, and thus we have

2
1 dk d&, dn _
z -~ M 1z M det (1 D/2
® a0 /dVabc H [kﬁ (Uu_gu)Ql ) (mT)

p=1



Scalar amplitudes at 2 loops

S —d/2
;dkl /de/ dm (logkl log ks — log? 771)}

Z L period matrix
normalization of the Reggeon vertex
Shifting the string spectrum a la Scherck, one finds
) = N3 2 2& 3-d /dkl /dk? / d771 [log k1+log ko+log(1—mn1)]
256(4m)d 1— 771
—d/2
[4 (log k1 log ky — log? m)}
There are 2 corners in the moduli space that contribute to the amplitude in the field
theory limit:
kl — 0 kl — 0

m —1 m — 0



Zo

Z9

Scalar amplitudes at 2 loops

In region i) after introducing the Schwinger proper times, we get

N392 1 . o0 o0 2
- < dt dt dt; e~ ™ (t1+ta+t3) 111 —d/2
i) 32(4m)d 2!/0 3/0 2/0 L (t1t2)

In region ii) after introducing the Schwinger proper times, we get

_ Ny 1 Tdts [ty [ dty e @bt (tity + tots + taty) /2
”)_32(47-(-)d3| 0 30 20 1 162 203 301

A single string amplitude has generated all vacuum diagrams of the ¢3 theory at 2 loops,
including the correct simmetry factors! Nice connection with the world-line formalism
Schubert et al

This 2-loop analysis has been later extended to gluon amplitudes by L. Magnea + R. Russo
+S. Playle + S. Sciuto

O=0 @




Concluding remarks

The operator formalism is very concrete and explicit

Many features of perturbative string theory can be explored in this way:

— -

geometric structure of scattering amplitudes field theory limit

It also provides a solid basis for studying some non-perturbative aspects of string theory

(see Marialuisa’s talk)

| was extremely fortunate to have had the opportunity to learn these things by working
with Paolo






Grazie Paolo!

not only for the many things you have

taught me, but also for the way you
have taught them to me and for your
friendship over all these years!

Happy Birthday!!!



