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String Amplitudes

Program to understand structure of perturbative string amplitudes
* kinematic structure and relation to QFT amplitudes
—e.g. KLT, double copy, BCJ, monodromy relations
* modular structure of integrands
* matching low energy expansion with susy and S-duality predictions

A subject dear to Paolo

e 1969 — Lorentz expansion for the Veneziano amplitude, with S. Ferrara

e 1972 — General properties of the dual resonance model, “DDF”, with E. Del Giudice, S. Fubini

e 1975 — Soft Dilations and Scale Renormalization in Dual Theories, with M. Ademollo, et al.

e 1976 — A Locally Supersymmetric ... Action for the Spinning String, with L. Brink, J. Scherk

® 1979 — Chiral Estimate of the Electric Dipole Moment of the neutron ... , with R.J. Crewther, G. Veneziano, E. Witten

e 1987 — N String Vertex and Loop Calculation in the Bosonic String, with M. Frau, A. Lerda, S. Sciuto
e 1988 — N String, g Loop Vertex for the Fermionic String, with M. Frau, K. Hornfeck, A. Lerda, S. Sciuto
e 2016 — Soft Theorems from String Theory, with R. Marotta, M. Mojaza

e 2020 — Universality of ultra-relativistic gravitational scattering, with C. Heissenberg, R. Russo, G. Veneziano
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The RNS formulation of superstrings

e The RNS formulation is based on two sectors
* Ramond — space-time spinors and fermions [ramond 1971]
* Neveu-Schwarz — space-time bosons [neveu, Schwarz 1971]

— globally supersymmetric worldsheet action [Gerais, Sakita 1971]

e Decoupling of negative norm states requires local symmetries
* Diffeomorphism invariance on the worldsheet [nambu 1970; Goto 1971]
* Local supersymmetry on the worldsheet [grink, Di Vecchia, Howe 1976; Deser, Zumino 1976]

L = —1g""8,a" 0z, — LY Y O,

* Weyl invariance in the critical dimension d = 10 [polyakov 1951]
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We construct an action for the spinning string which is locally supersymmetric and reparametrization invariant
using the techniques of supergravity. In a special gauge it is shown that the equations of motion and the constraints

are those of the Neveu-Schwarz-Ramond model.

e Gauge fixing local worldsheet symmetries leaves equivalence classes

*x metric g, = moduli
* gravitino x,, = super-moduli
* BRST formulation

e Functional integrals over g,, and Y, reduce to supermoduli space )1,

(0]0) h=0
dim My, = ¢ (1|0) or (1]1) h = 1 even or odd spin structure

(3h —3]2h —2) h >2

e Supermoduli enter non-trivially starting at genus 2
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The Gliozzi-Scherk-Olive projection

e The GSO projection selects the superstrings (ciozi scherk, Olive 1977]
* worldsheet spinors 1), x require specifying a spin structure s
* GSO projection = summation over spin structures s
— consistently with modular invariance of the amplitudes

¢ inequivalent summations project to different string theories
* Type [lA versus Type 1B [Green, Schwarz 1982]
* Heterotic E8 X E8 Versus Splﬂ(?)Q)/ZQ [Gross, Harvey, Martinec, Rohm 1985]

e independently for left and right movers
% cancellation of the holomorphic anomaly [gelavin, Kniznik 1986]
* via loop momenta and chiral splitting [veriinde, Verlinde 1988; ED, Phong 1988]
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Status of superstring amplitudes
e Tree-level: general amplitudes are known «: v, Schiotterer 2022]

e One-loop: spin structure summations using Riemann relations

eg Snowmass White paper [Berkovits, ED, Green, Johansson, Schlotterer, 2022]

e Two loops: some low multiplicity amplitudes are known
* four massless String amplitUdeS [ED, Phong 2005]; pure spinors [Berkovits 2005]
* ﬂve maSS|eSS String amplitUdeS [ED, Mafra, Pioline, Schlotterer 2020; ED, Schlotterer 2021]

e Three loops: no first principles construction realized so far
* both RNS and pure spinor approaches present obstacles
x coefficient of DOR* low energy effective interaction [Gomez, mafra 2014
*x conjectured RNS measure [cacciatori, Dalla Plazza, van Geemen 2008]
* conjectured four string amplitude [Geyer, Monteiro, Stark-Muchao 2021 |
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This talk: GSO projection and modular tensors

e Spin structure summations for higher multiplicity and higher genus
* spin structure summation implements space-time supersymmetry via GSO
* space-time supersymmetry greatly simplifies amplitudes
* what is the mathematical structure of spin structure summations ?

e For genus 2
* Explicit spin structure summation [ep, Hidding, Schlotterer 2022]
x Full six massless NS amplitUde [ED, Hidding, Schlotterer] in progress

e For arbitrary genus
* Reduce to summation over modular tensors [ep, Hidding, Schiotterer] in progress
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Compact Riemann surfaces of genus g

e Homology (3, 7) ~ 7Z*Y with intersection pairing J(-,-) — Z
* Canonical basis J(A;,2;) = J(B7,B;) =0, JA,By) =6y forro=1,.. 4

e Modular group Sp(2g,7) acts on Hy(>,7Z) leaving J(-, ) invariant

/A B b B B
v=(e )  ww=a (@) (y)
e Canonical basis of holomorphic one-forms w; in H(19(%)

%WJ:(SIJ % wJ:Q]J
Ar B

* Period matrix {2 obeys Riemann relations Q' = Q, Im (©2) > 0

* Moduli space My = {Qf = Q, Im () > 0}/Sp(4, Z) (minus the diagonal)
Mz ={Q'=Q, Im () > 0}/Sp(6,7Z) (modulo hyperelliptic)
M,, g > 4 Schottky problem
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Modular tensors

e Modular tensors transform under Sp(2g,7)
* tensor ¥ of rank r = (7,0) and weight (w, 0)
* transforms under (4 B) € Sp(2g,Z) by

Tholr o (det RY* Ry, - RIrj g/i/r R=CQ+D

* T is a section of a holomorphic vector bundle over Torelli space
* May be generalized to tensors of rank (r,7) and weight (w, w)

e Siegel modular forms are holomorphic with rank » = 0 and weight w
*x Sp(4,7): polynomial ring generated by Wy, Wg, Wig, Uio, W3y [1eus 1960
* Sp(6, Z) po|ynomia| ring with 19 generators [Tsuyumine 1986; Lercier, Ritzenthaler 2019]

e Modular tensors in mathematics and physics
* holomorphic [van der Geer 2015); non-holomorphic [Kawazumi 2016]
* modular graph tensors [ep, schiotterer 2020]
— generalizing genus 1 modular graph forms [ep, Green, 2016]
— generalizing higher genus modular graph functions ep, Green, Pioline 2018

(both of which arise in the o’ expansion of string amplitudes)
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Two-loop amplitudes for four massless strings

e Type Il in the RNS formulation (similarly Heterotic) [c0. Phong 20012005

) _ 27 A7) .
= g2 sl A ) 555 Gz, 2|02
A 88//\42 (detImQ)5 24y Y exp Sij (Z ZJ| )

1<j

* Kinematics s;; = —< (k; + k;)> with factorized e/&” with f" = k! — VK"
x ts(f1, f2, f3, f4)ts(f1, f2, f3, fa) ~ R* where R stands for the Riemann tensor
* Measure on X% interlaces kinematic and worldsheet data

Y = tA(z1,22)A(23,24) — SA(21, 24)A(22, 23)
Alz,w) = wi(z)wz(w) — wa(z)wi(w)
G(z,w|Q2) = —ln\E(z,w\Q)|2—i—27T(ImQ)I_JlIm/wIIm/wJ

* The prime form E(z, w|Q) generalizes ¥,(z — w|7) to higher genus

e Type Il in the pure spinor formulation (st 2005 Berkovits, Mafra 2005]
* generalized to include full supergravity multiplet of external strings
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Two-loop amplitude for five massless strings

e Amplitude for massless NS strings (conserving parity) =0 schiorerer 2021]

A =9§/de/ \d93\2/ Fs Fs
./\/l2 o

* the chiral amplitude is given by

Fs = T; Z {%I(zi) (eiti Vi + ki Tir) — Z Y tij gij}
i j#i
* in terms of the universal chiral Koba-Nielsen factor

zj
Ts = exp {iWQ”pIpJ + 2mip’ Z kZ/ wr + Z si; In E(z;, zj)}
i 2 i<j
* and universal meromorphic combinations

B (z) = 2mip’ + Z gz{jkj g,f’j — 9’ In Hv)(z; — 2zi| Q)
JF#i
* kinematic factors adapted to the five-point amplitude
t = tg(fg, f37 f47 f5) tio = tS([fla f2]7 f37 f47 f5) & CyC”C

* and holomorphic forms generalizing those of the four-point amplitude

37] = 4812 (.UI(4)A(5, 1)A(2, 3) -+ CyCl(l, 2, 3, 4, 5)
Tir = (tis — 2tie1 - kg){wI(S)A(l, 5YA(2,4) + cyl(3, 4, 5)} + oeyel(2, 3,4, 5)
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Spin structure sums for higher multiplicity

e Major efforts go into carrying out the spin structure sums
* for the four and five genus two string amplitudes using
— the Riemann identities
— the Fay trisecant identity (cfr bosonization)
— and every other trick we could think of
* for higher multiplicity these methods alone do not appear promising

— the problem was also considered in [Tsuchiya 2012; 2017; 2022]

e Fermion correlator for spin structure 0 is given by the Szego kernel
* Restrict to even spin structures and NS external states

SI([7w
— (Y (2)p(w)) = Ss(z,w) = ﬂ[g[(()]\(él)uE!S)w)

— the Riemann 9-function for spin structure § = [§'|8"] € {0, 1?9 is defined by
I[8](¢1R) = 3 exp {m(n LY N 4+ 8 + 2mi(n + 8 (¢ + 5”)}

nez2
* String amplitude integrands involve cyclic products of Szego kernels
05(Z17 T Zn) — 85(Z17 22)55(2’2, 23) T 85(zn—17 Zn)S5(Zn7 Zl)

— they also involve other products that may be treated similarly
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Spin structure sums for genus 2

e Theorem 1 t0. Hidding, Schiotierer 2027]

The spin structure sum of Cs(z1,--- , z,) for genus 2 and arbitrary n
reduces to the spin structure sums for the cases n = 0,2, 3,4

— The proof is constructive and formulated in the hyper-elliptic formulation
— The result will be translated into the ¥-function formulation
— The spin structure sums for n = 0, 1, 2, 3, 4 are well-known

e Every genus two surface ¥ is hyper-elliptic
x namely a double cover of the Riemann sphere C = C U {}
* ramified over 6 branch points uq, - - - , ug
x points z € Y parametrized by z = (z, s) where s* = (x — uy) - - - (x — ug)
* Moduli space M isomorphic to {uy, -+ ,ug}/SL(2,C) x Gg
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Sketch of proof of the Theorem

* An even spin structure 0 is isomorphic to a 3 + 3 partition of branch points
{’U,l,"',’U,G}ZAUB AﬂB:@ |A|:|B|:3

(an odd spin structure is isomorphic to a 1+5 partition)

* The Szego kernel is given in terms of this partition by

1

SA(CUl)SB(CBQ) + SB(Cvl)SA(CUQ) |: dajl d;c2 :|2
2(xy — x2) s(x1) s(x2)

where s4(x)sp(z) = s(x) and s4(x)” and sp(x)? are polynomials given by

sa@ =@ -w)  sp@)’=][@—wu)

rcA reB

S(S(Zla 22) —

* The cyclic product of Szego kernels is thus given by (using x,11 = x1)

[ i (sa(zi)sp(xisv1) + sp(wi)sa(xip1) dxy---dx,
2N T190T93 * * * Tni s(xy) -+ s(xn)

Cs(z1, -+ 2n) =

* All spin structure dependence is contained in polynomials with 2m <n

m

Qé(ila o 7im|j17 o 7]m) — H SA(xia)QSB(xja)2 -+ (A — B)

a=1
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Sketch of proof of the Theorem (cont’d)

e Lemma 1
All spin structure dependence of ()5 is polynomial in £(1;1, E};Q — £§1, £§2

2(151 — %04252 — 2—%,u4 sA(a:)z = 2% — o2’ 4+ agx — Qa3
0 = (1B + a2fr) — 513 sp(x)? = 2° — Biz” + Box — B
€7 = o B — Fuo s(z)? =a° — ma’ + - — psw + pg

e Lemma 2: The trilinear relations
Every trilinear £ £3“4 7% may be exprel.ise%as a po2/%/nomia/
of total degree two in the combinations €5, £5s° and €5~ whose
coefficients are polynomials in [i1, - | [ig

e Combining Lemmas 1 and 2 implies that all spin structure dependence
of (s and Cj is given by a quadratic polynomial in £§1,£§2,£§2
with coefficients that depend only on ;.

e The spin structure sums of the linears £5'“? and of the bilinears £5'"2 03"
are determined by n-point functions with n < 4,
which concludes the proof of the Theorem.
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SL(2,C) tensorial structure of the trilinear relations

e Component form of the trilinear relations e.g.

11,2 11,12 12.2 2,11 11 11 12
(eA1)3 — Ha(ls )™ psls L5 b oeell22 pe(8s™)”  pmybs”  Ougusls  3uowpels | Hamsts
6 20 4 6 4 50 160 20 40

12 2,22 22 3 2 2
B 9#3#655 B M5£5 3#4#655 B 3py gy s B 3uopy B 8luspue  Yuopgpg
80 16 20 2000 1600 320 6400 400

e The ¢}" transform under the 3-dimensional irrep of SL(2,C) by

6
e — J gl g, 5" g = (: g) € SL(2,C) J=1](vu;+67"
j=1

e The trilinear relations in SI.(2, C) tensorial form

(ayag pagay pasag) __ § gb1b2(ay--ay pasag) peico
ajay _ 3 nga102b1-by pcico pezey

* where M is the symmetric rank 6 tensor under SL(2, C) with components

111111 111112 ps 111122 py

6 15
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Sp(4,7Z) tensorial structure of the trilinear relations

e Correspondence between hyper-elliptic and J-function formulations
* via standard Thomae formulas and holomorphic 1-forms w;

dx x dx .
W = o = — wi(z) = wu(z) o'
s(x) s(x)
* we obtain the modular tensors £s and 2 (6 transforms)
Egb = o"; O'bJ £§J Mcflm% — (det 0)_2 O'aljl . 0a6]6 9)1{1“'16
9[6](0)*° 1
el — T gl m{ 0)(0) 16 = W, 2019[1,](0) - - - 8'99[wg] (0)
51 \1110
* where v, - -+ | vg are the six (distinct) odd spin structures

e Trilinear relations are between Sp(4,7) modular tensors

J1Jo(I1-++1y

(I11g @l3ly @lslg) Islg) @K1Ko
2 25 25 = 9)11 25 25 €J1K1 €J2K2—|—'-'

0

I19 3 INIgJy-Jy aEK1Ko @K3Ky



Spin structure sums for genus g > 2
e Generic surfaces for genus g > 3 are no longer hyper-elliptic

e Theorem 2
The spin structure sum of Cs(zy1,--- , z,) for arbitrary genus and arbitrary n
reduces to the spin structure sums of z;-independent modular tensors

* Proof: is constructive by a descent method
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Summary and outlook

e Two-loop superstring amplitudes
* explicit summation over even spin structures
* paves the way to higher multiplicity amplitudes
* relate kinematics to QFT amplitudes ?

e Higher loops
* even spin structure dependence reduced to modular tensors
* what is the dimension and structure of modular tensor spaces ?
* which subspace is needed for string amplitudes ?
% can one build an efficient library ?
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Happy Birthday Paolo



