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Global Symmetries in 2025

Finite global symmetries form fusion (higher) categories =topological defects
of dimensions d− 1, · · · ,0, that can be composed and satisfy consistency
conditions.

Quick recap for those who have not paid attention in the last 10 years:

• Higher form symmetries: [Gaiotto, Kapustin, Seiberg, Willett]

Group-like symmetries acting on extended operators.

• Non-invertible symmetries: [Kaidi, Ohmori, Zheng][Choi, Cordova, Hsin, Lam,

Shao][Bhardwaj, Bottini, SSN, Tiwari] p = 0, · · · , d− 1 dimensional defects
compose non-invertibly

Da
p ⊗Db

p =
⊕
c

N c
abD

c
p

These things form fusion higher-categories.

Many reviews: [SSN: 2305.18296] [Brennan,Hong: 2306.00912] [Bhardwaj et al: 2307.07547]

[Luo, Wang2: 2307.09215] [Shao: 2308.00747]

Overview talks for hep-th audiences:
Strings 2025 [McGreevy], Eurostrings 2023 [Shao], Strings 2024 [SSN].



Main development:
The synergy between hep-th, with cond-mat, math, and even quantum info
and amo, has become invaluable.

hep-th

amo

cond-mat

q-infomath



”Synergy by Symmetries”

See also our KITP program from spring 2025
https://www.kitp.ucsb.edu/activities/gensym25



math
Theory and classification of higher-fusion categories.

Progress: Classification of fusion 2-categories, i.e. finite symmetries of 2+1d
theories. [Decoppet, et al 2024:] Any (all boson – where the transparent, i.e. braid
trivially with everything else, fermion lines have +1 spin) fusion 2-category is
related by finite gauging to

(G(0), ω)⊠ condensation completion of B

where B is a braided fusion category. I.e. the SymTFT of any fusion 2-category
is

Dijkgraaf Witten theory for G with twist ω



cmt

Goal: study phases and phase transitions, using microscopic lattice models

• Studying beyond Landau phases and phase transitions
⇒ lattice models with categorical symmetries [Aasen, Fendley, Mong][Inamura,

Ohmori]

• Development of tensor network methods to numerically study phases
[Verstrate group]

• Anomalies: can one realize a symmetry in a lattice model with tensor
product Hilbert space, and on-site action? E.g. [Else, Nayak][Kapustin]



qi/amo
Fault-tolerant, error-correcting universal quantum codes,

implementable in near future quantum devices/amo setups

• Overcome no-go theorem for fault tolerant transversal quantum codes
(Eastin-Knill) using lattice models with generalized symmetries

• Real-wold setups: characterize open quantum systems (mixed states),
symmetries in mixed states. [Ma, Turzillo, Meng Cheng, Ellison, etc]

• Magic state (states with actual quantum advantage) preparation from
non-abelian topological order [Davydova et al][Huang, Chen]



If you still find yourself (secretly?) thinking:
”... categorical symmetries are exotic, physically useless, mathematical constructs for
a niche subcategory of theorists in hep-th...”

hopefully this talk will debunk this misconception.

Plan:

1. Non-Invertible Symmetries in hep-th

2. SymTFT Diplomacy: Synergies with other fields: HEP, CM, AMO/QI

• Pure and Mixed State Phases from SymTFTs
hep-th cmt qi/amo

• Categorical Anomalies from SymTFT
hep-th cmt

• Quantum Simulators and Computing using SymTFTs
qi/amo



1. Non-Invertible Symmetries in hep-th



Duality Defects

Self-dualities give rise to non-invertible symmetries.

• 1+1d Kramers-Wannier (KW) duality symmetries:
Critical Ising CFT has a Z2 spin flip symmetry η and

N ⊗N = 1⊕ η

This originates from the KW duality g→ 1/g of the transverse field Ising
chain

H = −
∑
j

σz
jσ

z
j+1 − g

∑
j

σx
j .

At g = 1, this becomes a non-invertible symmetry.

• 3+1d theories: [Kaidi, Ohmori, Zheng][Choi, Cordova, Hsin, Lam, Shao] using
self-duality symmetries D

QFT ∼= QFT/D ⇒ N3 ⊗N †
3 = C = condensation defect



Exist also in any even spacetime dimensions, d = 2n, where gauging an
(n− 1)-form symmetry gives back an (n− 1)-form symmetry.

• 6d (2,0) theories:
[Lawrie, Yu, Zhang][Apruzzi, SSN, Warman][Bonetti, del Zotto, Minasian]

Self-duality from Green-Schwarz (GS) automorphisms, i.e.
automorphisms of lattice of BPS string charges

GS : ΛBPS → ΛBPS

combined with

– stacking a 2-form symmetry SPT exp(iπ
∫
M6

C3 ∪C3)

– gauging the 2-form symmetry, i.e. summing over background fields C3

result in non-invertible G-ality defects, where G= group formed by the
GS-automorphisms.



For example so(8) theory has a non-invertible, duality, and S3-ality symmetry:
The order 2 and 3 GS-automorphisms are shown in black, and blue arrows are
gauging/stacking TQFTs.



Gauging Outer Automorphisms

Any outer automorphism can be gauged to give rise to a non-invertible
symmetry [Bhardwaj, Bottini, SSN, Tiwari][Hsin, Kobayashi, Zhang]

Example: O(2) gauge theory as U(1)/Zcc
2 , gauging charge conjugation.

# There is a 1-form symmetry generated by Dα := eiα
∫
∗F .

# Charge conjugation maps ∗F →−∗ F and so

Zcc
2 : Dα→ D−α

The invariant combination is

Dinv
α = Dα ⊕D−α

which has non-invertible fusion ∗ is

Dinv
α ⊗Dinv

α = 1⊕Dinv
2α

* this depends on α and also should include condensation defects on the RHS.



ABJ Anomalies

Any ABJ anomaly – usually viewed as a non-symmetry – can be
reinterpreted as a non-invertible symmetry. [Choi, Lam, Shao][Cordova, Ohmori]

Example: 4d QED with massless charge 1 Dirac fermion

LQED+Ψ =
1

4e2
FµνF

µν + iΨ̄ (∂µ − iAµ)γ
µΨ

the axial current jµ = 1
2 Ψ̄γ5γµΨ is not conserved due to the ABJ anomaly

d ⋆ j =
1

8π2
F ∧ F

Define an operator dressed by 3d Topological QFT that has opposite anomaly

N 1
N
(M3) =

∫
[Da] exp

(∫
M3

2πi

N
⋆ j +

iN

4π
ada+

i

2π
adA

)
.

It is topological, but satisfies non-invertible fusion

N 1
N
×N †

1
N

= C = condensation defect for 1-form symmetry



Physical Implications I: Modified Crossing Relations

Non-invertible symmetries lead to modified crossing relations for
S-matrices!
Example: (1+1)d CFTs have non-invertible symmetries, generated by lines L

Relevant, integrable deformations can preserve some of L .
⇒ IR are gapped vacua. L constrains S-matrix of kinks through Ward ids:

[Copetti, Lucia Cordova, Komatsu] showed: crossing incompatible with
symmetry/integrability/unitarity. Consistency implies modified crossing

Sab
dc (θ) =

√
dadc
dbdd

Sbc
ad(iπ− θ) , da = ⟨La⟩ (1)

Modified crossing 2+1d see: [Mehta, Minwalla, Patel, Prakash, Sharma]

Status: Modified crossing direct implication of non-invertible symmetries.
Even more compelling if extendable to higher dims.



Physical Implications II: Classifying Symmetric Phases

Non-invertible Symmetries lead to new IR phases, and new second order
Phase Transitions!

Landau paradigm:
A 2nd order phase transition is a symmetry breaking transition for a group G.

• Gapped Phases: G spontaneously broken (SSB) to subgroup H . Phase has
|G/H| vacua, which are acted upon by the broken symmetry.

• Phase transitions:
Unbroken symmetry group Hi ⊂ G in each gapped phase, then there is a
transition if H1 ⊂ H2

• Order Parameters:
field transforming trivially in H1, non-trivially in H2.



Categorical Landau paradigm: [Bhardwaj, Bottini, Pajer, SSN][Bhardwaj, Pajer, SSN,

Warman]:

S be a non-invertible symmetry, in particular very sharp for 1+1d fusion
category symmetries.

• Gapped Phases:
1-1 with gapped BCs of the SymTFT for S, which are 1-1 with Lagrangian
algebras L of the Drinfeld Center of S.

• Phase Transitions:
Two gapped phases are connected by a phase transition if the associated
algebras Li share a common, subalgebra A ⊂ L1 ∩L2.

S Gapped Phase ←− CFT −→ S Gapped Phase’

• Order Parameters:
Are topological defects that are shared between the symmetry Lagrangian
algebra and the condensable algebra

⇒ Categorical Landau Paradigm [Bhardwaj, Bottini, Pajer, SSN]

Status: systematic approach to classification, and new phases



2. Synergies with other Fields



The Synergy through SymTFT Sandwiches

• Pure and Mixed State Phases from SymTFTs
hep-th cmt qi/amo

• Categorical Anomalies from SymTFT
hep-th cmt

• Quantum Simulators and Computing using SymTFTs
qi/amo

All three cross-connections are done through the so-called SymTFT sandwich
construction. Lets recap this.



Symmetry TFT (SymTFT) Sandwich

[Ji, Wen][Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-E, Hosseini, SSN][Freed, Moore, Teleman]

Let T be a QFT with finite symmetry S in d dimensions. The SymTFT is a
d+ 1 dimensional TQFT obtained by gauging S in (d+ 1) dims:

SymTFT

Bsym
S Bphys

T

= O

TS

For G a group, this is the Dijkgraaf Witten theory for G.

• Topological defects of the SymTFT: ”Drinfeld center” of the symmetry
category. In d+ 1 = 3: anyons, i.e. topological lines

• Bsym
S = Symmetry boundary, gapped, realizes symmetry. Dirichlet gives S.

• Bphys
T = Physical boundary, encodes dynamics

• Generalized charges: local operators end on both BCs

SymTFT has natural origin in holography, e.g. topological couplings in
supergravity, and in fact in CM is referred to as ”topological holography”



Interfaces and SymTFT Club Sandwiches

We can study topological interfaces from the SymTFT of S to other TQFTs (or
topological orders), by condensing topological defects:

SymTFT(S) SymTFT(S ′)

Bsym
S I Bphys

Studying this configurations, allows us to

• categorical Landau phases, phase transitions for pure and mixed states

• anomalies of categorical symmetries

• derive new magic state preparations.



Club Quiche

For concreteness consider 1+1d, with 0-form non-invertible, fusion category
symmetry S. The interface (club quiche) is characterized as follows:

SymTFT(S) SymTFT(S ′)

I

• Anyons that end (condense) on I are given by a condensable algebra
A = ⊕anaa

• Anyons that are mutually non-local with those condensed confine

• Uncondensed anyons that braid trivially with A are de-confined
⇒ give rise to map of anyons between the TOs

SymTFT(S ′)= Trivial: I= gapped BC, A= Lagrangian algebra



Example: SymTFT for G

The anyons in the SymTFT for a (non-abelian) group G, are labeled by

([g],R)

• conjugacy classes [g]

• representations of the centralizer group Hg of g ∈ [g].

Condensable algebras for G are classified [Davidov, Simmons][Gai, SSN, Warman to

appear for anomalous G]: they are given by (H,N,γ, ϵ), where N ◁H < G.

Examples:

LG =
⊕

R∈irrep of G

([id],R). As Bsym: G

LRep(G) =
⊕
[g]

([g],1). As Bsym: non-invertible symmetry Rep(G).

Note Rep(G) is non-invertible for all non-abelian groups.



Defusing SymTFTs

G = ZN 0-form symmetry in 1+1d. The SymTFT is the DW theory for ZN with
action

N

∫
b1 ∧ da1

Topological defects are

e(γ) = e2πi/N
∫
γ
b1 m(γ) = e2πi/N

∫
γa1

with eN = mN = 1. They braid non-trivially

e(γ1)m(γ2) = e2πi/N link(γ1,γ2)me

Gapped Boundary Conditions: vanilla Dirichlet and Neumann

Le =
⊕
i

ei , Lm

⊕
i

mi

But there are more condensable algebras, labeled by subgroups and cocycles.



Application I: Pure State Phases from SymTFTs hep-th cmt

Pure state gapped phases: [Bhardwaj, Bottini, Pajer, SSN] Physical boundary is
gapped, i.e. given by a Lagrangian algebra.

SymTFT

Bsym
S Bphys

top

=

TQFTS

O

• Classifying gapped phases⇐⇒ classifying gapped BCs of the SymTFT.

– SPT (symmetry protected topological phase): no non-trivial local OP O

– SSB (spontaneous symmetry breaking): Oi, i = 1, · · · , n local OPs

• # of vacua = # of defects that end on both boundaries (order parameters)

• Symmetry action from braiding in the SymTFT



Example: Rep(S3)-symmetric Gapped Phases

Rep(S3) (1, 1−, E irreps) E ⊗E = 1⊕ 1− ⊕E. SymTFT has 4 gapped BCs:

LS3
= ([id],1)⊕ ([id],1−)⊕ 2([id],E)

LS′
3
= ([id],1)⊕ ([id],E)⊕ ([b],1)

LRep(S3)′ = ([id],1)⊕ ([id],1−)⊕ 2([a],1)

LRep(S3) = ([id],1)⊕ ([a],1)⊕ ([b],1)

Trivial Z2 SSB Rep(S3)/Z2 SSB Rep(S3) SSB

[id],1
Rep(S3) S3

[id],1

[b],+

Rep(S3) S′
3

([a],1)

([id],1)

Rep(S3) Rep(S3)
′

([a],1)

([id],1)

([b],+)

Rep(S3) Rep(S3)

v0 Rep(S3) v1 v2

1−

v0 v1 v2

E

1−

v0 v1 v2

E

1−1−



Gapless Phases: Club Sandwich

[Chatterjee, Wen][Bhardwaj, Bottini, Pajer, SSN][Bhardwaj, Pajer, SSN, Warman] Use an
interface to construct a phase transition by inputting a 2nd order phase
transition for the smaller symmetry S ′:

SymTFT(S) SymTFT(S ′)

Bsym
S IA Bphys

S′

= SymTFT(S ′)

B′
A Bphys

S′S

=

T S

The Interface provides a map between the two TQFTs, and thus also between
the symmetry actions. It allows mapping an S ′-symmetric phase transition,
e.g. for Z2 the Ising transition, into an S-symmetric one.

This constructs an S-symmetric gapless phase, in which only the symmetry S ′

acts faithfully on the gapless degrees of freedom.

Examples:
RepG symmetric CFTs, Haagerup-symmetric gapless phase [Bottini, SSN]



Physical Application II: Mixed State Phases from SymTFT

hep-th cmt qi/amo

Many motivations, from holography, to real-world systems to quantum
computation setups, that are not isolated pure states, but usually system in
mixed states. What can we say about the possible symmetric phases?

Fix a Hilbert space (H, ⟨, ⟩).
Density matrix is a hermitian operator ρ = ρ†

ρ =
∑
n

pn|ψn⟩⟨ψn| , 0 ≤ pn ≤ 1 ,
∑
n

pn = 1 .

Pure: ρ2 = ρ, i.e. ρ = |ψ⟩⟨ψ|.



Mixed States and Symmetries

Consider finite group symmetries G at first: Ug unitary representation onH

• Strong Symmetry: Ugρ = eiθgρ for all g ∈ G

• Weak Symmetry: UgρU
†
g = ρ for all g ∈ G

For non-invertible symmetries s ∈ S:
We require that for all s ∈ S there is s† ∈ S such that

s⊗ s† = 1⊕
⊕
i

miai ≡ 1⊕ a

Let Ds be a representation onH, with D†
s = Ds† :

• Strong Symmetry: Dsρ = csρ for all s ∈ S

• Weak Symmetry: DsρD
†
s = |cs|2ρ for all s ∈ S



Purification

Define a pure state onHL ⊗HR, whereHL
∼=HR

∼=H:

|ρ⟩⟩ ≡ 1

Tr(ρ2)

∑
n

pn|ψn⟩|ψn⟩ ∈ HL ⊗HR .

The strong symmetry action becomes:

Dsρ = csρ → (Ds,L ⊗ 1R)|ρ⟩⟩ = cs|ρ⟩⟩

ρD†
s = csρ → (1L ⊗Ds,R)|ρ⟩⟩ = cs|ρ⟩⟩ .

The weak symmetry action becomes:

DsρD
†
s = |cs|2ρ → Ds,L ⊗Ds,R|ρ⟩⟩ = |cs|2|ρ⟩⟩



SymTFT for Mixed States

Consider the SymTFT for the Choi state: The symmetry is SL ⊠ SR, satisfying
the SWAP* invariance:

SR = SL .

So the SymTFT we consider is

SymTFT(S ⊠ S)

Questions:

# Which BCs give rise to strong symmetries?
# Which BCs correspond to gapped phases, that are mixed phases, i.e. after
tracing out one Hilbert space, give rise to a consistent density matrix?
# Similar for weak symmetries.

SymTFT solution for categorical symmetries [SSN, Tiwari, Warman, Zhang –quant-ph]

SymTFT solution for groups: [Luo, Y.-N. Wang, Bi][Qi, Sohal, Chen, Stephen, Prem –

cond-mat]



Mixed State (Lagrangian) Algebras

Not all Lagrangians in SymTFT(S ⊠ S) are admissible. Let

L =
⊕
aL,bR

naL,bRaLbR ,

What is the strong symmetry BCs?

Lstrong
S = (LS)L ⊗ (LS)R

Conditions on gapped boundary conditions L:

1. T=SWAP* Invariance:
naL,bR = nbL,aR

2. Positivity:
naL,bR ≤ naL,aR

nbL,bR

We call such algebras mixed state (Lagrangian) algebras.



Mixed Phases

Depending on the properties of Lwe get different type of gapped phases:

• Pure state phases: from factorized Lagrangians

• Non-factorized L: Mixed state SSB or SPT.
A particularly interesting type of algebra is condensing diagonal charges:

naL,bR ̸= 0 , naL,1 = n1,bR = 0 ,

i.e. L contains only the diagonal gauge charge, without the off-diagonal
terms, then the resulting gapped phase will have a weak symmetry.

⇒ Strong-Weak SSB (SWSSB)



Examples: Strong Symmetric Phases

Assume that there is no explicit breaking of the strong symmetry, i.e.
Tr(ρOi) = 0 = Tr(ρOiρO†

i ).

Warmup: Phases with Strong Z2 Symmetry The mixed state Lagrangians are

Lsym = LZ2×Z2
= (1⊕ eL)⊗ (1⊕ eR)

LRep(Z2×Z2) = (1⊕mL)⊗ (1⊕mR) .

Lweak = 1⊕ eLeR ⊕mLmR ⊕ eLmLeRmR

The first two factorize, the last is a proper mixed phase:

=⇒ Z2 SSB

eLeR

eL, eR

LZ2×Z2
LZ2×Z2

=⇒ Z2 SWSSB

eLeR

LZ2×Z2 Lweak

In the SWSSB the combination mLmR braids trivially with the OP and thus
remains a, now weak, symmetry.



Non-Invertible Symmetric Mixed Phases

The main advantage of the SymTFT approach is to tackle non-invertible
symmetries, and higher dims.
Example: Strong Rep(S3) Symmetry.

=⇒ Rep(S3) SWSSB

aLaR

bLbR

Lstrong
Rep(S3) L1

=⇒ (Rep(S3)/Z2) SWSSB

2aLaR

Lstrong
Rep(S3) L2

=⇒ Z2 SWSSB

bLbR

Lstrong
Rep(S3) L3

=⇒ (Rep(S3)/Z2) SSB, Z2 SWSSB

2aLaR, aR, aR

bLbR

Lstrong
Rep(S3) L4

Corroborated with lattice models.



Weak and Strong Symmetric Phases

So far we started with a strong symmetry. How to get a weak symmetryW as
a starting point?

Start withWL ⊠WR symmetry, and condense a diagonalW symmetry:

SymTFT(WL ⊠WR)→ SymTFT(W) ,

Input the strong symmetry Lstrong
W = LW,L ⊗LW,R but condense

Aweak
W =

⊕
w

nwwLwR .

Club-sandwich setup:

SymTFT(WL ⊠WR) SymTFT(W)

Bsym = Lstrong
W Aweak

W Bphys = Lphys



Not all Symmetries can be Weak

Consider the general fusion

Wa ⊗Wb = ⊕cN
c
abWc

these are not always bompatible with the weak symmetry:

DwρD
†
w = |cw|2ρ

Consistency of this with the fusion means

|ca|2|cb|2ρ =Wa(WbρW
†
b )W

†
a =

(⊕
c

ncabWc

)
ρ

(⊕
d

ndabW
†
d

)

If all Wa are weak:

RHS =
⊕
f

mfWfρW
†
f =

∑
f

|cf |2ρ

i.e. the fusion is invertible and no sum over f .



Example of Weak Non-Invertible Phases

Consider Ising with the initial doubled TO

SymTFT(IsingL ⊠ IsingR) = SymTFT(IsingL)⊠ SymTFT(IsingR)

Each Ising center is a double, and we have simple lines 1, N , η for L and R:

N2 = 1⊕ η , η2 = 1

This is also the Tambara-Yamagami category for Z2. We make the duality N
weak and keep the Z2 strong: The resulting SymTFT is that of

TY(Z2×Z2) : diagonal bi-character and trivial Frobenius-Schur indicator, i.e. Rep(H8)

Full classification of phases possible via club sandwich setup.



Future Directions

• Phases in higher dimensions – IR phases of gauge theories.

• Key input: SymTFT. For 2+1d: fully classified. [Decopet, et al] results in full
classification of gapped phases (assuming input braided fusion
1-categories) [Rui Wen][Bhardwaj, et al]

Example of new types of phases:
Spontaneously Non-uniform Entangled Phase (SNEP):
multiple vacua, with different TOs, e.g. from a 2Rep(G(2)) symmetry

DW(Z2) ⊞ Triv

(Z(1)
2 -SSB) (Z(1)

2 -Triv)

• Lattice models: again for 2+1d possible thanks to classification result
[Inamura, Huang, Tiwari, SSN]

• Applications to mixed phases in holographic/string theory settings, see
also [Heckman, Hubner, Murdia]



Physical Application III: Categorical Anomaly Matching

’t Hooft anomalies for global symmetries provide stringent constraints on
RG-flows. Given a UV and an IR theory, connected by RG flow

TUV → TIR

the question is how symmetries of these theories constrain the possible IR
outcomes.

Coarse criterion: an anomalous symmetry cannot be trivialized in the IR.
”There is no fiber functor”.

Many interesting effects already for higher-form symmetries: symmetries in
the UV and IR might not be the same!

• Part of the symmetry might trivialize

• There can be emergent symmetries

• Fractionalization/Transmutation: ”Symmetries don’t stick to their
symmetry degree”, e.g. 0-form symmetries can act on extended operators.
[Barkeshli et al][Seifnashri, Seiberg]



Anomalies for Non-Invertible Symmetries

This problem is even more severe for non-invertible symmetries:
no quantification of anomalies until now.

We have a way of specifying whether a categorical symmetry is anomalous or
not (”fiber functor”), e.g. [Thorngren, Wang]

F : C → Vec

but not how to do anomaly matching.

⇒ New Categorical Anomaly Matching framework [Antinucci, Copetti, Gai, SSN]

... Using SymTFT.



Motivation

• Global symmetries are topological defects: should have some robustness
along RG-flows.

• RG-interfaces [Gaiotto]

TUV TUV + λ
∫
O

;

RG

D D

TUV TIR

IRG

D F (D)

Adding a relevant deformation along
half-space in the UV: RG-interface

The map on the symmetry generators
D that form groups is

φ : GUV → GIR , φ∗ωIR = ωUV

What replaces this for categories?
Tensor functor

F : CUV → CIR

Satisfies consistency conditions with
the fusion and associators:
F (D1)⊗ F (D2) ∼= F (D1 ⊗D2)



How to quantify anomalies of categorical symmetries?

[Antinucci, Copetti, Gai, SSN]

Consider short exact sequences of tensor functors:

N I−→ C P−→ S

here I is injective, and P surjective.

im(I) = ker(P )

Exactness implies that N is anomaly free – it has a map to the trivial
symmetry, Vec.

N is a normal subcategory, i.e. the kernel of surjective functor. Similar to
normal subgroups.

We define a category that does not have a non-trivial normal subcategory to
be an anomalous simple category (ASCy). Any category S that fits into an
exact sequence with N maximal is an ASCy, and captures aspects of the
anomaly of C.

Limitations: only developed for fusion categories, and very tedious. Recast in
terms of SymTFT, and extend to higher dim.



RG-Interfaces in the SymTFT

y

z

x

Bsym
UV Bsym

IR

Bphys
UV Bphys

IR

Z(CUV) Z(CIR)IF

IRG

TUV TIR

Bsym
UV

Bphys
UV

Bsym
IR

Bphys
IR

Z(CUV) Z(CIR)

IF

IRGTUV TIR



SymTFT Realization of Tensor Functors: RG-Quiche

Bsym
UV Bsym

IR

Z(CUV) Z(CIR)

IF

SymTFT Matching Equation (ME):
The interface corresponds to a tensor functor iff

(ME) : Bsym
UV ×IF = Bsym

IR .



Injective and Surjective Functors

• F : CUV → CIR injective: CUV acts faithfullyin the IR
IF is given by condensing an electric algebra AF ⊂ LIR

• F : CUV → CIR surjective: no emergent symmetries
AF is given by an magnetic algebra AF ∩LUV = 1

The short exact sequence N → C → S becomes a triple club sandwich, and N
is a normal subcategory:

Bsym
N Bsym

C Bsym
S

Z(N ) = Z(C)/AI Z(C) Z(S) = Z(C)/AP

II IP

a ∈ AI 1



SymTFT Realization of Ascies

Anomalous Simple Categories (ASCies) Si are categories without any
non-trivial normal subcategory.

For given C, there can be several choices of maps Pi with maximal kernel
Nmax,i and Si:

Nmax,i
Ii−→ C Pi−→ Si .

In the SymTFT ASCies are categories S such that SymTFT(S) does not have
non-trivial magnetic algebras A∩LS = {1}.

This criterion makes it straightforward to determine if a symmetry category
also is an ASCy.



Example: Warmup Anomalous Groups

A short exact sequence of finite groups, for N is a normal subgroup of G

1→ N → G
p−→ G/N → 1 ,

gives rise to a short exact sequence of symmetry tensor categories

VecN → VecωG
p−→ Vecω

′

G/N

if ω ∈ H3(G,U(1)) is
ω = p∗(ω′)

Consider Zω=4
8 . The largest normal subcategory is N = VecZ2

which fits into
two ses:

VecZ2

I−→ Vecω=4
Z8

P1−→ Vecω=1
Z4

VecZ2

I−→ Vecω=4
Z8

P−1−→ Vecω=−1
Z4



In the SymTFT the embedding of Z2 is realized in terms of the electric
condensable algebra

AI = 1⊕ e2 ⊕ e4 ⊕ e6

The surjection is obtained from the magnetic algebras

AP1
= 1⊕m4 , AP−1

= 1⊕ e4m4 ,

and
SymTFT(Zω=4

8 )/AP1
= SymTFT(Zω=1

4 ) ,

SymTFT(Zω=4
8 )/AP−1

= SymTFT(Zω=−1
4 ) .

The situation can be summarized succinctly via the RG-quiche:

VecZ2 Vecω=4
Z8

Vecω=±1
Z4

Z(VecZ2
) Z(Vecω=4

Z8
) Z(Vecω=±1

Z4
)

II IP±1



ASCies for Non-Invertible Symmetries

Ising = TY(Z2) has a Z2 subsymmetry, which is not normal: Ising is an ASCy
itself.

TY(Z4,+) : N ⊗N = 1+ a+ a2 + a3 , a4 = 1

From the analysis of algebras in the SymTFT(TY(Z4,+)) we find

VecZ2 TY(Z4,+) Vecω=1
Z4

Z(VecZ2
) Z(TY(Z4,+)) Z(Vecω=1

Z4
)

II IP+

VecZ2 TY(Z4,+) VecωZ2×Z2

Z(VecZ2) Z(TY(Z4,+)) Z(VecZ4)

II IP−



There are two inequivalent Z2 ASCies:

Vecω=1
Z4

VecZ2
TY(Z4,+)

VecωZ2×Z2

I

P+

P−

.

I.e. In an RG-flow, starting with a UV symmetry TY(Z4,+) one can trivialize
Z2 in two ways, reaching either Vecω=1

Z4
or VecωZ2×Z2

.



Future Directions

SymTFT approach to ASCies and Categorical Anomaly Matching extends to
higher-dimensions, e.g. connection to Wang-Wen-Witten, symmetry
fractionalization/transmutation and Lieb-Schulz-Matthis anomalies
(including discrete spacetime symmetries). See [Antinucci, Copetti, Gai, SSN]

• Classification of ASCies

• Tensor Functors for higher fusion categories

• Continuous Symmetries – see SymTFTs in [Brennan, Sun][Antinucci,

Benini][Bonetti, del Zotto, Minasian][Apruzzi, Bedogna, Dondi]

Clearly lots more to explore here!



IV. Quantum Simulators and Quantum Codes qi/amo

Two totally different questions:

1. Can we test the phase diagram, including second order phase
transitions in the presence of categorical symmetries?
Yes, using simple lattice model realizing the gapped and gapless phases of
Rep(D4) on qubits [Warman, Yang, Tiwari, Pichler, SSN]

Atoms as Qubits: Using quantum simulators realized in Rydberg atoms
[Jaksch et al PRL 2010],[Weimer et al], many groups: Lukin, Saffman, Molmer, Pollman, ...]

Rydberg blockade: Rydberg states are highly excited states in atoms with
very large principal quantum numbers. e− far from the nucleus have high
polarizability and lifetimes. Dipole interaction ensures only one atom
within a certain distance (blockade radius) can be excited. Introduces
spatial correlations, mimicking interaction terms in a Hamiltonian.



2. Can one use categorical symmetries to improve quantum codes?

(a) Using higher-form symmetries, i.e. DW theories for higher-form and
higher-group symmetries [Barkeshli, Hsin, Kobayashi, Zhu, ...]

(b) Magic state preparation using SymTFT(D4) [Davydova, Bauer, de la Fuente,

Webster, Williamson, Brown][Huang, Chen]



Magic state preparation using SymTFT Sandwiches

[Davydova, Bauer, de la Fuente, Webster, Williamson, Brown][Huang, Chen]

Idea: use lattice models that realize the SymTFT(G) = D(G) – Kitaev surface
codes – to do fault tolerant universal quantum computing. These can do
so-called Clifford operators (Pauli operators, and things that leave these
invariant), but require one non-Clifford gate to realize a universal gate set.

Example of a non-Clifford magic state:
logical T :

|T ⟩ = |1⟩+ ζ8|e⟩

in Z2, where ζ8 = e2πi/8.

Idea in [Huang, Chen]: using a stabilizer (Clifford) S-gate in D(Z4)

|S⟩ = |1⟩+ ζ8|e⟩ − |e2⟩+ ζ8|e3⟩



as input and apply the following triple-sandwich:

A1

D(Z4)

A2

D(D4) D(Z2)

A1 corresponds to gauging Z2. Both algebras give rise to maps between these
topological orders, via a club quiche [Bhardwaj, Pajer, SSN, Warman].

φ1 :


1 → 1 ,

e2 → er ,

e⊕ e3 → E .

φ2 :


1 → 1 ,

erex → 1 ,

E → e ,

Such that
φ2 ◦φ1(|S⟩) = |T ⟩

[Davydova et al] use the same TQFT, with a slightly different protocol, to prepare
a magic state for CCP (CC phase gate).

Many extensions to qudit magic states, and lattice surgery [Huang, Chen, Warman,

SSN – in progress].



Conclusions and Outlook

• Categorical symmetries have imprinted many areas of theoretical physics.

• Clear implications on QFT, quantum many-body system phases.

• SymTFT ”sandwich spread” key to many of these studies.

The Future:

• A lot of progresson finite symmetries. What about continuous? Using the
SymTFTs for continuous symmetries in [Brennan, Sun][Antinucci, Benini][Bonetti,

del Zotto, Minasian][Apruzzi, Bedogna, Dondi]

• Spacetime symmetries – [Apruzzi, Dondi, Garcia-Extebarria, Lam, SSN to appear]

• Explore the full scope of categorical anomalies, in various dimensions.



Backup Slides



Quantum Simulation of Spin-Models with Rydberg Atoms

The Rydberg blockade can simulate 1+1d quantum Hamiltonians in this way,
e.g. using 87Rb atoms: [Bernien, ..., Lukin (Nature)]

Example: Ising-like Model

H =
∑
i

Ω

2
σx
i −∆

∑
i

ni +
∑
i<j

Vijninj

Terms and Mapping:

• Ωσx
i : Rabi frequency Ω driving transitions between |g⟩ and |r⟩=Rydberg

state.

• −∆ni: Detuning controls on-site potential, where ni = |1⟩⟨1| acts as
(1− σz)/2

• Vijninj : Repulsive van der Waals or dipole-dipole interactions.



Spin Models for Rep(D8)-Gapped Phases

[Warman, Yang, Tiwari, Pichler, SSN]

Rep(D8) phases can be realized on a simple tensor product Hilbert space
based on qubits only:

H = C3L = (CI,CII,CIII)L .

with Hamiltonian
H =

∑
i

Vi,i+1 +
∑
i

Pi ,

where V is nearest neighbor and P is a projection operator.

Example: Z2 ×Z2 SSB with non-invertible symmetry action

H(Za
2×Zb

2)
+ = −1

4

∑
i

(2 IiIi+1 +X II
i X

II
i+1 +X III

i X
III
i+1)−

1

2

∑
i

[
I+Z I]

i

X and Z are acting only on each qubit as Pauli operators.



red/green: Z2 given by 1a/c, blue: E non-invertible symmetry E2 = 1+ 1a + 1c + 1ac



Numerical Analysis of Ground-states and Phase Transitions

Phase transitions: Hi + (1− λ)Hj by tuning λ.

Phase transition: from 1 groundstate (GS) SPT to 4 GS Z2 ×Z2 SSB:

Phase transition from the 4 GS Z2 ×Z2 SSB to the 5 GS Rep(D8) SSB: The
order parameter is O = 1/L

∑
iX

I
i.



Realization in a Rydberg Quantum Simulator

Each site has three grey Rydberg atoms realizing qubits. Yellow Rydberg
atoms are ancillary qubits. This can be used to realize the above
Hamiltonians, and phase-transitions.



Pulse sequence to realize e.g. the interactions:

(a)

(b)

(a) elementary quantum gates: phase gate diag (1, eiϕ), controlled phase gate
(4x4 incarnation of phase gate), CZ diag(13,−1).

(b) Gate sequence for simulating the three-body plaquette evolution
U□(ϕ) = exp(−iϕX II

i X
II
i+1Z

III
i+1).


