

Integral Identities from Symmetry Breaking of Conformal Defects

Ziwen Kong Based on work in progress with Nadav Drukker and Petr Kravchuk 25 Aug, EUROSTRINGS 2025

Overview

- Defects are ubiquitous in physics and in theory:
 - · Boundaries and interfaces
 - Impurities: the condo effect.
 - Wilson and 't Hooft lines.
 - Cosmic strings.
 - . . .
- Break spacetime and possibly also flavour symmetries (and SUSY).
- Defect is of dimension p in d dimensional spacetime.

Displacement and tilt

- QFT has special operators $T_{\mu\nu}$, $J_{\mu a}$ (and $j_{\mu\alpha}$) for these symmetries.
 - Correlation functions capture central charges and anomalies.
- They induce special operators constrained to defects

$$\partial^{\mu}T_{\mu\nu} = \delta^{d-p}(x_{\perp})P_{\nu}^{r}\mathbb{D}_{r} \qquad \partial^{\mu}J_{\mu a} = \delta^{d-p}(x_{\perp})P_{a}^{i}t_{i}$$

 \mathbb{D}_r and t_i are operators restricted to the defect.

Displacement and tilt

- Examples:
 - Wilson loop in $\mathcal{N}=4$ SYM:

$$W = \operatorname{Tr} \mathcal{P} e^{\oint d\tau (iA_{\mu}\dot{x}^{\mu} + w^{a}\phi_{a})} \quad \Rightarrow \quad \begin{cases} \mathbb{D}_{r} \approx iF_{r\mu} + w^{a}D_{r}\phi_{a} \\ t_{i} \approx |w|\phi_{i} \end{cases}$$

Magnetic line in O(N) model:

$$\mathcal{W} = e^{\int d\tau \, w^a \phi_a(x(\tau))} \quad \Rightarrow \quad \begin{cases} \mathbb{D}_r \approx w^a \partial_r \phi_a \\ t_i \approx |w| \phi_i \end{cases}$$

· More precisely

$$\mathbb{D}_r(\tau) = \frac{\delta W}{\delta x^r(\tau)}$$
 $t_i(\tau) = \frac{\delta W}{\delta w^i(\tau)}$

Main question

What are the consequences of the broken global symmetries on the defect?

Main question

What are the consequences of the broken global symmetries on the defect?

These are captured by integrated correlators involving displacements and tilts!

• Consider a defect $\mathcal W$ which breaks a global symmetry G down to a subgroup H. In the general case, we can describe the symmetry-breaking by $w \in G/H$. We expect that for any $g \in G$:

$$Z[w] = Z[L_g(w)]$$

where

$$L_g:\mathfrak{h}^\perp\to\mathfrak{h}^\perp$$

is the left action of G on G/H, expressed in terms of \mathfrak{h}^{\perp} .

ullet Crucially, L_g depends on the renormalization scheme. However, to get the scheme-independent properties, let us keep agnostic about the scheme for now.

$$Z[w] = Z[L_g(w)]$$

 Enough to impose infinitesimally in g and expand in w to all orders. Let

$$L_{e^{\lambda}}(w) = w + \sum_{n=0}^{\infty} \frac{1}{n!} l_n(\lambda; w, \dots, w) + O(\lambda^2)$$

We have

$$l_0(\lambda) = \lambda^{\perp}, \quad l_1(\lambda; w) =$$
scheme-dependent, \cdots

$$Z[w] = Z[L_g(w)]$$

 Enough to impose infinitesimally in g and expand in w to all orders. Let

$$L_{e^{\lambda}}(w) = w + \sum_{n=0}^{\infty} \frac{1}{n!} l_n(\lambda; w, \dots, w) + O(\lambda^2)$$

Then for the flavour symmetry

$$\sum_{k=0}^{n} \binom{n}{k} \langle t(l_k(\lambda; w, \dots, w)) t(w)^{n-k} \rangle_c = 0, \quad \forall n \ge 0$$

where $t(w) \equiv \int d^p \tau \, w^i(\tau) t_i(\tau)$.

$$\sum_{k=0}^{n} \binom{n}{k} \langle t(l_k(\lambda; w, \cdots, w)) t(w)^{n-k} \rangle_c = 0$$

- For a given choice of the renormalization scheme these equations determine l_n with n > 0.
- Eliminating l_n from these equations one obtains non-trivial scheme-independent identities.
- Extra identities from l_n's having to represent the Lie algebra of G

$$[l^{i}(\lambda_{1}, w)\partial_{i}, l^{j}(\lambda_{2}, w)\partial_{j}] = -l^{i}([\lambda_{1}, \lambda_{2}], w)\partial_{i}$$
$$l(\lambda, w) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} l_{n}(\lambda; w, \dots, w)$$

$$\sum_{k=0}^{n} \binom{n}{k} \langle t(l_k(\lambda; w, \dots, w)) t(w)^{n-k} \rangle_c = 0$$

•
$$n = 0$$

$$\langle t(\lambda) \rangle = 0$$

Explicitly,

$$\lambda^i \int d^p \tau \langle t_i(\tau) \rangle = 0$$

• n = 1

$$\langle t(\lambda)t(w)\rangle = 0$$

Explicitly,

$$\lambda^{i} \int d^{p} \tau_{1} d^{p} \tau_{2} w^{j}(\tau_{2}) \langle t_{i}(\tau_{1}) t_{j}(\tau_{2}) \rangle = 0$$

Taking $\partial/\partial\lambda$, $\partial/\partial w$,

$$\int d^p \tau_1 \langle t_i(\tau_1) t_j(\tau_2) \rangle = 0$$

For flat defects the two-point function has the form

$$\langle t_i(\tau_1)t_j(\tau_2)\rangle = \frac{g_{ij}}{|\tau_1 - \tau_2|^{2p}}$$

The integral identity is satisfied for any definition of $\langle tt \rangle$ at $au_1 = au_2$.

•
$$n = 2$$

$$\langle t(\lambda)t(w)^2\rangle_c + 2\langle t(l_1(\lambda; w)t(w)\rangle_c = 0$$

After taking variational derivatives

$$\int d^p \tau_1 \langle t_i(\tau_1) t_j(\tau_2) t_k(\tau_3) \rangle + l_1^m(e_i; e_j) \langle t_m(\tau_2) t_k(\tau_3) \rangle$$
$$+ l_1^m(e_i; e_k) \langle t_j(\tau_2) t_m(\tau_3) \rangle = 0$$

The three-point function takes the form

$$\langle t_i(\tau_1)t_j(\tau_2)t_k(\tau_3)\rangle = \frac{d_{ijk}}{|\tau_1 - \tau_2|^p|\tau_2 - \tau_3|^p|\tau_1 - \tau_3|^p}$$

• n = 2

One can check that for any definition at coincident points

$$\int d^p \tau_1 \langle t_i(\tau_1) t_j(\tau_2) t_k(\tau_3) \rangle \ni d_{ijk} \log |\tau_2 - \tau_3| \times \cdots$$

Therefore, $d_{ijk} = 0$. The rest of n = 2 equations with

$$l_1(\lambda; w) - l_1(w; \lambda) = [\lambda, w]^{\perp}$$

determines $l_1(w; \lambda)$

$$l_1(\lambda_1; \lambda_2) = \frac{1}{2} \left([\lambda_1, \lambda_2]^{\perp} - (\operatorname{ad}^{\perp}(\lambda_1))^* \lambda_2 - (\operatorname{ad}^{\perp}(\lambda_2))^* \lambda_1 \right)$$

• n = 3

$$\langle t(\lambda)t(w)^3\rangle_c + 3\langle t(l_2(\lambda; w, w))t(w)\rangle_c = 0$$

After taking derivatives we find

$$\int d^p \tau_1 \langle t_i(\tau_1) t_j(\tau_2) t_k(\tau_3) t_l(\tau_4) \rangle_c$$

$$+ \delta^p (\tau_3 - \tau_4) \langle t_j(\tau_2) t_m(\tau_4) \rangle l_2^m (e_i; e_k, e_l) + \cdots$$

$$= 0$$

Setting $\tau_2=0, \tau_3=1, \tau_4=\infty$, we get

$$\int d^p \tau \langle t_i(\tau)t_j(0)t_k(1)t_l(\infty)\rangle_c = 0$$

plus a determination of $l_2(\lambda; w, w) = \cdots$.

Application: 3d $\mathcal{N}=4$ Chern-Simon-matter theories

 Analytic bootstrap determines the correlator at strong coupling up to two parameters [Pozzi, Trancanelli'24]

$$\begin{split} & \left\langle \left\langle t(\tau_{1}) \bar{t}(\tau_{2}) \bar{t}(\tau_{3}) t(\tau_{4}) \right\rangle \right\rangle_{c} \\ &= \frac{4\eta}{\tau_{12}^{2} \tau_{34}^{2}} \left(\chi - \frac{(3-\chi)\chi^{2}}{(1-\chi)} \log|\chi| + (1-\chi)^{2} \log|1-\chi| \right) \\ &+ \frac{4\epsilon}{\tau_{12}^{2} \tau_{34}^{2}} \left(\frac{\chi}{2} - \chi^{2} - 1 - \frac{(1-\chi)^{2}(\chi^{2} + \chi + 1)}{\chi} \log|1-\chi| - \chi^{2}(1-\chi) \log|\chi| \right) \end{split}$$

Explicit integration

$$\int d\tau \, \langle \! \langle t(0)\bar{t}(\tau)\bar{t}(1)t(\infty) \rangle \! \rangle_c = 8\pi^2 \eta$$

• Conclusion $\Rightarrow \eta = 0$, so same answer as ABJM [Bianchi, Bliard, Forini, Griguolo, Seminara'20].

Together with

$$l_2(\lambda; w, w) - l_2(w; \lambda, w)$$

= $l_1([\lambda, w], w] - l_1(\lambda; l_1(w; w)) + l_1(w; l_1(\lambda, w))$

we recover the integrated identity for the curvature of G/H

$$2\int_{-\infty}^{+\infty} d\tau \log |\tau| \langle t_i(1)t_j(\tau)t_k(0)t_l(\infty) \rangle_c = R_{ijkl}$$

[Kutasov'89] [Friedan, Konechny'12] [Drukker, Kong, Sakkas'22]

The equation

$$\sum_{k=0}^{n} \binom{n}{k} \langle t(l_k(\lambda; w, \dots, w)) t(w)^{n-k} \rangle_c = 0$$

produces new integral identities for (n+1)-point correlation functions for general n.

• We verified n=5 identity for $\langle t^6 \rangle$ in O(N) model to the leading order in ε -expansion.

Generalization

Basic (rough) statement

$$\int d^2 \chi P(\chi) \log |\chi| \langle\!\langle \mathbb{O}_1(\hat{e}) \mathbb{O}_2(\chi) O(0) O'(\infty) \rangle\!\rangle_c$$
$$= \langle\!\langle [Q_1, Q_2] \circ O(0) O'(\infty) \rangle\!\rangle$$

- $\mathbb{O}_{1,2}$ are operators arising from broken global symmetries $Q_{1,2}$: spacetime, flavour or also SUSY.
- O(0) and $O'(\infty)$ are any operators on the defect.
- $P(\chi)$ is a polynomial.
- This is a very nontrivial relation between integrated 4-pt functions and 2-pt functions.

Broken Conformal Symmetry

• When Q are the broken conformal symmetry generators, the operators $\mathbb O$ arising from the symmetry-breaking are the displacement operator $\mathbb D_\mu(\tau)$.

$$\begin{split} R^n_{\mu\nu\rho\sigma} &\equiv \frac{1}{2} \mathrm{vol} S^{p-1} \int d^p \tau \log |\tau| f_n(\tau) \langle \mathbb{D}_\rho(0) \mathbb{D}_\mu(\tau) \mathbb{D}_\nu(\hat{e}_1) \mathbb{D}_\sigma(\infty) \rangle_c, \\ &= 2^{-p} \mathrm{vol} S^{p-1} \mathrm{vol} S^{p-2} \\ &\int d^2 z |z - \bar{z}|^{p-2} \log |z| f_n(z, \bar{z}) \langle \mathbb{D}_\mu(0) \mathbb{D}_\mu(z, \bar{z}) \mathbb{D}_\nu(1) \mathbb{D}_\sigma(\infty) \rangle_c \\ &= \int d\tau \log |\tau| f_n(\tau) \langle \mathbb{D}_\mu(0) \mathbb{D}_\mu(\tau) \mathbb{D}_\nu(1) \mathbb{D}_\sigma(\infty) \rangle_c \frac{[\mathrm{Gabai, Sever, Zhong'25}]}{\mathrm{Zhong'25}} \\ f_n(\tau) &\equiv \begin{cases} 1, & n = 0 \\ \tau^1 = \frac{1}{2}(z + \bar{z}), & n = 1 \\ \tau^2 = z\bar{z}, & n = 2 \end{cases} \end{split}$$

Anomalies

- The condition $Z[w] = Z[L_{e^{\lambda}}(w)]$ is too naive.
- Instead, we can consider a more general one

$$Z[w] = e^{\mathcal{A}[\lambda,w] + O(\lambda^2)} Z[L_{e^\lambda}(w)]$$

$$\mathcal{A}[\lambda,w] = \text{local functional of } w, \text{ linear in } \lambda$$

A defines a representation of g
 ⇒ Wess-Zumino consistency conditions:

$$\begin{split} \pi(\lambda_1)\mathcal{A}[\lambda_2;w] - \pi(\lambda_2)\mathcal{A}[\lambda_1;w] - \mathcal{A}[[\lambda_1,\lambda_2];w] &= 0 \end{split}$$
 where $\pi(\lambda) = -\int d^p \tau \, l^i(\lambda;w) \frac{\delta}{\delta w^i(\tau)}.$

Example: Line defect in the dual of $AdS_3 \times S^3 \times T^4$

 Explicit bootstrap and holographic calculations give nonzero three-point functions for the tilts [Bliard, Correa, Lagares, Landea'24]

$$\langle \langle t_i(\tau_1)t_j(\tau_2)t_k(\tau_3) \rangle \rangle_c = \frac{\sin \lambda}{\sqrt{2\pi g}} \frac{\epsilon_{ijk}}{\tau_{12}\tau_{13}\tau_{23}}$$

- Here tilts arise from breaking $SU(2) \rightarrow 1$.
- One can consider an anomaly term:

$$\mathcal{A} = \int d\tau \, \epsilon_{ijk} \lambda^i w^j \partial_\tau w^k \left(\frac{12}{w^2} - 6 \frac{\cot \frac{|w|}{2}}{|w|} \right)$$

Example: Line defect in the dual of $AdS_3 \times S^3 \times T^4$

- Z is not a function of w but a section of a $\mathbb C$ -line bundle over LSU(2).
- \mathbb{C} -line bundles are classified by their Chern class $H^2(LSU(2),\mathbb{Z})=\mathbb{Z}$
- Solution: $\frac{\sin \lambda}{\sqrt{2\pi g}} \in \frac{\mathbb{Z}}{16\pi^3}$.
- Consistent with flux quantisation of string theory on S^3 .

Summary

As we are always told: Symmetries are important.

As we are always told: Symmetries are important.

Regular symmetries of QFT lead to nontrivial identities for correlation functions with tilts, displacements and broken SUSY operators.

Thank you!