Holographic duality from Howe duality: Chern-Simons gravity as an ensemble of code CFTs

Johan Henriksson (CERN) 25 August 2025

Error-correcting codes

Narain CFT

Holography

Chern-Simons TQFT

1-form symmetry

Modular forms

Quantum information

Representation theory

Finite fields

Howe duality

Based on [2504.08724] with Brian McPeak and Anatoly Dymarsky

Recently, the factorisation puzzle in holography has motivated the idea of **ensemble averaging** [Saad, Shenker, Stanford 2019]. It is important to exhibit explicit instances of this proposal, and understand better why they work

Narain ensemble

Code CFT ensemble

[Afkhami-Jeddi et al 2020; Maloney, Witten 2020]

$$\int Z(\mu,\Omega)d\mu = \frac{\mathcal{E}_{\frac{n}{2},\frac{n}{2}}(\Omega)}{\Phi(\Omega)^n}$$

Continuous Narain moduli space, Zamolodchikov metric

$$\begin{array}{ll} \text{Infinite} & \text{sum} & \text{over} & \text{modular} & \text{images} \\ \frac{\mathcal{E}_{\frac{n}{2},\frac{n}{2}}(\Omega)}{\Phi(\Omega)^n} = \sum_{\gamma \in \Gamma \setminus Sp(2g,\mathbb{Z})} \chi_{\text{vac}}^{U(1)}(\gamma\Omega) \end{array}$$

Equality follows from Siegel-Weil formula

Recently, the factorisation puzzle in holography has motivated the idea of **ensemble averaging** [Saad, Shenker, Stanford 2019]. It is important to exhibit explicit instances of this proposal, and understand better why they work

Narain ensemble

Code CFT ensemble

[Afkhami-Jeddi et al 2020; Maloney, Witten 2020]

$$\int Z(\mu,\Omega)d\mu = \frac{\mathcal{E}_{\frac{n}{2},\frac{n}{2}}(\Omega)}{\Phi(\Omega)^n}$$

Continuous Narain moduli space, Zamolodchikov metric

$$\begin{array}{ll} \text{Infinite} & \text{sum} & \text{over} & \text{modular} & \text{images} \\ \frac{\mathcal{E}_{\frac{n}{2},\frac{n}{2}}(\Omega)}{\Phi(\Omega)^n} & = \sum_{\gamma \in \Gamma \setminus Sp(2g,\mathbb{Z})} \chi_{\text{vac}}^{\textit{U}(1)}(\gamma\Omega) \end{array}$$

Equality follows from Siegel-Weil formula

$$\frac{1}{N} \sum_{i} Z_{\mathsf{CFT}_{i}}(\Omega) = \sum_{\gamma \in \Gamma \setminus Sp(2g)} \psi_{\bar{0}}(\gamma \Omega)$$

Discrete ensemble, equal weights

Finite sum over modular images [JH, McPeak 2022; Aharony, Dymarsky, Shapere 2023]

Equality follows from **Howe duality** [Dymarsky, JH, McPeak 2025]

Error-correcting codes

Code = collection of (binary/p-ary) vectors

E.g. {(0000000), (00001111), (00110011), (00111100), (01010101), (01011010), (01100110), (01100101), (01101001),

(10010110), (10011001), (10100101), (10101010),

(11000011), (11001100), (11110000), (11111111)}

Studied since the 1950's (Voyager mission, classification, good codes ↔ large distance/"gap," Siegel modular forms, ...)

- Codes can be used to construct CFTs
 [Dolan, Goddard, Montague 1990]
 Code → lattice → CFT
- Codes come in natural ensembles ⇒
 Averaging over codes [Pless, Sloane 1975]

Image: NASA

CLASSIFICATION AND ENUMERATION OF SELF-DUAL CODES

4. THE SUM OF ALL WEIGHT ENUMERATORS

From the results of Section 3 it follows easily that (a) the sum of the weight enumerators of all self-dual codes of length n is (for n even)

$$\prod_{j=1}^{(n/2)-2} (2^j+1) \cdot \left[2^{(n/2)-1} (1+x^n) + \sum_{2 \mid i} {n \choose i} x^i \right];$$

and (b) the corresponding sum when the weights are divisible by 4 is (for n divisible by 8)

$$\prod_{i=0}^{(n/2)-3} (2^{i}+1) \cdot \left[2^{(n/2)-2}(1+x^{n}) + \sum_{i \mid i} {n \choose i} x^{i}\right].$$

Code CFTs

Today consider codes over \mathbb{F}_p

Definition: $C = \{v | v \in \mathbb{F}_p^{2n}\}$

Code defines a (Lorentzian) lattice by embedding \mathbb{F}_p^{2n} in $\mathbb{Z}^{2n} \Rightarrow$ Code CFTs are discrete points in Narain moduli space

Enumerator polynomial

$$\Psi_{\mathcal{C}} = \sum_{v \in \mathcal{C}} \psi_v \in \mathcal{H} = \operatorname{span}\{\psi_v | v \in \{0, \dots, p-1\}^{2n}\}, \quad \dim \mathcal{H} = p^{2n}$$

becomes CFT partition function under the substitution

$$\psi_{\nu} \mapsto \Psi_{\nu}(\tau, \xi, \bar{\xi}) = \frac{1}{|\eta(\tau)|^2} \sum_{n,m} e^{i\pi(\tau \rho_L^2 - \bar{\tau} \rho_R^2) + 2\pi i(\rho_L \xi - \rho_R \bar{\xi}) + \frac{\pi}{2\tau_2}(\xi^2 + \bar{\xi}^2)}$$

 $\Psi_{\scriptscriptstyle V}$ non-holomorphic conformal blocks of abelian CS theory [Gukov et al 2004]

$$p_{L,R} = \sqrt{\frac{p}{2}} \left(\frac{1}{r} (n + \alpha/p) \pm r(m + \beta/p) \right), \quad v = (\alpha, \beta)$$

Number of even self-dual codes grows with n and p

n	# codes (p = 3)	# codes (p = 5)
1	2	2
2	8	12
3	80	312
4	2240	39312
5	183680	24609312
6	44817920	76928709312
7	32717081600	1202088011709312
8	71584974540800	93914328002801709312
9	469740602936729600	36685378290422420501709312
10	9246374028206585446400	71651166158859580464821501709312

At small n, p, possible to list all even self-dual codes and compute average explicitly

Example: n = 1, p = 3:

$$\Psi_{\mathcal{C}_1} = \psi_{00} + \psi_{01} + \psi_{02}, \qquad \Psi_{\mathcal{C}_2} = \psi_{00} + \psi_{10} + \psi_{20}$$

Average: $\overline{\Psi} = \psi_{00} + \frac{1}{2}(\psi_{01} + \psi_{02} + \psi_{10} + \psi_{20})$

Next: recover this by a "holographic" computation

Averaging over codes

Code average formulas can be rewritten as a sum of modular images of $\psi_{\vec{0}}$

[JH, McPeak 2022; Aharony, Dymarsky, Shapere 2023]

Modular invariance [MacWilliams 1962]: $\Psi_{\mathcal{C}}$ invariant under

$$S: \ \psi_{\nu} \mapsto \frac{1}{p^{n}} \sum_{\nu'} e^{-\frac{2\pi i}{p} \nu \eta \nu'} \psi_{\nu'} \qquad T: \ \psi_{\nu} \mapsto e^{\frac{i\pi}{p} \nu \eta \nu} \psi_{\nu} \qquad \eta = \left(\begin{smallmatrix} 0 & I \\ I & 0 \end{smallmatrix}\right)$$

Example n = 1, p = 3. Seed ψ_{00}

$$\begin{split} \overline{\Psi} &= \frac{1}{2} \left(\psi_{00} + S \psi_{00} + T S \psi_{00} + T^2 S \psi_{00} \right) \\ &= \frac{1}{2} \left(\psi_{00} + \frac{1}{3} [\psi_{00} + \psi_{01} + \psi_{02} + \psi_{10} + \psi_{11} + \psi_{12} + \psi_{20} + \psi_{21} + \psi_{22}] \\ &+ \frac{1}{3} [\psi_{00} + \psi_{01} + \psi_{02} + \psi_{10} + e^{2\pi i/3} \psi_{11} + e^{4\pi i/3} \psi_{12} + \psi_{20} + e^{4\pi i/3} \psi_{21} + e^{2\pi i/3} \psi_{22}] \\ &+ \frac{1}{3} [\psi_{00} + \psi_{01} + \psi_{02} + \psi_{10} + e^{4\pi i/3} \psi_{11} + e^{2\pi i/3} \psi_{12} + \psi_{20} + e^{2\pi i/3} \psi_{21} + e^{4\pi i/3} \psi_{22}]) \\ &= \psi_{00} + \frac{1}{2} (\psi_{01} + \psi_{02} + \psi_{10} + \psi_{20}) = \frac{1}{2} (\Psi_{1} + \Psi_{2}) \end{split}$$

At genus g: Sp(2g) images of $\psi_{\vec{0},\dots,\vec{0}}$ (40 terms at g=2)

Average at any length and genus

By explicit computation, we can check

Ensemble average = sum over modular images

case by case in n, p and g. But can we prove it in general?

Everything takes place inside finite-dimensional vector space

$$\mathcal{H}^{(g)} = \text{span}\Big\{\psi_{v_1\cdots v_g} \, \Big| \, v_i \in \{0,...,p-1\}^{2n}\Big\}, \qquad \text{dim } \mathcal{H}^{(g)} = p^{2gn}$$

- ullet Two finite groups act on $\mathcal{H}^{(g)}$
 - $-Sp(2g, \mathbb{F}_p)$ modular transformations
 - $-O(n,n,\mathbb{F}_p)$: $\psi_{\nu_1,\dots\nu_g}\mapsto \psi_{h\nu_1,\dots h\nu_g}$. Acts transitively on the set of codes

Rewrite equality in a more symmetric form

$$\frac{1}{N'}\sum_{h\in O(n,n)}U_h\Psi_{\mathcal{C}_0}\stackrel{?}{=}\sum_{\gamma\in Sp(2g)}U_\gamma\psi_{\vec{0}}$$

If we can show that there is a unique one-dimensional subspace of $\mathcal{H}^{(g)}$ invariant under $Sp \times O$, then it follows that the two sides are proportional

Howe duality

Howe duality/theta correspondence [Howe 1973, ...] explains certain structure of paired representations. Ingredients:

- Reductive dual pair $G \times H \subset \mathbf{G}$ mutually centralising. For us $Sp(2g) \times O(2n) \subset Sp(4gn)$
- ω oscillator representation: a certain "minimal" representation of Sp(4gn): For us $\omega \cong \mathcal{H}^{(g)}$

Central statement: Irreps parametrised by joint label

$$\omega|_{G imes H} = \sum_i \left(
ho_i
ight)_G \otimes \left(\pi_i
ight)_H$$

Similar to Schur-Weyl duality

$$(\mathbb{C}^n)^{\otimes N} = \sum_{\lambda} (r_{\lambda})_{S_N} \otimes (s_{\lambda})_{GL_n}$$

Example: $\mathbb{C}^n \otimes \mathbb{C}^n = S^2 + \Lambda^2$, $M_{\mu\nu} = M_{(\mu\nu)} + M_{[\mu\nu]}$

Outline of proof

We would like to prove

$$\frac{1}{N'} \sum_{h \in O(n,n)} U_h \Psi_{\mathcal{C}_0} \stackrel{?}{=} \sum_{\gamma \in Sp(2g)} U_\gamma \psi_{\vec{0}} \tag{1}$$

Let us consider Howe duality with $H = O(n, n, \mathbb{F}_p)$, $G = Sp(2g, \mathbb{F}_p)$ and $\omega \cong \mathcal{H}^{(g)}$

$$\omega|_{Sp\times O} = \sum_{i} (\rho_{i})_{Sp} \otimes (\pi_{i})_{O} = \mathbf{1}_{Sp} \otimes \mathbf{1}_{O} + \text{(non-invariant terms)}$$
 (2)

 \Rightarrow One-dimensional vector space invariant under $Sp \times O$, must contain both sides of (1)

Precise statements require **Howe** duality over finite fields. Structure of (2) follows from results conjectured in [Aubert, Michel, Rouquier 1996] and proven in [Pan 2024; Ma, Qiu, Zou 2024].

Vol. 83, No. 2 DUKE MATHEMATICAL JOURNAL © May 1996

CORRESPONDANCE DE HOWE POUR LES GROUPES RÉDUCTIFS SUR LES CORPS FINIS

ANNE-MARIE AUBERT, JEAN MICHEL ET RAPHAËL ROUQUIER

Soit (G, G') une paire de sous-groupes d'un groupe symplectique $\mathbf{Sp}_{\mathbf{k}}(\mathbf{F}_{\theta})$ (oi \mathbf{F}_{θ} est un corps fini de caractéristique p impaire) dont chacun est le centralisateur de l'autre dans $\mathbf{Sp}_{2n}(\mathbf{F}_{\theta})$. Suivant \mathbf{R} . Howe (voir $[\mathbf{H}1]$ et $[\mathbf{H}2]$), il y a une correspondance entre représentations de G et de G' donnée par la représentation de Weil α du groupe symplectique $\mathbf{Sp}_{\mathbf{k}}(q) = \mathbf{Sp}_{\mathbf{k}}(\mathbf{F}_{\theta})$.

Plus précisément, si (G_m, G'_m) est une paire réductive duale irréductible dans $\operatorname{Sp}_{L_2}(0, 1, n)$ une des paires $\operatorname{Sp}_{m_2}(0, 1)$ $\operatorname{Sp}_{m_2}(0, 1)$ des $\operatorname{Te}_m(m_1, 1)$, $\operatorname{Sp}_{m_2}(0, 1)$ $\operatorname{Sp}_{m_2}(0, 1)$ avec $n = m(m_1, 1)$, $\operatorname{Sp}_{m_2}(0, 1)$, and $\operatorname{Sp}_{m_2}(0, 1)$, $\operatorname{Sp}_{m_$

Intermittent summary

 We have investigated "holography by averaging" following the Narain ensemble blueprint:

ensemble average = sum over modular images

- We exhibited explicit instances using the ensemble of error-correcting codes
- We proved equality using Howe duality over finite fields

$$\mathcal{H}^{(g)} = \mathbf{1}_{Sp} \otimes \mathbf{1}_{O} + \dots$$

 \Rightarrow both sides of equality must lie in one-dimensional vector space invariant under Sp \times O

Next: What does this have to do with "Chern-Simons gravity"?

Interpretation as CS gravity

How to construct Chern-Simons gravity?

- Consider level-p abelian CS theory on B, $\partial B = \Sigma_g$
- Hilbert space $\mathcal{H}^{(g)} = \operatorname{span} \Psi_{v_1....v_g}$, v_i charges of Wilson lines on non-contractible cycles
- This TQFT has a global $\mathbb{Z}_p \times \mathbb{Z}_p$ 1-form symmetry carried by the Wilson lines
- "No global symmetry:" gauge away symmetry (maximal non-anomalous subgroup) [Benini, Copetti, Di Pietro 2022]. $\Psi = \sum_{V} \Psi_{V}$

Maximal non-anomalous subgroup \leftrightarrow even self-dual code $\mathcal C$

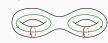
 No unique choice: Average over all gaugings/codes with equal weight

$$\frac{1}{N}\sum_{\mathcal{C}}\Psi_{\mathcal{C}}$$
 [Barbar, Dymarsky, Shapere 2023]

Interpretation as CS gravity

How to construct Chern-Simons gravity?

- Consider level-p abelian CS theory on B, $\partial B = \Sigma_g$
- Hilbert space $\mathcal{H}^{(g)} = \operatorname{span} \Psi_{v_1, \dots, v_g}$, v_i charges of Wilson lines on non-contractible cycles



- This TQFT has a global $\mathbb{Z}_p \times \mathbb{Z}_p$ 1-form symmetry carried by the Wilson lines
- "No global symmetry:" gauge away symmetry (maximal non-anomalous subgroup) [Benini, Copetti, Di Pietro 2022]. $\Psi = \sum_{V} \Psi_{V}$

Maximal non-anomalous subgroup \leftrightarrow even self-dual code $\mathcal C$

 No unique choice: Average over all gaugings/codes with equal weight

$$\frac{1}{N} \sum_{\mathcal{C}} \Psi_{\mathcal{C}}$$
 [Barbar, Dymarsky, Shapere 2023]

Alternatively, one could follow the logic

- Gravity implies a sum over topologies
- Sum over all B with $\partial B = \Sigma_g$ (handlebodies)
- Sum reorganises to sum over modular images of fixed topology (c.f.

[Maloney, Witten 2007])

$$\sum_{\gamma} Z_{B_0}(\gamma\Omega)$$

$$Z_{B_0}(\Omega) = \Psi_{\vec{0},\dots\vec{0}}(\Omega)$$

Summary and outlook

Summary

• We have seen an explicit instance of holography by averaging

ensemble average = sum over modular images
$$(1)$$

• The ensemble arises naturally by gauging maximal subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ 1-form symmetry of abelian CS theory

sum over gaugings = sum over topologies

Thus (1) represents equality of two dual pictures of "Chern-Simons gravity"

• We proved (1) using Howe duality over finite fields

$$\mathcal{H}^{(g)} = \mathbf{1}_{Sp} \otimes \mathbf{1}_O + \dots$$

Outlook

- Different manifestations of Howe duality: Siegel–Weil formulas, quantum information (ω =qudit Hilbert space), spherical potential $\psi_{nlm}=R_{nl}(r)Y_{lm}(\theta,\phi)$ [Ashwinkumar et al 2021], [Gross, Nezami, Walter 2017], [Rowe et al 2012; Basile et al 2020]
- Study other observables in ensemble averaging

$$\langle \mathcal{O}_i \cdots \rangle_{\text{theories containing } \mathcal{O}_i} \stackrel{?}{=} \frac{\delta}{\delta \xi_i} \cdots \sum_{\gamma} U_{\gamma} (\Psi_{\textit{vac}} + \Psi_{O_i})$$

Summary and outlook

Summary

• We have seen an explicit instance of holography by averaging

ensemble average = sum over modular images
$$(1)$$

• The ensemble arises naturally by gauging maximal subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$ 1-form symmetry of abelian CS theory

sum over gaugings = sum over topologies

Thus (1) represents equality of two dual pictures of "Chern-Simons gravity"

• We proved (1) using Howe duality over finite fields

$$\mathcal{H}^{(g)} = \mathbf{1}_{Sp} \otimes \mathbf{1}_O + \dots$$

Outlook

• Different manifestations of Howe duality: Siegel–Weil formulas, quantum information (ω =qudit Hilbert space), spherical potential $\psi_{nlm} = R_{nl}(r)Y_{lm}(\theta, \phi)$ [Ashwinkumar et al 2021], [Gross, Nezami, Walter 2017], [Rowe et al 2012; Basile et al 2020]

• Study other observables in ensemble averaging

$$\langle \mathcal{O}_i \cdots \rangle_{\text{theories containing } \mathcal{O}_i} \stackrel{?}{=} \frac{\delta}{\delta \xi_i} \cdots \sum_{\gamma} \mathcal{U}_{\gamma} (\Psi_{\textit{vac}} + \Psi_{\mathcal{O}_i})$$

Thank you for your attention!

Error-correcting codes

Narain CFT

Holography

Chern-Simons TQFT
1-form symmetry

Modular forms

Quantum information

Representation theory

Finite fields

Howe duality

