Aspects of QED in 2+1 dimensions

Pierluigi Niro

SISSA (Trieste)

EUROSTRINGS 2025 - Stockholm, 25 August 2025

 $2410.05366\ by\ T.\ Dumitrescu,\ PN,\ R.\ Thorngren$

[see also 2409.17913 by S. Chester and Z. Komargodski]

WIP by T. Dumitrescu, K. Intriligator, PN, O. Sela

Motivations

- (2+1)-d QFTs (at T=0) can describe equilibrium statistical systems in 3 space dimensions, i.e. lattice systems, when correlation length \gg lattice spacing
- \bullet (3 + 1)-d QFTs at high T are described by (2 + 1)-d QFTs
- 3d gauge theories are classically strongly coupled, their dynamics is a simpler example of strong coupling than ordinary 4d gauge theories

 $\mathsf{QED}_3 = U(1)$ gauge theory $+ N_f$ charge-1 (massless) Dirac fermions ψ^i

$$\mathcal{L} = -rac{1}{4e^2}f^{\mu
u}f_{\mu
u} - i\sum_{i=1}^{N_f}ar{\psi}_i\gamma^\mu\left(\partial_\mu - i\mathsf{a}_\mu
ight)\psi^i\,, \qquad [e^2] = 1\,.$$

No Chern-Simons term: the parity anomaly [Niemi, Semenoff; Redlich] requires N_f to be even, and the theory enjoys time reversal symmetry

IR behavior of QED₃

???

Conformal Field Theory

0

 N_f

- What is N_f^* ?
- ② What happens for $N_f < N_f^*$?
- > Solvable regimes: $N_f = 0$ (pure Maxwell) and large N_f (vector model)

Maxwell theory: dual to the theory of a compact scalar ('dual photon')

$$\widetilde{\mathcal{L}} = -rac{{
m e}^2}{8\pi^2}(\partial_\mu\sigma)(\partial^\mu\sigma)\,, \qquad \sigma\sim\sigma+2\pi\,.$$

- $U(1)_m$ is the shift symmetry of $\sigma\colon j_m=rac{1}{2\pi}\star f\leftrightarrow rac{e^2}{(2\pi)^2}d\sigma$
- ullet Monopole operators are $\mathcal{M}_{q_m}=\exp\left(iq_m\sigma
 ight)\Rightarrow\langle\mathcal{M}_{q_m}
 angle
 eq 0$

 $U(1)_m$ is spontaneously broken by monopole condensation

3d Coulomb phase = massless photon = S^1 sigma model

IR behavior of QED₃

Large
$$N_f$$
 (w/ $\Lambda \equiv e^2 N_f$ fixed): $\langle a_\mu(p) a_\nu(-p) \rangle = -\frac{i\eta_{\mu\nu}}{N_f} \begin{cases} \Lambda/p^2 & \text{UV} \\ 16/|p| & \text{IR} \end{cases}$

 \exists non-trivial symmetry-preserving CFT in the IR, amenable to a systematic $1/N_f$ expansion [Appelquist, Nash, Wijewardhana]

What is the fate of massless QED₃ in the IR?

From bootstrap analysis: indications that \exists CFT if $N_f \ge 4$, and that $N_f = 2$ is not a symmetry-preserving CFT [Chester, Pufu; He, Rong, Su; Albayrak, Erramilli, Li, Poland, Xin; Li]

This is also compatible with supersymmetric RG flows [WIP]

In this talk: focus on $N_f = 2$ (can be generalized to any $N_f \in 2\mathbb{Z}$), and assume the theory does not flow to a symmetry-preserving CFT

QED₃ with $N_f = 2$: Global Symmetries and Anomalies

$$U(2) = \frac{SU(2)_f \times U(1)_m}{\mathbb{Z}_2}, \qquad C, \qquad \mathcal{T}$$

Flavor $SU(2)_f$, Magnetic $U(1)_m$, Quotient by \mathbb{Z}_2 : $(-\mathbb{I}_2, -1)$

- All gauge-invariant operators are bosons
- Non-monopole operators $(q_m = 0)$ are in reps of $SO(3)_f$, e.g. $\vec{O} = i \bar{\psi} \vec{\sigma} \psi$ is in the adjoint of $SU(2)_f$
- Monopole operators $(q_m \neq 0)$ are in reps of $SU(2)_f$, e.g. $\mathcal{M}^i(x)$ is in the fundamental of U(2) [Borokhov, Kapustin, Wu]

Mixed 't Hooft anomaly between U(2) and \mathcal{T} [Benini, Hsin, Seiberg]

$$S_{\mathsf{anomaly}} = \pi \int_{X_{\mathbf{4}}} c_2(\mathit{U}(2)) = \frac{\pi}{8\pi^2} \int_{X_{\mathbf{4}}} \left[\mathrm{tr} \mathcal{F} \wedge \mathrm{tr} \mathcal{F} - \mathrm{tr} (\mathcal{F} \wedge \mathcal{F}) \right]$$

There must be non-trivial IR dynamics to match the anomaly

Our Proposal: Symmetry Breaking Scenario

 $\langle \mathcal{M}^i \rangle \neq 0$: Spontaneous Symmetry Breaking $U(2) \to U(1)_{\mathrm{unbroken}}$, via the condensation of the $q_m=1$ monopole (as Higgsing in SM)

$$\Rightarrow$$
 3 NGBs parametrizing $U(2)/U(1) = S^3$

Hopf Map: given $v^2 \equiv \langle \mathcal{M}_i^\dagger \rangle \langle \mathcal{M}^i \rangle$, construct the map $\pi: S^3 \to S^2$

$$\mathcal{M}^i o \vec{n} = rac{\mathcal{M}^\dagger \vec{\sigma} \mathcal{M}}{v^2} \,, \qquad \vec{n}^2 = 1$$

Given \vec{n} (triplet of $SU(2)_f$ and singlet of $U(1)_m$), one gets

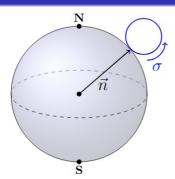
$$\mathcal{M}^{i}(\vec{n},\sigma) = v \, \xi^{i}(\vec{n}) e^{i\sigma} \,, \qquad \sigma \sim \sigma + 2\pi \,, \quad \xi^{\dagger} \vec{\sigma} \xi = \vec{n}$$

 σ parametrizes the S^1 fiber over each point of the S^2 base

$$ds^{2}(S^{3}) = R^{2}d\vec{n} \cdot d\vec{n} + \frac{e_{\text{eff}}^{2}}{8\pi^{2}}(d\sigma - \alpha)^{2}, \qquad \int_{S^{2}} \frac{d\alpha}{2\pi} = 1$$

3 NGBs: $\vec{n} \in S^2$ (triplet breaking) and $\sigma \in S^1$ (dual photon)

Fermion Bilinear and Small Triplet Mass



Example: $\vec{n} = \pm \hat{z}$, preserving $U(1)_f$

$$U(1)_{\pm} \equiv \frac{1}{2} \left(U(1)_m \pm U(1)_f \right)$$

- N pole: $\mathcal{M}^i(+\hat{z},\sigma) = ve^{i\sigma}(1\ 0)^t$ $q_+ = 1$ and $q_- = 0$
- **S** pole: $\mathcal{M}^i(-\hat{z},\sigma) = ve^{i\sigma}(01)^t$ $q_+ = 0$ and $q_- = 1$

Roles of $U(1)_{\pm}$ reversed \Rightarrow fibration

- Fermion bilinear is aligned with $U(1)_f$ singled out by $\langle \mathcal{M}^i \rangle$: $\langle i \bar{\psi} \vec{\sigma} \psi \rangle \xrightarrow{\text{RG}} \vec{n}$ (no further symmetry breaking)
- Triplet Mass (\mathcal{T} -invariant): $\mathcal{L}_{\vec{m}} = i\vec{m} \cdot \bar{\psi}\vec{\sigma}\psi \xrightarrow{\mathsf{RG}} \vec{m} \cdot \vec{n} \quad \Rightarrow \quad \vec{n} \parallel \vec{m}$ Mass perturbation selects a single point on S^2 : at low energies we get a Coulomb phase, parametrized by the dual photon $\sigma \in S^1$

't Hooft Anomaly Matching

- \bullet C and T are unbroken (T follows from Vafa-Witten theorem)
- $\mathcal{T}/U(2)$ anomaly needs to be matched in the S^3 sigma model: it admits a conventional theta term, since $\pi_3(S^3) = \mathbb{Z}$

$$S_{ heta} = rac{ heta}{24\pi^2} \int_{\mathcal{M}_{\mathbf{3}}} \mathrm{Tr} \left(U^{-1} dU
ight)^3 \; , \qquad U \in U(2)/U(1)$$

 ${\mathcal T}$ allows only $\theta=0,\pi: \theta=\pi$ matches the anomaly Technically, coupling to ${\mathcal A}\in U(2)\colon S_{ heta}[{\mathcal A}]=\theta\int_{X_{f 4}}c_2(U(2))$

• Symmetry breaking scenario discussed in the literature [Pisarski] mainly focuses on $\langle i\bar{\psi}\vec{\sigma}\psi\rangle\neq 0$, leading to $SU(2)_f\to U(1)_f$ and 2 NGBs parametrizing S^2 , but this is incompatible with anomaly matching! (S^2 can be lifted by the $U(1)_f\times U(1)_m$ -preserving mass)

Perturbative Regime: Large Triplet Mass

Couple to $U(1)_f$ with $J_f^{\mu} = \bar{\psi} \gamma^{\mu} \sigma_z \psi$ and $U(1)_m$ with $\star J_m = f/2\pi$

$$\mathcal{L} = -rac{1}{4e^2}f^{\mu
u}f_{\mu
u} - iar{\psi}_i\left[(\partial\!\!\!/ - i\!\!\!/ s)\delta^i_j - i\!\!\!/ A_f(\sigma_z)^i_j
ight]\psi^j + rac{1}{2\pi}da\wedge A_m$$

- Add $\vec{m} = m \hat{z}$: $\mathcal{L}_{\vec{m}} = im \bar{\psi} \sigma_z \psi = im (\bar{\psi}_1 \psi^1 \bar{\psi}_2 \psi^2)$
- Integrate out fermions at $|m|\gg e^2$: Coulomb phase (1 NGB)

$$\mathcal{L}_{IR} = -rac{1}{4e_m^2}f^{\mu
u}f_{\mu
u} + \cdots + rac{1}{2\pi}da \wedge (A_m + \mathrm{sign}(m)A_f)$$

$$egin{cases} m>0 : ext{condensing } \mathcal{M}^1 ext{ and unbroken } U(1)_- \ m<0 : ext{condensing } \mathcal{M}^2 ext{ and unbroken } U(1)_+ \end{cases}$$

In our proposal, large and small mass regimes are continuously connected! One evidence for this is the existence of a massless photon for any non-zero triplet mass (because all electrically charged dof's decouple)

Non-Perturbative Constraints on Symmetry Breaking

- The Vafa-Witten theorem imposes constraints on the allowed patterns of symmetry breaking in T-invariant theories [Vafa, Witten]
- Subtlety for QED₃: naively, $U(1)_f \subset SU(2)_f$ is unbroken, but there is a mixing between $U(1)_f$ and $U(1)_m$

Applying Vafa-Witten arguments to QED3:

- lacktriangle Time-reversal \mathcal{T} is unbroken
- ② If no monopole operator condenses, $U(1)_f \times U(1)_m$ is unbroken
- ① If a (q_m, q_f) monopole operator condenses, the linear combination $U(1) = q_m U(1)_f q_f U(1)_m$ is unbroken (explains alignment); anomaly matching further requires q_m to be odd

Our proposal realizes 1) and 3) with $q_m = 1$.

Supersymmetric RG Flows: SQED with 8 Supercharges

3d
$$\mathcal{N}=4$$
 SQED with 1 hyper of charge 1: $(a_{\mu}, \varphi^{(ij)}, \lambda_{\alpha}^{ii'}; h^{i'}, \psi^{i})$ $\{Q_{\alpha}^{ii'}, Q_{\beta}^{ji'}\} \sim \epsilon^{ij} \epsilon^{i'j'} \gamma_{\alpha\beta}^{\mu} P_{\mu}; \quad (i, i') \in SU(2)_{L} \times SU(2)_{R}; \quad U(1)_{m}$

- \Rightarrow 1 hypermultiplet \supset 2 charge-1 Dirac fermions ψ^i , doublet of $SU(2)_L$
 - There is a Coulomb branch of vacua parametrized by the dual photon σ + the real scalars $\varphi^{(j)} = (\varphi_1, \varphi_2, \varphi_3)$ [Seiberg, Witten], it is a smooth, singularity-free σ -model with target space metric

$$ds^{2} = V(r)\left(d\varphi_{1}^{2} + d\varphi_{2}^{2} + d\varphi_{3}^{2}\right) + V^{-1}(r)\left(\frac{d\sigma}{2\pi} + \frac{1}{4\pi}\cos\theta d\phi\right)^{2}$$

where $V(r) \equiv \frac{1}{e^2} + \frac{1}{4\pi r}$, and (r, θ, ϕ) are polar coordinates of φ_i

- By mirror symmetry, this can be dualized to a free (twisted) hypermultiplet $\widetilde{\Phi} = (\mathcal{M}^i, \Psi^{i'}) \Rightarrow$ vev's of monopole operators $\langle \mathcal{M}^i \rangle$ parametrize the Coulomb branch
- $U(2) = \frac{SU(2)_L \times U(1)_m}{\mathbb{Z}_2}$ acting on the Coulomb branch (as in QED₃)

RG Flow to non-SUSY QED₃

- Deform the theory to give mass to $(\varphi^{ij},\lambda_{\alpha}^{ij'},h^{i'})$, but not (a_{μ},ψ^i)
- Use components of multiplets that can be reliably tracked in the IR [Cordova, Dumitrescu] (e.g. the stress-tensor multiplet)
- At low energies SQED + deformation flows to non-SUSY QED₃ with $N_f = 2$ massless Dirac fermions
- Tracking the UV deformation to the IR, we get a non-trivial scalar potential on the Coulomb branch V(r)
- The deformation lifts the degeneracy of the Coulomb branch, as the minimum of $\mathcal{V}(r)$ is at $\langle r \rangle \neq 0$: the target space metric at r=const. is the S^3 sigma model
- We recover U(2) o U(1) via monopole condensation, $\langle \mathcal{M}^i \rangle \neq 0$

Outlook

- Symmetry breaking in QED₃ is driven by monopoles, which carry both magnetic and flavor quantum numbers, and not only by fermion bilinears (as in 4d QCD)
- Using Vafa-Witten theorem, 't Hooft anomaly matching, and the large mass regime, we gave evidence that if the theory does not flow to a CFT, then

$$U(2) o U(1)$$
 via $\langle \mathcal{M}^i
angle
eq 0$

giving rise to an S^3 sigma model with $\theta=\pi$, matching the anomaly

- One of the NGBs is (for any $N_f \in 2\mathbb{Z}$) the dual photon
- Consistent with RG flows from $\mathcal{N}=4$ SQED with $N_{hyper}=1$
- For $N_{hyper} \geq 2$ (corresponding to even $N_f \geq 4$) the Coulomb branch has a singularity at the origin where new massless dof's appear: Hints for a different (CFT-like) behavior [WIP]

THANK YOU FOR YOUR ATTENTION!