Near-extremal Black Holes and their microstates

Sameer Murthy King's College London

Eurostrings 2025 Stockholm, Aug 26, 2025

Near-extremal BHs

BH with charge (and/or spin).

4d Reissner-Nordstrom

$$r_{\pm} = Q \pm \sqrt{M^2 - Q^2}$$

$$T = \frac{r_{+} - r_{-}}{4\pi r_{+}^2}$$

Near-extremal BHs

BH with charge (and/or spin).

Extremal limit:

Horizons $r_+ \rightarrow r_-$

Temperature $T \to 0$

4d Reissner-Nordstrom

$$r_{\pm} = Q \pm \sqrt{M^2 - Q^2}$$

$$T = \frac{r_{+} - r_{-}}{4\pi r_{+}^{2}}$$

Why should we study Near-extremal BHs?

BH with charge (and/or spin).

Extremal limit:

Horizons $r_+ \rightarrow r_-$

Temperature $T \to 0$

4d Reissner-Nordstrom

$$r_{\pm} = Q \pm \sqrt{M^2 - Q^2}$$

$$T = \frac{r_{+} - r_{-}}{4\pi r_{+}^{2}}$$

Why should we study Near-extremal BHs?

BH with charge (and/or spin).

Extremal limit:

Horizons $r_+ \rightarrow r_-$

Temperature $T \to 0$

4d Reissner-Nordstrom

$$r_{\pm} = Q \pm \sqrt{M^2 - Q^2}$$

$$T = \frac{r_{+} - r_{-}}{4\pi r_{+}^{2}}$$

We will discuss:

 Low temp enhanced quantum grav effects, quantitative handle

Why should we study Near-extremal BHs?

BH with charge (and/or spin).

Extremal limit:

Horizons $r_+ \rightarrow r_-$

Temperature $T \to 0$

4d Reissner-Nordstrom

$$r_{\pm} = Q \pm \sqrt{M^2 - Q^2}$$

$$T = \frac{r_{+} - r_{-}}{4\pi r_{+}^{2}}$$

We will discuss:

- Low temp enhanced quantum grav effects, quantitative handle
- Explanation of BH entropy in string theory

(Naive) Semiclassical picture

$$S_{\rm BH}(Q,T) = S_0(Q) + 4\pi Q^3 \ell_{\rm P} T + \dots$$

$$S_0 = \frac{A_{\rm H}}{4 \, \ell_{\rm P}^2} = \pi Q^2$$

(Naive) Semiclassical picture

$$S_{\rm BH}(Q,T) = S_0(Q) + 4\pi (T/E_{\rm gap}) + O((T/E_{\rm gap})^2)$$

$$S_0 = \frac{A_{\rm H}}{4\ell_{\rm P}^2} = \pi Q^2$$
 $E_{\rm gap} = \frac{1}{\ell_{\rm P} Q^3}$

• (Naive) Semiclassical picture [State of the art until recently]

$$S_{\rm BH}(Q,T) = S_0(Q) + 4\pi (T/E_{\rm gap}) + O((T/E_{\rm gap})^2)$$

$$E_{\rm gap} = \frac{1}{\ell_{\rm P} Q^3}$$

$$S_0 = \frac{A_{\rm H}}{4 \ell_{\rm P}^2} = \pi Q^2$$

• (Naive) Semiclassical picture [State of the art until recently]

$$S_{\rm BH}(Q,T) = S_0(Q) + 4\pi (T/E_{\rm gap}) + O((T/E_{\rm gap})^2)$$

$$S_0 = \frac{A_{\rm H}}{4\ell_{\rm P}^2} = \pi Q^2$$
 $E_{\rm gap} = \frac{1}{\ell_{\rm P} Q^3}$

 Large degeneracy of ground states is unlike ordinary quantum-statistical systems.

• (Naive) Semiclassical picture [State of the art until recently]

$$S_{\rm BH}(Q,T) = S_0(Q) + 4\pi (T/E_{\rm gap}) + O((T/E_{\rm gap})^2)$$

$$S_0 = \frac{A_{\rm H}}{4\ell_{\rm P}^2} = \pi Q^2$$
 $E_{\rm gap} = \frac{1}{\ell_{\rm P} Q^3}$

- Large degeneracy of ground states is unlike ordinary quantum-statistical systems.
- Something must go wrong with semi-classical picture at low temperatures. [Preskill, Schwarz, Shapere, Trivedi, Wilczek '91]

In fact, large quantum effects dramatically change the semiclassical picture

- Correct quantum picture [uncovered in the last few years]
 - Ordinary quantum system, density of states goes to zero at zero temperature

In fact, large quantum effects dramatically change the semiclassical picture

- Correct quantum picture [uncovered in the last few years]
 - Ordinary quantum system, density of states goes to zero at zero temperature

 Calculational control from quantization of a certain light mode (Schwarzian) around the horizon.

In fact, large quantum effects dramatically change the semiclassical picture

- Correct quantum picture [uncovered in the last few years]
 - Ordinary quantum system, density of states goes to zero at zero temperature

• Calculational control from quantization of a certain light mode (Schwarzian) around the horizon.

Note: large quantum effects even for weakly-curved horizons.

This talk: explain quantum effects, discuss consequences on BHs and string theory

 Large quantum effects from nearly-gapless mode: density of states, mass gap

This talk: explain quantum effects, discuss consequences on BHs and string theory

- Large quantum effects from nearly-gapless mode: density of states, mass gap
- Consequences on near-extremal physics
 - Exact quantum entropy of susy BHs
 - Hawking radiation and scattering off BHs
 - Perturbative string theory in near-extremal BHs

This talk: explain quantum effects, discuss consequences on BHs and string theory

- Large quantum effects from nearly-gapless mode: density of states, mass gap
- Consequences on near-extremal physics
 - Exact quantum entropy of susy BHs
 - Hawking radiation and scattering off BHs
 - Perturbative string theory in near-extremal BHs
- Revisit BH microstates in string theory
 - decoupling of supersymmetric BHs
 - gravitational index

The appearance of nearly-gapless modes

$$\mathcal{H} = \mathcal{H}_{\mathrm{BH}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$\mathcal{H} = \mathcal{H}_{\mathrm{BH}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$\dim(\mathcal{H}_{\mathrm{BH}}) = \exp(S_{\mathrm{BH}})$$

$$\mathcal{H} \stackrel{?}{=} \mathcal{H}_{\mathrm{BH}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$\dim(\mathcal{H}_{\mathrm{BH}}) = \exp(S_{\mathrm{BH}})$$

 Treat BH as a particle/molecule to zeroth approximation, and then assign it a large entropy.

$$\mathcal{H} \stackrel{?}{=} \mathcal{H}_{\mathrm{BH}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$\dim(\mathcal{H}_{\mathrm{BH}}) = \exp(S_{\mathrm{BH}})$$

• When T>0, quanta constantly being exchanged due to Hawking radiation (and hence no factorization)

$$\mathcal{H} \stackrel{?}{=} \mathcal{H}_{\mathrm{BH}} \otimes \mathcal{H}_{\mathrm{out}}$$

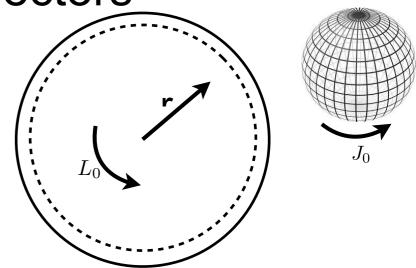
$$\dim(\mathcal{H}_{\mathrm{BH}}) = \exp(S_{\mathrm{BH}})$$

- When $\,T>0$, quanta constantly being exchanged due to Hawking radiation (and hence no factorization)
- Correct description is canonical ensemble, includes environment.

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

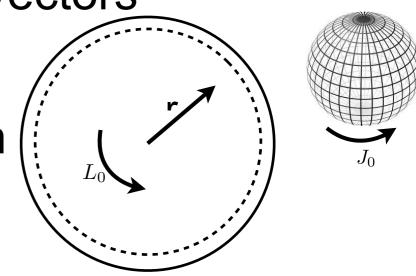
• Extremal limit: AdS2 x S2 near-horizon



Euclidean $AdS_2 \times S^2$

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

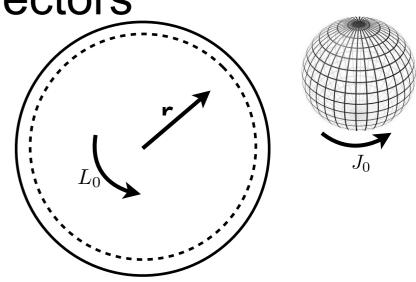
- Extremal limit: AdS2 x S2 near-horizon
- Near-horizon field configuration is a solution of the EOMs
 - Fixed completely by the charges



Euclidean $AdS_2 \times S^2$

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

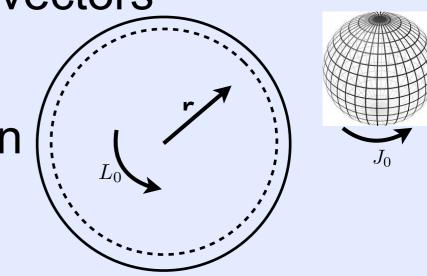
- Extremal limit: AdS2 x S2 near-horizon
- Near-horizon field configuration is a solution of the EOMs
 - Fixed completely by the charges
 - No dependence on asymptotic data



Euclidean $AdS_2 \times S^2$

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

- Extremal limit: AdS2 x S2 near-horizon
- Near-horizon field configuration is a solution of the EOMs
 - Fixed completely by the charges
 - No dependence on asymptotic data

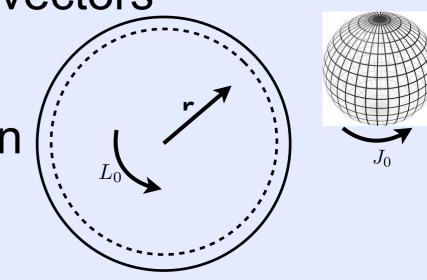


Euclidean $AdS_2 \times S^2$

[Attractor mechanism, Ferrara, Kallosh, Strominger '95]

Effective low energy theory: gravity + vectors
 E.g. Einstein-Maxwell (E-M)

- Extremal limit: AdS2 x S2 near-horizon
- Near-horizon field configuration is a solution of the EOMs
 - Fixed completely by the charges
 - No dependence on asymptotic data



Euclidean $AdS_2 \times S^2$

[Attractor mechanism, Ferrara, Kallosh, Strominger '95]

Is the extremal BH decoupled from the environment at the quantum level?

Effective action on $AdS_2 \times S^2$

- ullet Field fluctuations around $AdS_2 imes S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

- ullet Field fluctuations around $AdS_2 imes S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

• AdS_2 admits "pure gauge" modes which do not vanish at boundary. [Camporesi, Higuchi '95]

O
$$ds^2 \sim d\rho^2 + e^{2\rho}d\tau^2$$

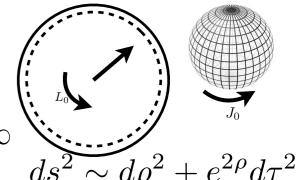
- Field fluctuations around $AdS_2 imes S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

not vanish at boundary. [Camporesi, Higuchi '95] $\rho \to \infty$ $h_{\mu\nu}^{(0)} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu}$ $\zeta \sim \sum_{\text{label}} \varepsilon_{n} \mathrm{e}^{in\tau} \left(in\partial_{\rho} - \partial_{\tau}\right)$ • AdS_2 admits "pure gauge" modes which do

$$h_{\mu\nu}^{(0)} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu}$$

$$\zeta \sim \sum_{|n| \ge 2} \varepsilon_n e^{in\tau} \left(in\partial_\rho - \partial_\tau \right)$$



- ullet Field fluctuations around $AdS_2 imes S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

• AdS_2 admits "pure gauge" modes which do not vanish at boundary. [Camporesi, Higuchi '95] $\rho \to \infty$ $h_{\mu\nu}^{(0)} = \nabla_\mu \zeta_\nu + \nabla_\nu \zeta_\mu \qquad \qquad \zeta \sim \sum_{|n|>2} \varepsilon_n \mathrm{e}^{in\tau} \left(in\partial_\rho - \partial_\tau\right)$

$$h_{\mu\nu}^{(0)} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu}$$

$$\zeta \sim \sum_{|n| \geq 2} \varepsilon_n e^{in\tau} \left(in\partial_{\rho} - \partial_{\tau} \right)$$

$$= \varepsilon'(\tau)\partial_{\rho} - \varepsilon(\tau)\partial_{\tau}, \quad \varepsilon(\tau) \equiv \sum_{|n| \geq 2} \varepsilon_n e^{in\tau}$$

- Field fluctuations around $AdS_2 \times S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

 AdS_2 admits "pure gauge" modes which up not vanish at boundary. [Camporesi, Higuchi '95] $\rho \to \infty$ $ds^2 \sim d\rho^2 + e^{2\rho} d\tau^2$ ullet AdS_2 admits "pure gauge" modes which do

$$h_{\mu\nu}^{(0)} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu} \qquad \qquad \zeta \sim \sum_{|n| \geq 2} \varepsilon_{n} e^{in\tau} \left(in\partial_{\rho} - \partial_{\tau} \right) \qquad \qquad ds^{2} \sim d\rho^{2} + e^{2\rho} d\tau^{2}$$

$$\delta S_{\text{E-M}}^{4d} \left[h_{\varepsilon}^{(0)} \right] = 0 \qquad = \varepsilon'(\tau) \partial_{\rho} - \varepsilon(\tau) \partial_{\tau}, \qquad \varepsilon(\tau) \equiv \sum_{|n| \ge 2} \varepsilon_n e^{in\tau}$$

- ullet Field fluctuations around $AdS_2 imes S^2$. Non-zero action.
 - ⇒ Quantum corrections to extremal BH entropy.

[Banerjee, Gupta, Sen '10, ... See Review Sen'11]

• AdS_2 admits "pure gauge" modes which do not vanish at boundary. [Camporesi, Higuchi '95] $\rho \to \infty$

$$ds^2 \sim d\rho^2 + e^{2\rho} d\tau^2$$

$$h_{\mu\nu}^{(0)} = \nabla_{\mu}\zeta_{\nu} + \nabla_{\nu}\zeta_{\mu}$$

$$\delta S_{\text{E-M}}^{4d} \left[h_{\varepsilon}^{(0)} \right] = 0$$

$$\rho \to \infty$$

$$\zeta \sim \sum_{|n| \ge 2} \varepsilon_n e^{in\tau} \left(in\partial_\rho - \partial_\tau \right)$$

$$= \varepsilon'(\tau)\partial_{\rho} - \varepsilon(\tau)\partial_{\tau}, \qquad \varepsilon(\tau) \equiv \sum_{|n|>2} \varepsilon_{n} e^{in\tau}$$

 Note: zero mode gives important contribution to one-loop logarithmic corrections to extremal entropy

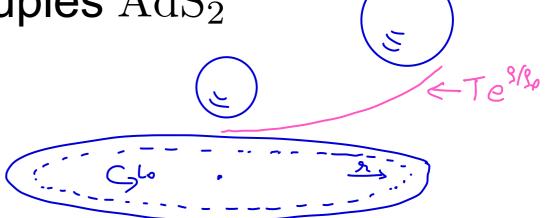
$$Z^{\text{extr}}(Q) = Q^{c_{\text{log}}} \exp(\pi Q^2 + \dots)$$

[Sen '11; Jeon, S.M.'18]

Near-AdS2 (x S2) has nearly-zero modes

ullet Introduce small T regulator: recouples AdS_2

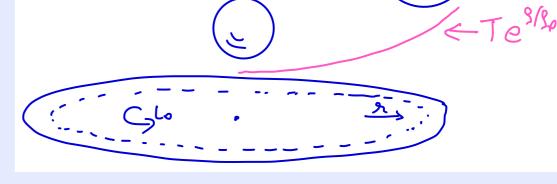
$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$



Introduce small T regulator: recouples AdS₂

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$



$$E_{\rm gap} = 1/Q^3$$

ullet Introduce small T regulator: recouples AdS_2

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$

$$F = 1/0^3$$

Introduce small T regulator: recouples AdS₂

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$

$$E_{\rm gap} = 1/Q^3$$

$$\delta S_{\text{E-M}}^{4d} [h_{\varepsilon}] = \frac{T}{E_{\text{gap}}} \int d\tau (\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2)$$

ullet Introduce small T regulator: recouples AdS_2

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$

$$E_{\rm gap} = 1/Q^3$$

$$\delta S_{\text{E-M}}^{4d} [h_{\varepsilon}] \neq \frac{T}{E_{\text{gap}}} \int d\tau (\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2)$$

Introduce small T regulator: recouples AdS₂

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$

$$E_{\rm gap} = 1/Q^3$$

$$\delta S_{\text{E-M}}^{4d} \big[h_{\varepsilon} \big] = \frac{T}{E_{\text{gap}}} \int d\tau \big(\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2 \big)$$
 Strongly-coupled

ullet Introduce small T regulator: recouples AdS_2

$$g_{\mu\nu}^{(1)}(T) = g_{\mu\nu}^{\text{AdS}_2 \times S^2} (1 + a_1 T + \dots)$$

$$S_{\rm BH}(g_{\mu\nu}^{(1)}) = S_0(Q) + 4\pi (T/E_{\rm gap}) + \dots$$

$$E_{\rm gap} = 1/Q^3$$

• Zero-modes of pure $AdS_2 \times S^2$ now obtain T-dependence

$$\delta S_{\text{E-M}}^{4d} \left[h_{\varepsilon} \right] = \frac{T}{E_{\text{gap}}} \int d\tau \left(\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2 \right)$$

Strongly-coupled

controls coupling of BH to asymptotic region

Schwarzian theory has been studied intensively in recent years

 Change of coordinates to equivalent presentation

[Iliesiu, S.M. Turiaci '22]

Schwarzian theory has been studied intensively in recent years

 Change of coordinates to equivalent presentation

[Iliesiu, S.M. Turiaci '22]

• Schwarzian action for $Diff(S^1)/SL(2)$

$$S^{\mathrm{Sch}}[\varepsilon] = \frac{T}{E_{\mathrm{gap}}} \int d\tau (\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2)$$

Schwarzian theory has been studied

intensively in recent years

 Change of coordinates to equivalent presentation

[Iliesiu, S.M. Turiaci '22]

• Schwarzian action for $Diff(S^1)/SL(2)$

$$S^{\mathrm{Sch}}[\varepsilon] = \frac{T}{E_{\mathrm{gap}}} \int d\tau (\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2)$$

$$Z_{\text{1-loop}}^{\text{Sch}} = (T/E_{\text{gap}})^{3/2}$$

Schwarzian theory has been studied

intensively in recent years

 Change of coordinates to equivalent presentation

[Iliesiu, S.M. Turiaci '22]

• Schwarzian action for $Diff(S^1)/SL(2)$

$$S^{\mathrm{Sch}}[\varepsilon] = \frac{T}{E_{\mathrm{gap}}} \int d\tau (\varepsilon''(\tau)^2 - \varepsilon'(\tau)^2)$$

$$Z_{\text{1-loop}}^{\text{Sch}} = (T/E_{\text{gap}})^{3/2}$$

 Different methods to solve the theory, cf JT gravity (partition function, density of states, correlators,...)

[Sachdev '15; Almheiri, Kang '16; Maldacena, Stanford, Yang '16; Yang '18, Moitra, Trivedi, Vishal '18; Ghosh, Maxfield, Turiaci '19; Iliesiu, Turiaci, '20; Mertens, Turiaci, Verlinde '20; Heydeman, Iliesiu, Turiaci, Zhao '20;...]

[See Review Mertens-Turiaci '22]

Partition function

$$Z_{\rm BH}(Q,T) = (Q^3 T)^{\frac{3}{2}} Q^{c_{\rm log}} \exp(\pi Q^2 + 4\pi^2 Q^3 T + \dots)$$

Partition function

$$Z_{\mathrm{BH}}(Q,T) = (Q^3T)^{\frac{3}{2}} \ Q^{c_{\mathrm{log}}} \exp \left(\pi Q^2 + 4\pi^2 Q^3 T + \dots\right)$$

$$\longrightarrow 0 \text{ as } T \to 0$$

Partition function

$$Z_{\rm BH}(Q,T) = (Q^3T)^{\frac{3}{2}} \ Q^{c_{\rm log}} \exp\left(\pi Q^2 + 4\pi^2 Q^3 T + \dots\right)$$

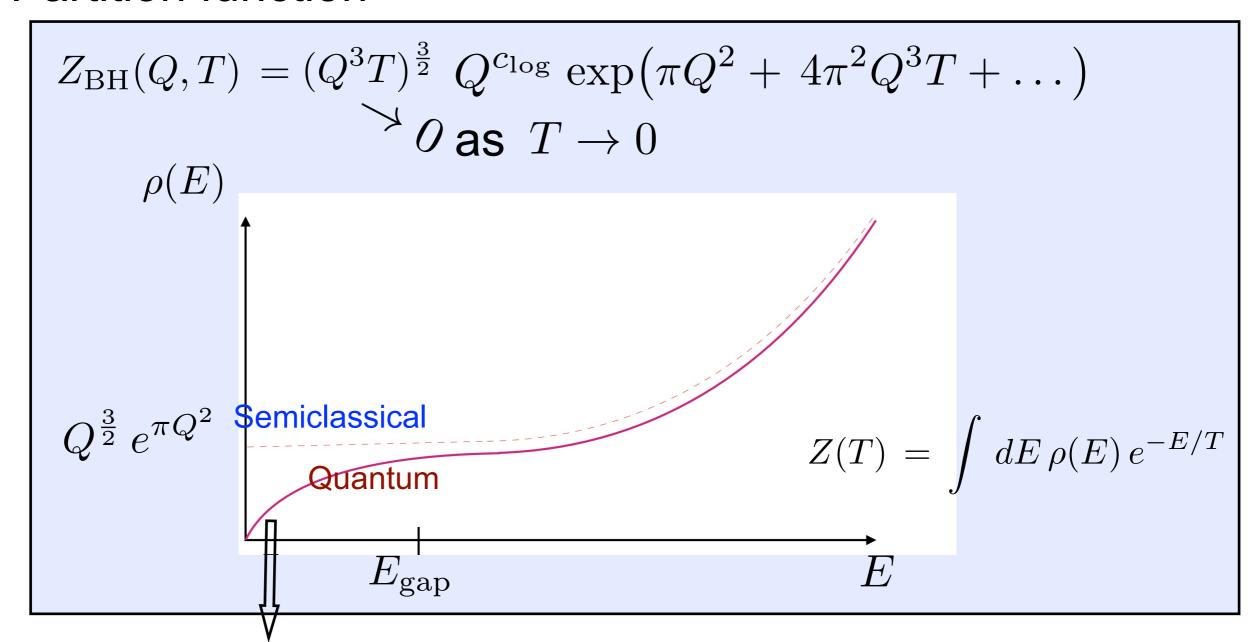
$$O \text{ as } T \to 0$$

$$Q^{\frac{3}{2}} e^{\pi Q^2} \text{ Semiclassical}$$

$$Z(T) = \int dE \, \rho(E) \, e^{-E/T}$$

$$E_{\rm gap}$$

Partition function



Semi-classical intuition is strongly corrected

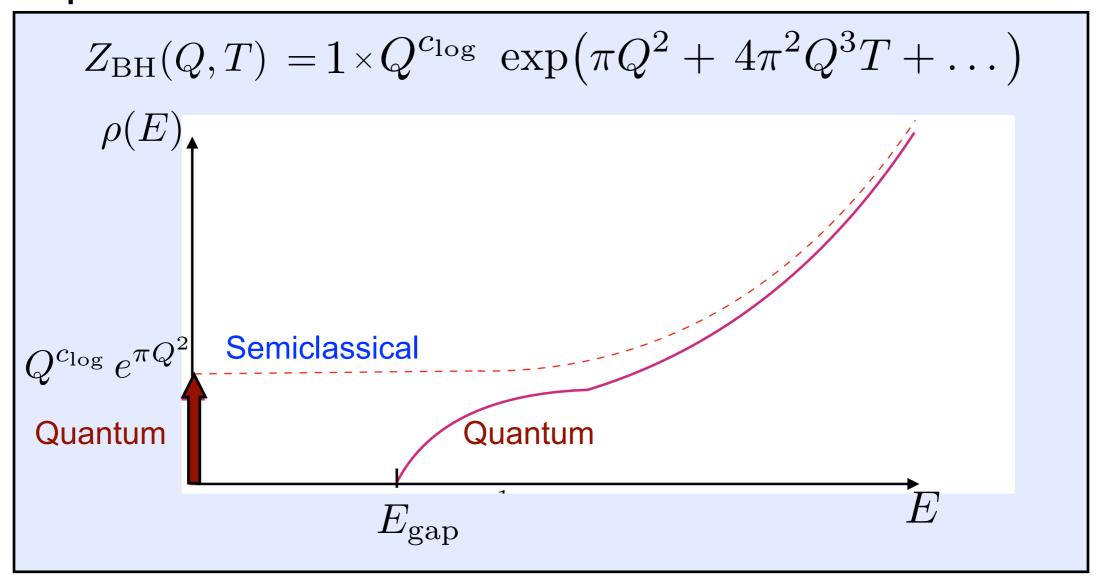
Supersymmetric BHs exhibit a mass gap and quantum decoupling

 Large quantum fluctuations of bosonic and fermionic super-Schwarzian modes

$$Z_{\rm BH}(Q,T) = 1 \times Q^{c_{\rm log}} \exp(\pi Q^2 + 4\pi^2 Q^3 T + \dots)$$

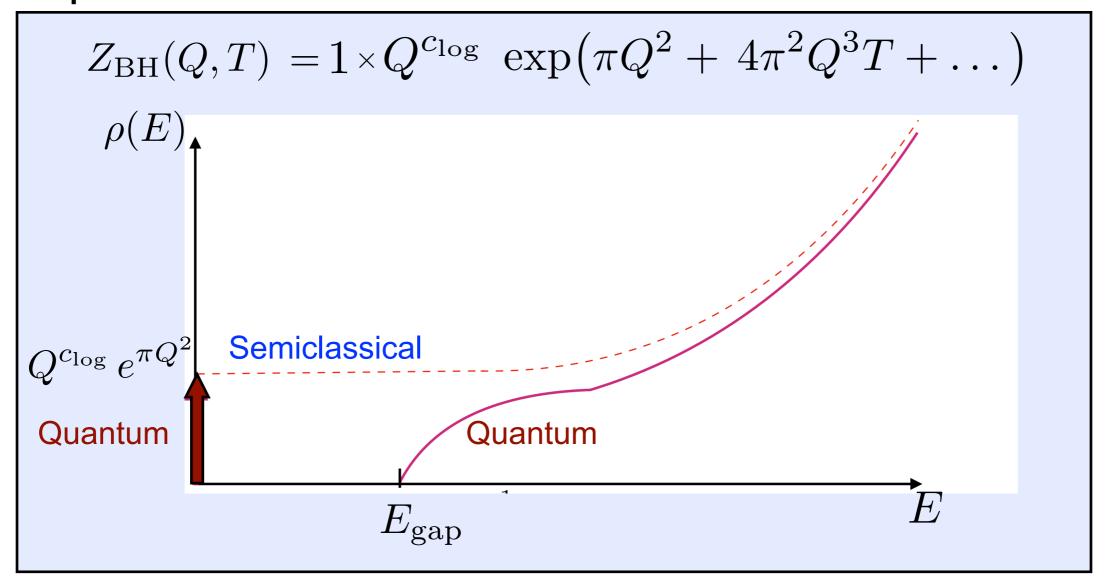
Supersymmetric BHs exhibit a mass gap and quantum decoupling

 Large quantum fluctuations of bosonic and fermionic super-Schwarzian modes



Supersymmetric BHs exhibit a mass gap and quantum decoupling

 Large quantum fluctuations of bosonic and fermionic super-Schwarzian modes



 Note: decoupling justifies microscopic counting of BPS states in string theory.

[Iliesiu, Turiaci '20; Iliesiu, S.M. Turiaci '22]

Applications of quantum near-extremal physics

• Exact formulas from localization in sugra [Dabholkar, Gomes, (e.g. ½-BPS BHs in N=8 string theory). S.M.'11-'14]

[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]

$$d_{\text{micro}}(Q) = \sum_{c=1}^{\infty} \frac{1}{c} K_c(Q) \frac{1}{c^{7/2}} \widetilde{I}_{7/2}(\pi Q/c)$$

• Exact formulas from localization in sugra [Dabholkar, Gomes, (e.g. ½-BPS BHs in N=8 string theory). S.M.'11-'14]

[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]

$$d_{\text{micro}}(Q)$$

$$= Z_{\text{BH}}(Q) = \sum_{c=1}^{\infty} \frac{1}{c} K_c(Q) \frac{1}{c^{7/2}} \widetilde{I}_{7/2}(\pi Q/c)$$

 Exact formulas from localization in sugra (e.g. ½-BPS BHs in N=8 string theory).

[Dabholkar, Gomes, S.M.'11-'14]

[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]

$$d_{
m micro}(Q)$$
 = $Z_{
m BH}(Q)=\sum_{c=1}^{\infty} rac{1}{c} K_c(Q) rac{1}{c^{7/2}} \widetilde{I}_{7/2}(\pi Q/c)$ all-order quantum

all-order quantum fluctuations of bulk modes

[Dabholkar, Gomes, S.M.'11-'14]
[...]
[Iliesiu, S.M., Turiaci '22]

 Exact formulas from localization in sugra (e.g. ½-BPS BHs in N=8 string theory).

[Dabholkar, Gomes, S.M.'11-'14]

[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]

$$d_{\rm micro}(Q) = \sum_{c=1}^{\infty} \ \frac{1}{c} \ K_c(Q) \underbrace{\frac{1}{c^{7/2}} \ \widetilde{I}_{7/2}(\pi Q/c)}_{\text{all-order quantum fluctuations of bulk modes}}$$

[Dabholkar, Gomes, S.M.'14]

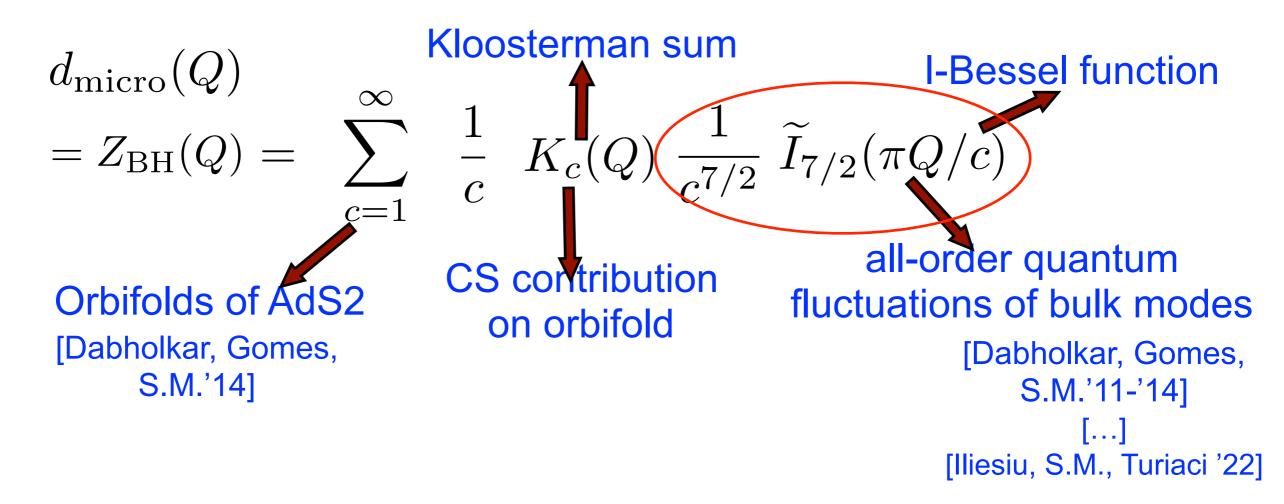
[Dabholkar, Gomes, S.M.'11-'14]

[Iliesiu, S.M., Turiaci '22]

 Exact formulas from localization in sugra (e.g. ½-BPS BHs in N=8 string theory).

[Dabholkar, Gomes, S.M.'11-'14]

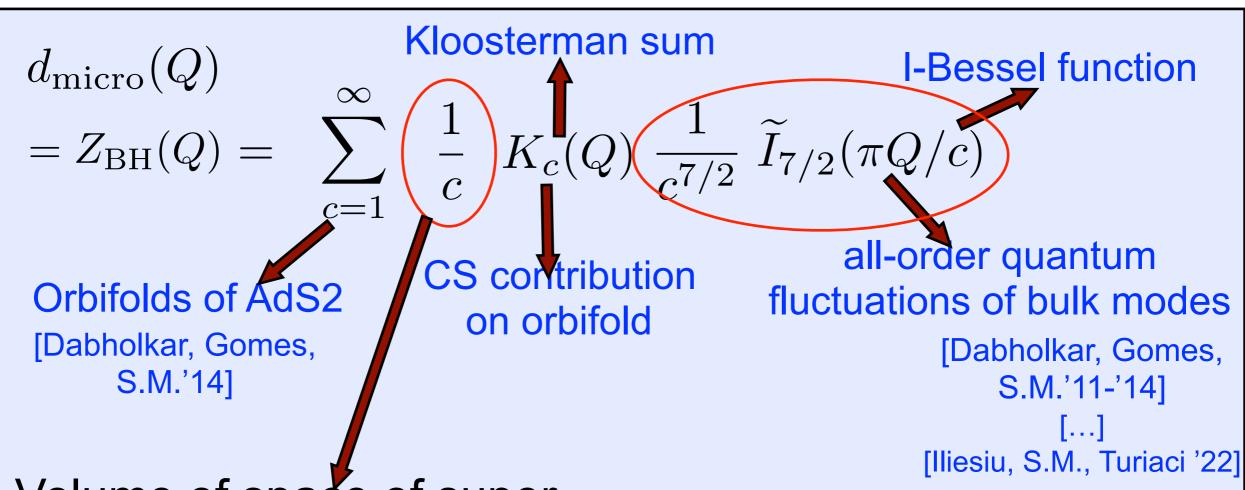
[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]



 Exact formulas from localization in sugra (e.g. ½-BPS BHs in N=8 string theory).

[Dabholkar, Gomes, S.M.'11-'14]

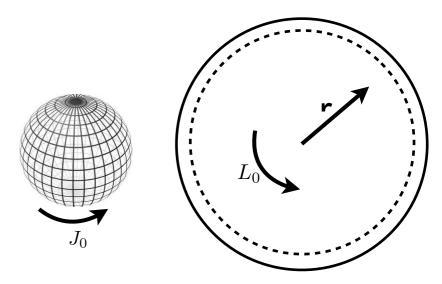
[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]



 Volume of space of super-Schwarzian modes on orbifold

[lliesiu, S.M., Turiaci '22]

• 4d supersymmetric black holes are spherically symmetric and therefore have zero net angular momentum $J_0 = F$



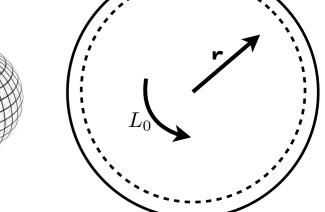
• 4d supersymmetric black holes are spherically symmetric and therefore have zero net angular momentum $J_0={\cal F}$

• AdS_2 geometry \Longrightarrow microcanonical ensemble

• 4d supersymmetric black holes are spherically symmetric and therefore have zero net angular momentum $J_0={\cal F}$

• AdS_2 geometry \Longrightarrow microcanonical ensemble

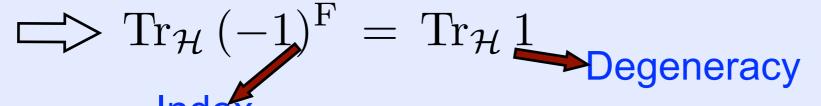
 \Longrightarrow every state has $J_0 = F = 0$

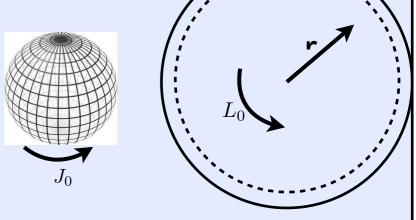


• 4d supersymmetric black holes are spherically symmetric and therefore have zero net angular momentum $J_0={\cal F}$

• AdS_2 geometry \Longrightarrow microcanonical ensemble

$$\Longrightarrow$$
 every state has $J_0 = F = 0$



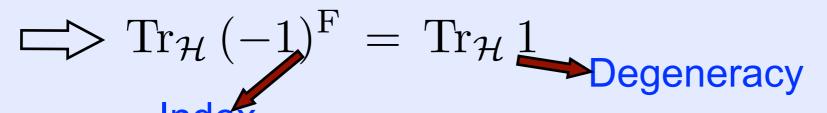


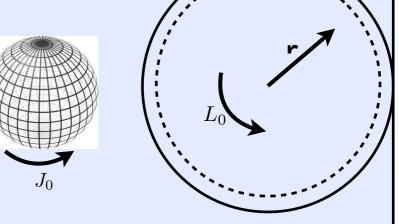
[Sen '10; Dabholkar, Gomes, S.M., Sen '10]

• 4d supersymmetric black holes are spherically symmetric and therefore have zero net angular momentum $J_0 = F$

• AdS_2 geometry \Longrightarrow microcanonical ensemble

$$\Longrightarrow$$
 every state has $J_0 = F = 0$





[Sen '10; Dabholkar, Gomes, S.M., Sen '10]

• Argument extended to Schwarzian modes. The result is that, again, only $J_0=0$ (bosonic) states contribute.

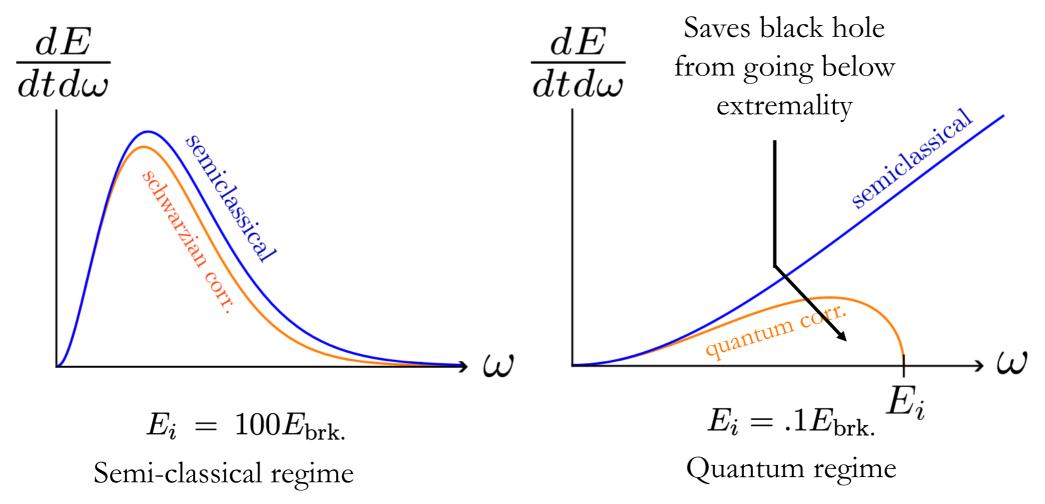
[Iliesiu, Kologlu, Turiaci '19; Iliesiu, S.M., Turiaci '22]

2a. Hawking radiation from near-extremal BHs



[Brown, Iliesiu, Penington, Usatyuk '24]

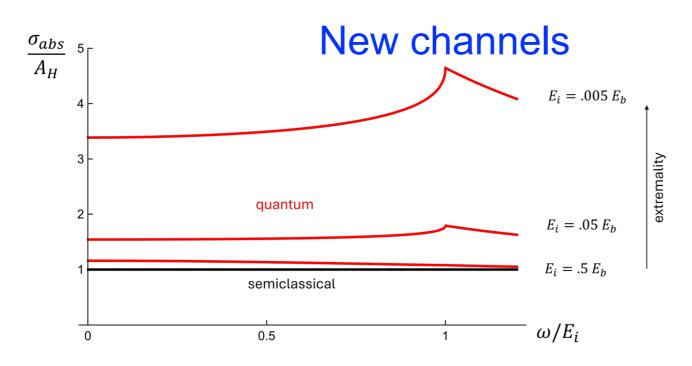
2a. Hawking radiation from near-extremal BHs



[Brown, Iliesiu, Penington, Usatyuk '24]

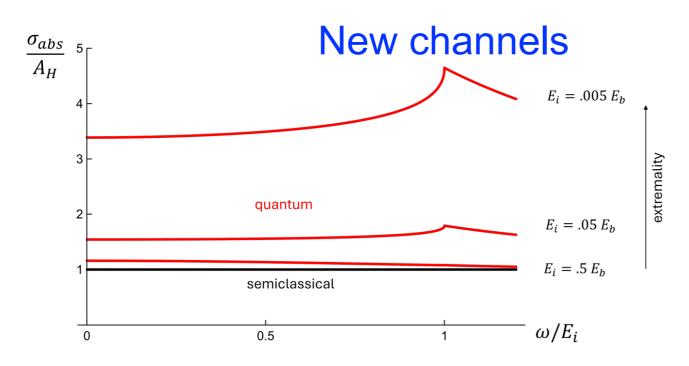
 Quantum effects alter the spectrum of radiation at low temperatures, and resolve apparent paradoxes posed in

[Preskill, Schwarz, Shapere, Trivedi, Wilczek '91]



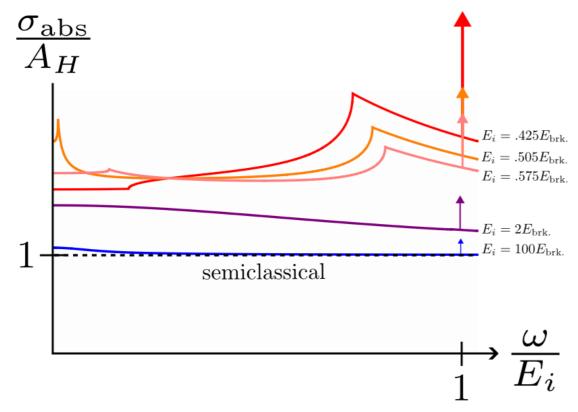
Scattering off nearextremal BHs in GR

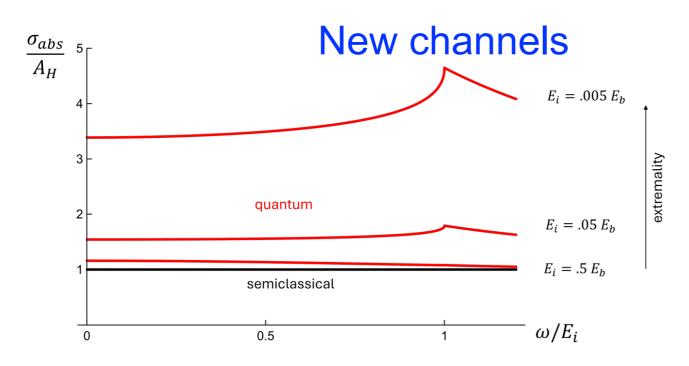
[Emparan '25; Biggs '25; Emparan, Trezzi '25; Lin, Iliesiu, Utasyuk; '25]



Scattering off nearextremal BHs in GR

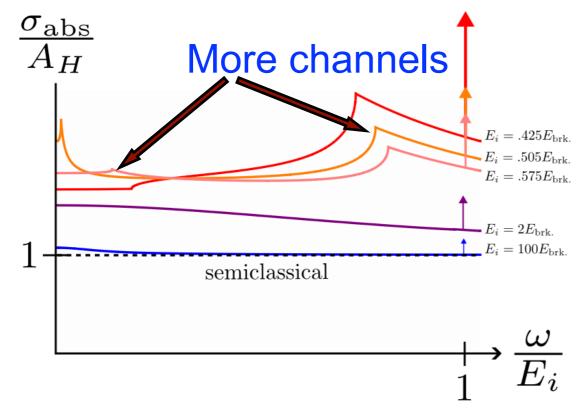
[Emparan '25; Biggs '25; Emparan, Trezzi '25; Lin, Iliesiu, Utasyuk; '25]

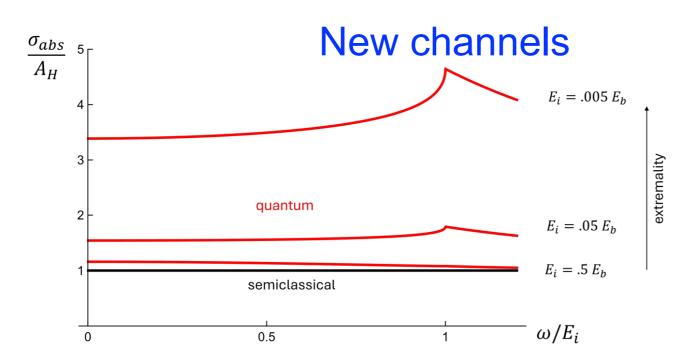




Scattering off nearextremal BHs in GR

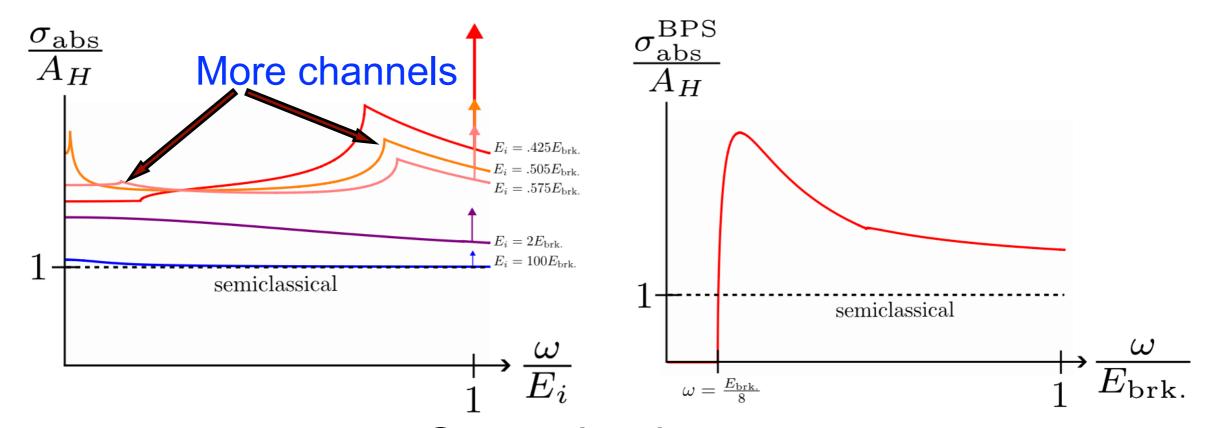
[Emparan '25; Biggs '25; Emparan, Trezzi '25; Lin, Iliesiu, Utasyuk; '25]

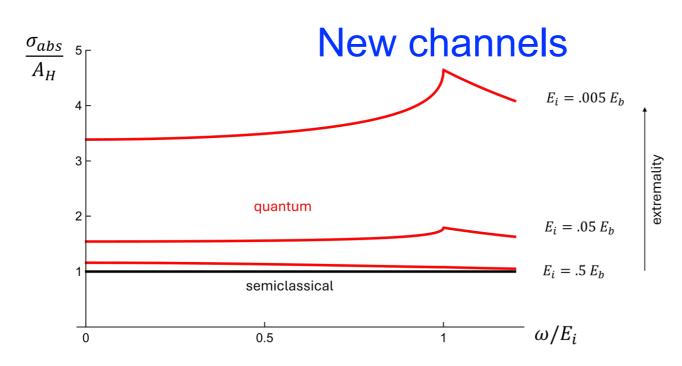




Scattering off nearextremal BHs in GR

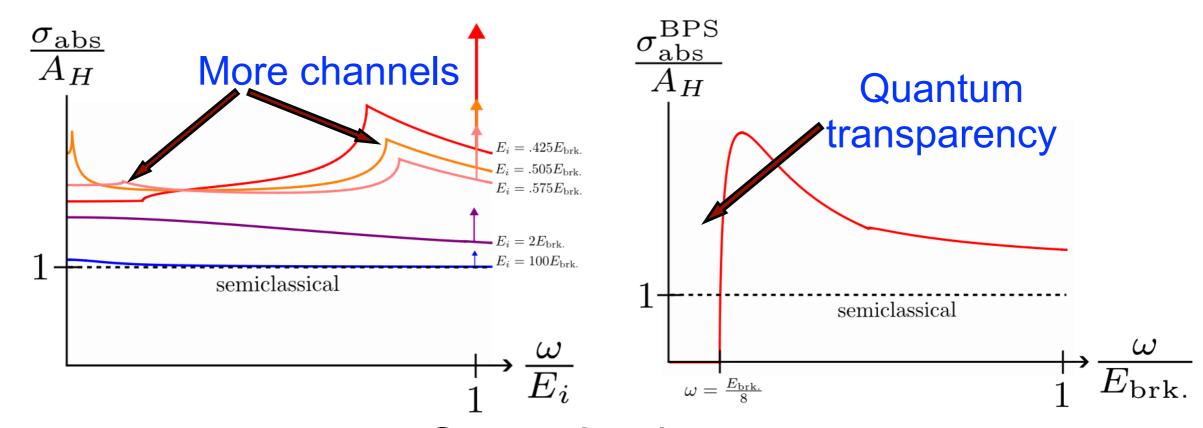
[Emparan '25; Biggs '25; Emparan, Trezzi '25; Lin, Iliesiu, Utasyuk; '25]





Scattering off nearextremal BHs in GR

[Emparan '25; Biggs '25; Emparan, Trezzi '25; Lin, Iliesiu, Utasyuk; '25]



 Extract a signal of Schwarzian modes from the one-loop string worldsheet amplitude (slightly indirectly).

Bosonic on ${
m AdS}_3$; Superstrings on ${
m AdS}_3 imes S^3 imes S^3$

[S.M., Rangamani '24, '25]

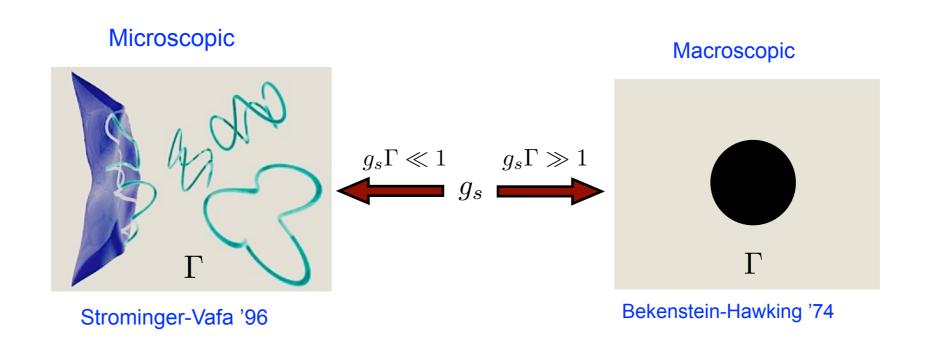
- Extract a signal of *Schwarzian* modes *from* the one-loop *string worldsheet* amplitude (slightly indirectly). Bosonic on AdS_3 ; Superstrings on $AdS_3 \times S^3 \times T^4$ [S.M., Rangamani '24, '25]
- Which superalgebras can arise as the BH near-horizon symmetry? Interpret 1-loop result T^{α} [Heydeman, Shi, Turiaci '25]

- Extract a signal of *Schwarzian* modes *from* the one-loop *string worldsheet* amplitude (slightly indirectly). Bosonic on AdS_3 ; Superstrings on $AdS_3 \times S^3 \times \frac{T^4}{S^3 \times S^1}$ [S.M., Rangamani '24, '25]
- Which superalgebras can arise as the BH near-horizon symmetry? Interpret 1-loop result T^{α} [Heydeman, Shi, Turiaci '25]
- Schwarzian far from BH [Kolanowski, Marolf, Rakic, Rangamani, Turiaci '24]; [Castro, Mancilla, Papadimitrou '25]

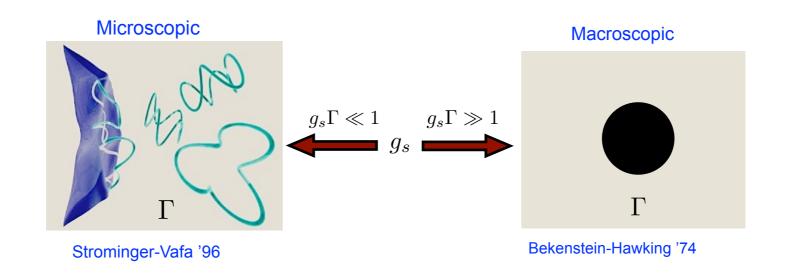
- Extract a signal of *Schwarzian* modes *from* the one-loop *string worldsheet* amplitude (slightly indirectly). Bosonic on AdS_3 ; Superstrings on $AdS_3 \times S^3 \times T^4$ [S.M., Rangamani '24, '25]
- Which superalgebras can arise as the BH near-horizon symmetry? Interpret 1-loop result T^{α} [Heydeman, Shi, Turiaci '25]
- Schwarzian far from BH [Kolanowski, Marolf, Rakic, Rangamani, Turiaci '24]; [Castro, Mancilla, Papadimitrou '25]
- Highly spinning BHs. [Kapec, Sheta, Toldo, Strominger '23; Rakic, Rangamani Turiaci '23; Arnaudo, Bonelli, Tanzini '25]

- Extract a signal of *Schwarzian* modes *from* the one-loop *string worldsheet* amplitude (slightly indirectly). Bosonic on AdS_3 ; Superstrings on $AdS_3 \times S^3 \times \frac{T^4}{S^3 \times S^1}$ [S.M., Rangamani '24, '25]
- Which superalgebras can arise as the BH near-horizon symmetry? Interpret 1-loop result T^{α} [Heydeman, Shi, Turiaci '25]
- Schwarzian far from BH [Kolanowski, Marolf, Rakic, Rangamani, Turiaci '24]; [Castro, Mancilla, Papadimitrou '25]
- Highly spinning BHs. [Kapec, Sheta, Toldo, Strominger '23;
 Rakic, Rangamani Turiaci '23; Arnaudo, Bonelli, Tanzini '25]
 (Classical) super-radiant instability takes BH away from extremality. Time-scale of decay comparable to Schwarzian time-scale. [Maldacena-S.M., '23 unpublished]

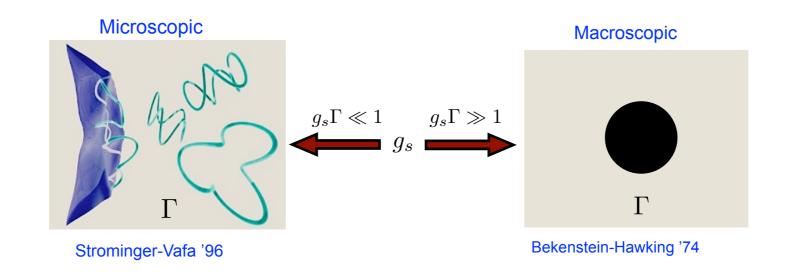
Microstates of supersymmetric BHs in string theory



 Important success of string theory. Proceeds through a sequence of steps:



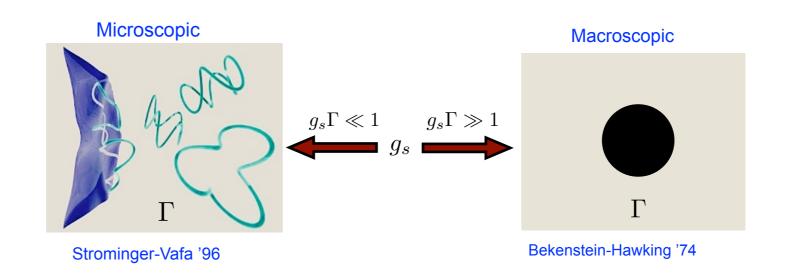
- Important success of string theory. Proceeds through a sequence of steps:
 - In gravitational theory, focus on BPS BH solution, and calculate its (quantum) BH entropy.



- Important success of string theory. Proceeds through a sequence of steps:
 - In gravitational theory, focus on BPS BH solution, and calculate its (quantum) BH entropy.
 - Calculate index in weakly-coupled (micro) string theory

$$Z = \operatorname{Tr}(-1)^F e^{-\beta H} = n_B^0 - n_F^0$$
 (count of BPS states)

[Strominger-Vafa '96]

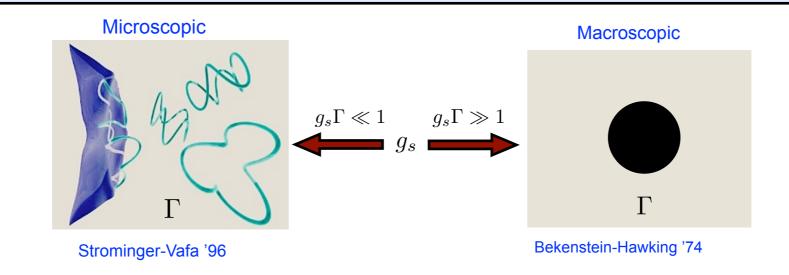


- Important success of string theory. Proceeds through a sequence of steps:
 - In gravitational theory, focus on BPS BH solution, and calculate its (quantum) BH entropy.
 - Calculate index in weakly-coupled (micro) string theory

$$Z = \operatorname{Tr}(-1)^F e^{-\beta H} = n_B^0 - n_F^0$$
 (count of BPS states)

[Strominger-Vafa '96]

$$\log(Z) = S_{\rm BH}$$



- For a single BH, we can use
 - (i) Quantum decoupling $\mathcal{H}_{\mathrm{BH}}\otimes\mathcal{H}_{\mathrm{out}}$ [lliesiu, S.M. Turiaci,'22]
 - (ii) BH Index = BH degeneracy [Sen '09; Dabholkar, Gomes, S.M, Sen '10] (both discussed above) to justify agreement.

- For a single BH, we can use
 - (i) Quantum decoupling $\mathcal{H}_{\mathrm{BH}}\otimes\mathcal{H}_{\mathrm{out}}$ [lliesiu, S.M. Turiaci,'22]
 - (ii) BH Index = BH degeneracy [Sen '09; Dabholkar, Gomes, S.M, Sen '10] (both discussed above) to justify agreement.
 - Is there a direct explanation from asymptotic theory?

- For a single BH, we can use
 - (i) Quantum decoupling $\mathcal{H}_{\mathrm{BH}}\otimes\mathcal{H}_{\mathrm{out}}$ [lliesiu, S.M. Turiaci,'22]
 - (ii) BH Index = BH degeneracy [Sen '09; Dabholkar, Gomes, S.M, Sen '10]

(both discussed above) to justify agreement.

- Is there a direct explanation from asymptotic theory?
- Microscopic index also captures multi-BH bound states when calculable

 $\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_{\mathrm{env}}$

[Manschot, Pioline, Sen, '10-'14] [Dabholkar, S.M., Zagier, '11]

- For a single BH, we can use
 - (i) Quantum decoupling $\mathcal{H}_{\mathrm{BH}}\otimes\mathcal{H}_{\mathrm{out}}$ [lliesiu, S.M. Turiaci,'22]
 - (ii) BH Index = BH degeneracy [Sen '09; Dabholkar, Gomes, S.M, Sen '10]
 - (both discussed above) to justify agreement.
- Is there a direct explanation from asymptotic theory?
- Microscopic index also captures multi-BH bound states when calculable

[Manschot, Pioline, Sen, '10-'14] [Dabholkar, S.M., Zagier, '11] $\mathcal{H}_1\otimes\mathcal{H}_2\otimes\mathcal{H}_{\mathrm{env}}$ Γ_2

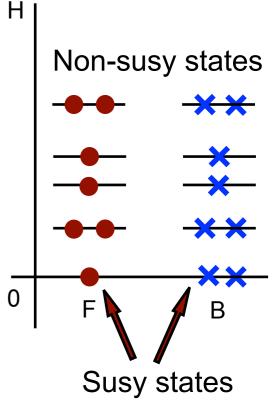
Cannot decouple both BHs while keeping bnd state!

Define index using non-zero temperature as regulator, keeping supersymmetry manifest.

Define index using non-zero temperature as regulator, keeping supersymmetry manifest.

$$Z_{\text{micro}}^{\text{index}} = \text{Tr}(-1)^F e^{-\beta H}$$

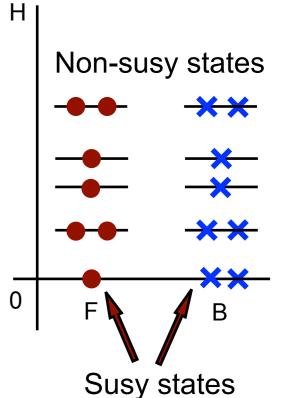
[Witten '82]



Define index using non-zero temperature as regulator, keeping supersymmetry manifest.

$$Z_{\text{micro}}^{\text{index}} = \text{Tr} (-1)^F e^{-\beta H} = \int D\phi \, D\psi \, e^{-S(\phi, \psi)}$$
 [Witten '82]
$$\phi(t_E + \beta) = \phi(t_E)$$

$$\psi(t_E + \beta) = \psi(t_E)$$



Define index using non-zero temperature as regulator, keeping supersymmetry manifest.

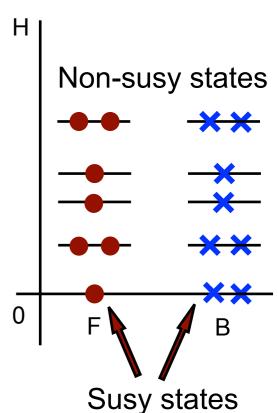
$$Z_{\rm micro}^{\rm index} = {\rm Tr}\,(-1)^F\,e^{-\beta H} = \int D\phi\,D\psi\,e^{-S(\phi,\psi)}$$
 [Witten '82]
$$\phi(t_E+\beta) = \phi(t_E)$$

$$\psi(t_E+\beta) = \psi(t_E)$$

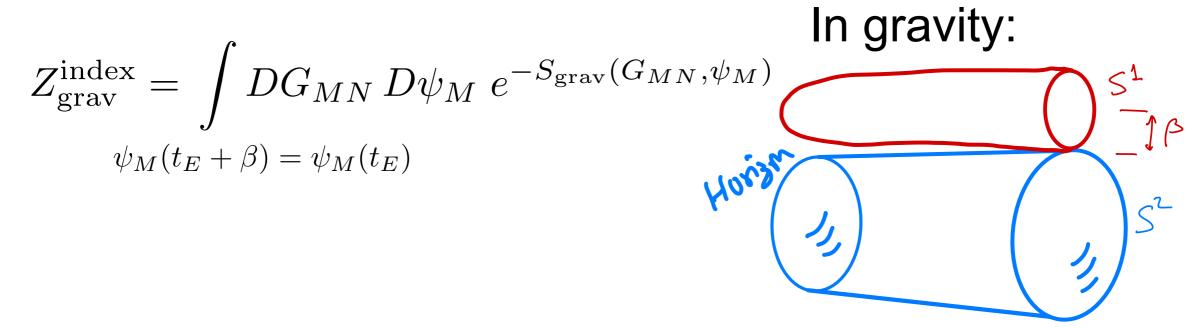
$$Z_{\text{grav}}^{\text{index}} = \int DG_{MN} D\psi_{M} e^{-S_{\text{grav}}(G_{MN}, \psi_{M})}$$

$$\psi_{M}(t_{E} + \beta) = \psi_{M}(t_{E})$$

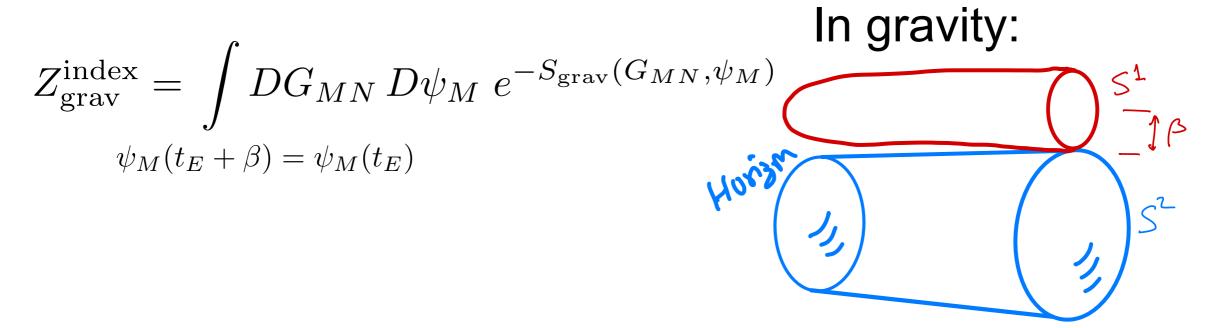
What are the saddles of the gravitational index?



There is a tension between supersymmetric BH and the gravitational index

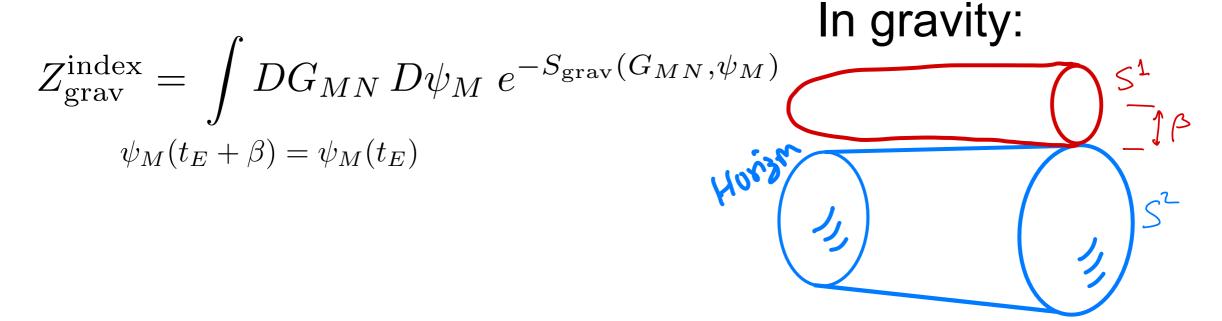


There is a tension between supersymmetric BH and the gravitational index



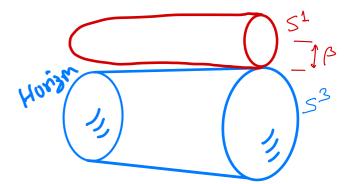
Susy BHs are extremal, β → ∞
 Infinite throat in the interior.
 Incompatible with finite β [Hawking, Horowitz, Ross '94]

There is a tension between supersymmetric BH and the gravitational index



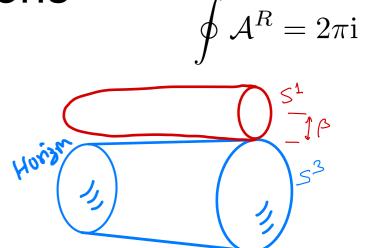
- Susy BHs are extremal, β → ∞
 Infinite throat in the interior.
 Incompatible with finite β [Hawking, Horowitz, Ross '94]
- Periodic fermions vs smooth spin structure.

Family of non-extremal susy configurations



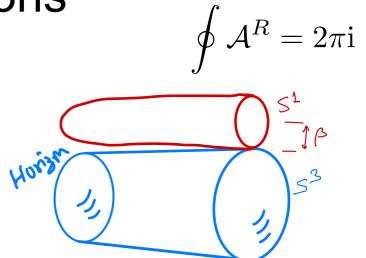
Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi i R}$ converts problem to finding bosonic (complex) solutions



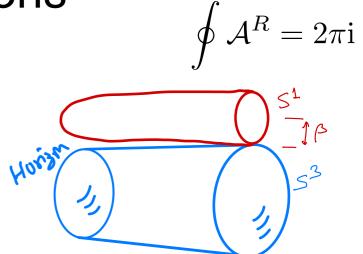
Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi iR}$ converts problem to finding bosonic (complex) solutions
 - * smooth geometry with cigar-like topology, non-zero "temperature" $1/\beta$



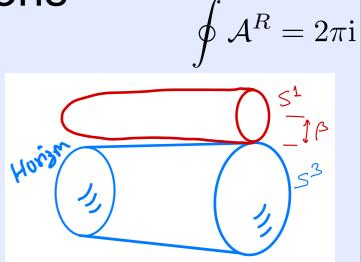
Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi i R}$ converts problem to finding bosonic (complex) solutions
 - * smooth geometry with cigar-like topology, non-zero "temperature" $1/\beta$
 - * Extremal susy BH recovered as $\beta \to \infty$



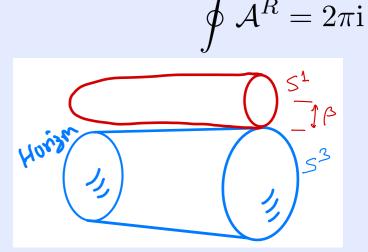
Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi i R}$ converts problem to finding bosonic (complex) solutions
 - * smooth geometry with cigar-like topology, non-zero "temperature" $1/\beta$
 - * Extremal susy BH recovered as $\beta \to \infty$
 - Legendre transform of action is independent of β and gives extremal BH entropy!



Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

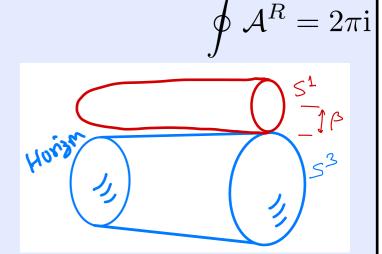
- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi iR}$ converts problem to finding bosonic (complex) solutions
 - * smooth geometry with cigar-like topology, non-zero "temperature" $1/\beta$
 - * Extremal susy BH recovered as $\beta \to \infty$
 - Legendre transform of action is independent of β and gives extremal BH entropy!



Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

Generalized to AdS_d, flat space

- Family of non-extremal susy configurations
 - $(-1)^F = e^{2\pi i R}$ converts problem to finding bosonic (complex) solutions
 - * smooth geometry with cigar-like topology, non-zero "temperature" $1/\beta$
 - * Extremal susy BH recovered as $\beta \to \infty$
 - Legendre transform of action is independent of β and gives extremal BH entropy!



Cabo-Bizet, Cassani, Martelli, S.M. '18 in AdS5

Generalized to AdS_d, flat space

 Note: all these complex saddles allowed by the Konstevich-Segal-Witten criterion [P. Benetti-Genolini, S.M. '25]

Solution determined by two harmonic functions

$$ds^2 = \frac{1}{V\widetilde{V}}(dt_E + \omega_E)^2 + V\widetilde{V}d\vec{x}^2$$

$$\nabla \times \omega_E = \widetilde{V} \nabla V - V \nabla \widetilde{V}$$

Rotation

Solution determined by two harmonic functions

$$ds^{2} = \frac{1}{V\widetilde{V}}(dt_{E} + \omega_{E})^{2} + V\widetilde{V}d\vec{x}^{2} \qquad F_{0i} = -\frac{i}{2}\partial_{i}\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{c} \textit{Electric} \\ \textit{monopole} \end{array}$$

$$\nabla \times \omega_{E} = \widetilde{V}\nabla V - V\nabla\widetilde{V} \qquad F^{ij} = \frac{-i}{2\sqrt{g}}\varepsilon^{ijk}\partial_{k}\left(\frac{1}{V} - \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{c} \textit{Magnetic} \\ \textit{dipole field} \end{array}$$

$$Rotation$$

Solution determined by two harmonic functions

$$ds^{2} = \frac{1}{V\widetilde{V}}(dt_{E} + \omega_{E})^{2} + V\widetilde{V}d\vec{x}^{2} \qquad F_{0i} = -\frac{i}{2}\partial_{i}\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{c} \textit{Electric} \\ \textit{monopole} \end{array}$$

$$\nabla \times \omega_{E} = \widetilde{V}\nabla V - V\nabla\widetilde{V} \qquad F^{ij} = \frac{-i}{2\sqrt{g}}\varepsilon^{ijk}\partial_{k}\left(\frac{1}{V} - \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{c} \textit{Magnetic} \\ \textit{dipole field} \end{array}$$

Rotation

Extremal for
$$V = \widetilde{V}$$

Solution determined by two harmonic functions

$$ds^2 = \frac{1}{V\widetilde{V}}(dt_E + \omega_E)^2 + V\widetilde{V}d\vec{x}^2 \qquad F_{0i} = -\frac{i}{2}\partial_i\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{l} \textit{Electric} \\ \textit{monopole} \end{array}$$

$$\nabla \times \omega_E = \widetilde{V}\nabla V - V\nabla \widetilde{V} \qquad F^{ij} = \frac{-i}{2\sqrt{g}}\,\varepsilon^{ijk}\partial_k\left(\frac{1}{V} - \frac{1}{\widetilde{V}}\right) \qquad \begin{array}{l} \textit{Magnetic} \\ \textit{dipole field} \end{array}$$
 Rotation
$$\textit{Extremal for } V = \widetilde{V}$$

• Susy M=Q
$$V = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_N|}, \quad \widetilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

Solution determined by two harmonic functions

$$ds^{2} = \frac{1}{V\widetilde{V}}(dt_{E} + \omega_{E})^{2} + V\widetilde{V}d\vec{x}^{2} \qquad F_{0i} = -\frac{i}{2}\partial_{i}\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

$$F_{0i} = -\frac{i}{2}\partial_i \left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

Electric monopole

$$\nabla \times \omega_E = \widetilde{V} \nabla V - V \nabla \widetilde{V}$$

$$F^{ij} = rac{-i}{2\sqrt{g}}\,arepsilon^{ijk}\partial_k\left(rac{1}{V}-rac{1}{\widetilde{V}}
ight) \qquad egin{magnetic} ext{Magnetic} \ ext{dipole field} \end{cases}$$

Rotation

Extremal for
$$V = \widetilde{V}$$

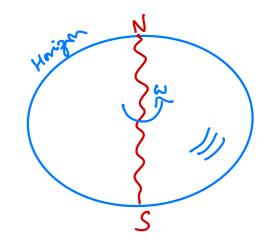
[Tod '93, Perjés '71, Israel+Wilson '72], [Whitt '85, Yuille '87]

• Susy M=Q
$$V=1+\frac{Q}{|\mathbf{x}-\mathbf{x}_N|}, \qquad \widetilde{V}=1+\frac{Q}{|\mathbf{x}-\mathbf{x}_S|}$$

$$\widetilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

 Well-defined Euclidean continuation of Kerr-Newman soln.

[Hartle-Hawking '72]



Solution determined by two harmonic functions

$$ds^{2} = \frac{1}{V\widetilde{V}}(dt_{E} + \omega_{E})^{2} + V\widetilde{V}d\vec{x}^{2} \qquad F_{0i} = -\frac{i}{2}\partial_{i}\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

$$F_{0i} = -\frac{i}{2}\partial_i \left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

Electric monopole

$$\nabla \times \omega_E = \widetilde{V} \nabla V - V \nabla \widetilde{V}$$

$$F^{ij} = rac{-i}{2\sqrt{g}}\,arepsilon^{ijk}\partial_k\left(rac{1}{V}-rac{1}{\widetilde{V}}
ight) \qquad egin{magnetic} ext{Magnetic} \ ext{dipole field} \end{cases}$$

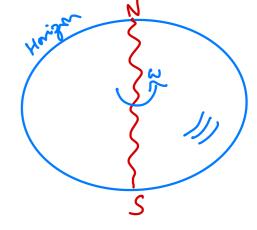
Rotation

Extremal for
$$V = \widetilde{V}$$

[Tod '93, Perjés '71, Israel+Wilson '72], [Whitt '85, Yuille '87]

• Susy M=Q
$$V=1+\frac{Q}{|\mathbf{x}-\mathbf{x}_N|}, \qquad \widetilde{V}=1+\frac{Q}{|\mathbf{x}-\mathbf{x}_S|}$$

$$\widetilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$



 Well-defined Euclidean continuation of Kerr-Newman soln.

[Hartle-Hawking '72]

Smoothness
$$\Omega_E = -i\Omega = \frac{2\pi}{\beta}$$

[Boruch, Iliesiu, S.M., Turiaci, '23]

Solution determined by two harmonic functions

$$ds^{2} = \frac{1}{V\widetilde{V}}(dt_{E} + \omega_{E})^{2} + V\widetilde{V}d\vec{x}^{2} \qquad F_{0i} = -\frac{i}{2}\partial_{i}\left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

$$F_{0i} = -\frac{i}{2}\partial_i \left(\frac{1}{V} + \frac{1}{\widetilde{V}}\right)$$

Electric monopole

$$\nabla \times \omega_E = \widetilde{V} \nabla V - V \nabla \widetilde{V}$$

$$F^{ij} = \frac{-i}{2\sqrt{g}} \,\varepsilon^{ijk} \partial_k \left(\frac{1}{V} - \frac{1}{\widetilde{V}}\right)$$

Magnetic dipole field

Rotation

Extremal for
$$V = \widetilde{V}$$

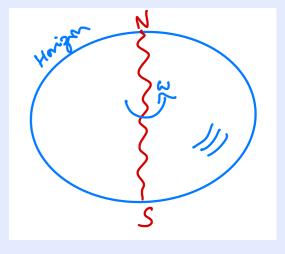
[Tod '93, Perjés '71, Israel+Wilson '72], [Whitt '85, Yuille '87]

• Susy M=Q
$$V = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_N|}, \quad \widetilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

$$\widetilde{V} = 1 + \frac{Q}{|\mathbf{x} - \mathbf{x}_S|}$$

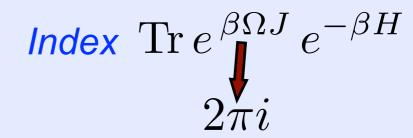
 Well-defined Euclidean continuation of Kerr-Newman soln.

[Hartle-Hawking '72]



Smoothness
$$\Omega_E = -i\Omega = \frac{2\pi}{\beta}$$

[Boruch, Iliesiu, S.M., Turiaci, '23]



A systematic application of this idea leads to new solutions for the *gravitational index*

• 4d asymptotic flat supergravity: Rotating IWP solutions.

New attractor mechanism

[Boruch, Iliesiu, S.M., Turiaci, '23]

Chen, S.M., Turiaci, '24]

A systematic application of this idea leads to new solutions for the gravitational index

 4d asymptotic flat supergravity: Rotating IWP solutions. [Boruch, Iliesiu, New attractor mechanism

S.M., Turiaci, '23]

[Chen, S.M., Turiaci, '24]

5d AF sugra: BHs and black strings

[Cassani, Ruipérez, Turetta, '24; Adhikari, Dharanipragada, Goswami, Virmani '24] [Boruch, Emparan, Iliesiu, S.M. '25]

A systematic application of this idea leads to new solutions for the gravitational index

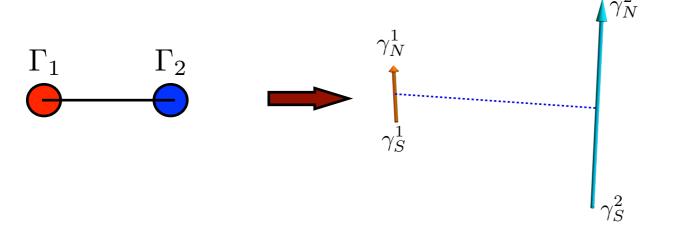
 4d asymptotic flat supergravity: Rotating IWP solutions. [Boruch, Iliesiu, New attractor mechanism

S.M., Turiaci, '23]

5d AF sugra: BHs and black strings

[Cassani, Ruipérez, Turetta, '24; Adhikari, Dharanipragada, Goswami, Virmani '24] [Boruch, Emparan, Iliesiu, S.M. '25]

4d AF space: multi-BH bound states, wall-crossing



[Boruch, Iliesiu, S.M., Turiaci, '25]

A systematic application of this idea leads to new solutions for the *gravitational index*

4d asymptotic flat supergravity: Rotating IWP solutions.

New attractor mechanism

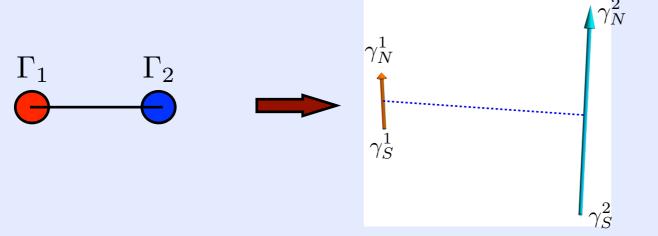
[Boruch, Iliesiu, S.M., Turiaci, '23]

[Chen, S.M., Turiaci, '24]

5d AF sugra: BHs and black strings

[Cassani, Ruipérez, Turetta, '24; Adhikari, Dharanipragada, Goswami, Virmani '24] [Boruch, Emparan, Iliesiu, S.M. '25]

4d AF space: multi-BH bound states, wall-crossing



[Boruch, Iliesiu, S.M., Turiaci, '25]

• 5d AF space: BH bnd states, Black Rings [Cassani, Ruipérez, Turetta, '25] [Boruch, Emparan, Iliesiu, S.M., Turiaci, To appear.]

- Near-extremal BHs develop a nearly-gapless mode close to the horizon, which lead to large quantum effects.
- Drastically changes the semiclassical results for density of states, Hawking radiation, scattering,...

- Near-extremal BHs develop a nearly-gapless mode close to the horizon, which lead to large quantum effects.
- Drastically changes the semiclassical results for density of states, Hawking radiation, scattering,...
- Leads to decoupling of supersymmetric BHs, crucial ingredient in micro-macro matching (index = entropy).

- Near-extremal BHs develop a nearly-gapless mode close to the horizon, which lead to large quantum effects.
- Drastically changes the semiclassical results for density of states, Hawking radiation, scattering,...
- Leads to decoupling of supersymmetric BHs, crucial ingredient in micro-macro matching (index = entropy).
- Direct dual of susy index = gravitational index.
 Complex saddles with T>0.
- Rotating (complex) Euclidean black holes, multi BHs, black strings provide consistent saddle-points to index.

- Near-extremal BHs develop a nearly-gapless mode close to the horizon, which lead to large quantum effects.
- Drastically changes the semiclassical results for density of states, Hawking radiation, scattering,...
- Leads to decoupling of supersymmetric BHs, crucial ingredient in micro-macro matching (index = entropy).
- Direct dual of susy index = gravitational index.
 Complex saddles with T>0.
- Rotating (complex) Euclidean black holes, multi BHs, black strings provide consistent saddle-points to index.

Thank you! Questions?

New attractors for the 4d index

[J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]

IWP saddles can be generalized to the full Type II string theory/CY3

 Multiple gauge fields in string theory. For every gauge field, split the harmonic function source into N/S

$$H(\mathbf{x}) = h + \frac{\gamma_N}{|\mathbf{x} - \mathbf{x}_N|} + \frac{\gamma_S}{|\mathbf{x} - \mathbf{x}_S|}$$
 $\gamma_N + \gamma_S = \Gamma$ Fixed charges (monopole)

New parameters (dipole) $\gamma_N - \gamma_S \quad |\mathbf{x}_N - \mathbf{x}_S|$

IWP saddles can be generalized to the full Type II string theory/CY3

 Multiple gauge fields in string theory. For every gauge field, split the harmonic function source into N/S

$$H(\mathbf{x}) = h + \frac{\gamma_N}{|\mathbf{x} - \mathbf{x}_N|} + \frac{\gamma_S}{|\mathbf{x} - \mathbf{x}_S|}$$
 $\gamma_N + \gamma_S = \Gamma$ Fixed charges (monopole)

New parameters (dipole) $\gamma_N - \gamma_S \quad |\mathbf{x}_N - \mathbf{x}_S|$

 Smoothness condition: Dirac-Misner string must be absorbed by smooth coordinate transformations

IWP saddles can be generalized to the full Type II string theory/CY3

 Multiple gauge fields in string theory. For every gauge field, split the harmonic function source into N/S

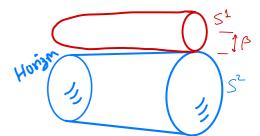
$$H(\mathbf{x}) = h + \frac{\gamma_N}{|\mathbf{x} - \mathbf{x}_N|} + \frac{\gamma_S}{|\mathbf{x} - \mathbf{x}_S|} \qquad \gamma_N + \gamma_S = \Gamma \qquad \begin{array}{c} \textit{Fixed charges} \\ \textit{(monopole)} \end{array}$$

New parameters (dipole) $\gamma_N - \gamma_S \quad |\mathbf{x}_N - \mathbf{x}_S|$

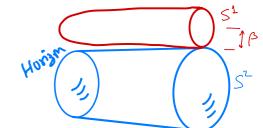
- Smoothness condition: Dirac-Misner string must be absorbed by smooth coordinate transformations
- Susy + smoothness fixes all parameters in terms of monopole charges and temperature

[J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]

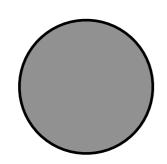
mechanism [J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]



mechanism [J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]



Extremal attractors

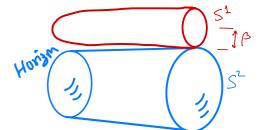


[Ferrara, Kallosh, Strominger '95]

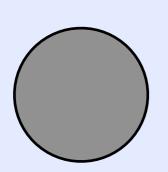
 Scalars constant on horizon

$$Y_{
m ext}^I - (Y_{
m ext}^I)^* = i P^I$$
 Attractor $G_{I
m ext} - (G_{I
m ext})^* = i Q_I$ eqns

mechanism [J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]



Extremal attractors

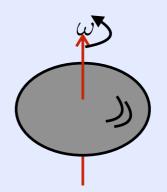


[Ferrara, Kallosh, Strominger '95]

 Scalars constant on horizon

$$Y_{
m ext}^I - (Y_{
m ext}^I)^* = i P^I$$
 Attractor $G_{I
m ext} - (G_{I
m ext})^* = i Q_I$ eqns

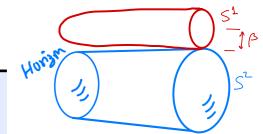
New attractors



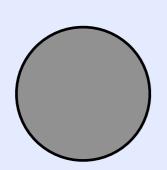
• Scalars depend on angle, moduli, β

$$\begin{array}{ll} \mathsf{NP} & Y^I = Y^I_{\mathrm{ext}} & \overline{Y^I} = 0 \\ \\ \mathsf{SP} & Y^I = 0 & \overline{Y^I} = (Y^I_{\mathrm{ext}})^* \end{array}$$

mechanism [J.Boruch, L.V.Iliesiu, S.M., G.J.Turiaci, '23]



Extremal attractors

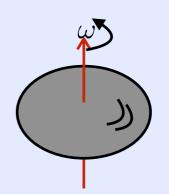


[Ferrara, Kallosh, Strominger '95]

Scalars constant on horizon

$$Y_{
m ext}^I - (Y_{
m ext}^I)^* = i P^I$$
 Attractor $G_{I
m ext} - (G_{I
m ext})^* = i Q_I$ eqns

New attractors



• Scalars depend on angle, moduli, β

$$egin{aligned} \mathsf{NP} & Y^I = Y_{\mathrm{ext}}^I & \overline{Y^I} = 0 \ \mathsf{SP} & Y^I = 0 & \overline{Y^I} = (Y_{\mathrm{ext}}^I)^* \end{aligned}$$

On-shell action gives extremal entropy

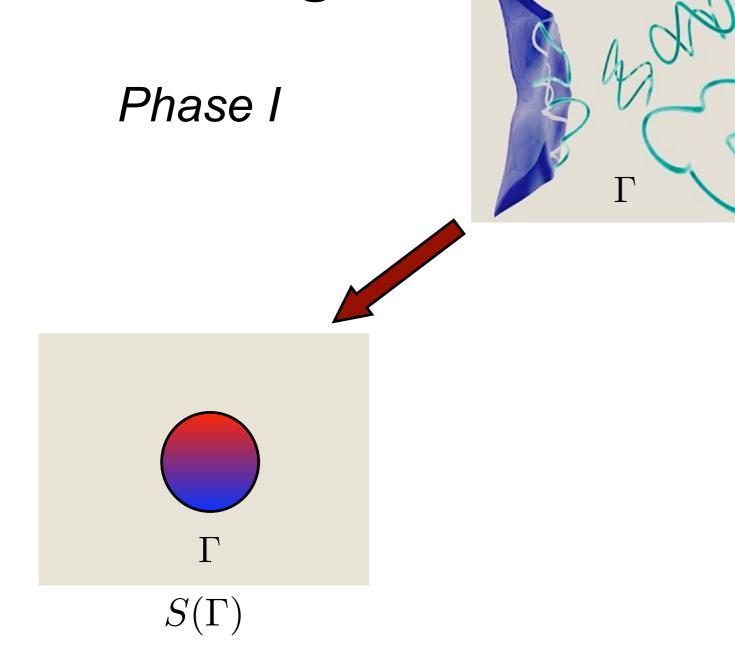
$$-I_{\text{on-shell}} = \pi (q_I Y^I + 2iF)\big|_N + \pi (q_I \overline{Y}^I - 2i\overline{F})\big|_S \quad \begin{array}{l} \text{[cf Ooguri-Stromin-general]} \\ = -\beta M_{\text{BPS}} + S_{\text{BH}}^{\text{extremal}}(\Gamma) \end{array}$$

BH bound states and wall-crossing

[J.Boruch, L.V.Iliesiu, S. M., G.J.Turiaci, '25]

Multiple grav. configurations can exist with

same charges

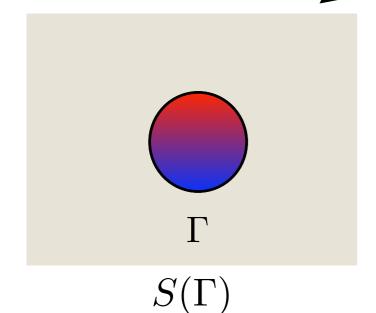


[Bates-Denef '00; Denef-Moore '07]

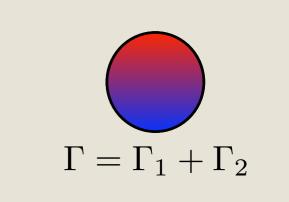
Multiple grav. configurations can exist with

same charges

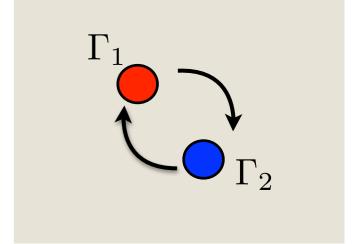
Phase I



[Bates-Denef '00; Denef-Moore '07]

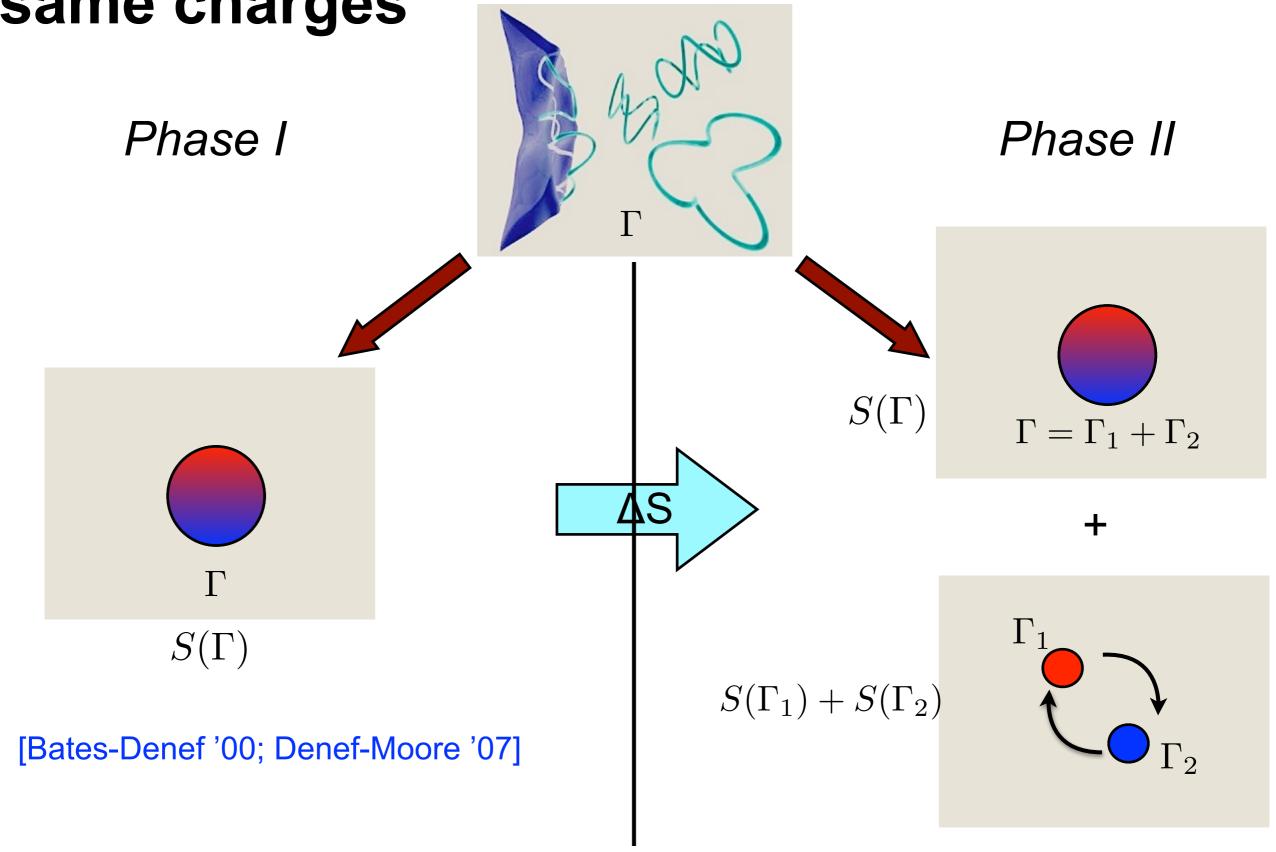


+

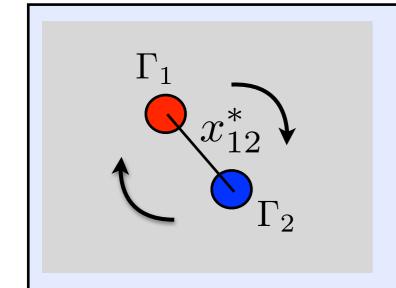


Multiple grav. configurations can exist with

same charges



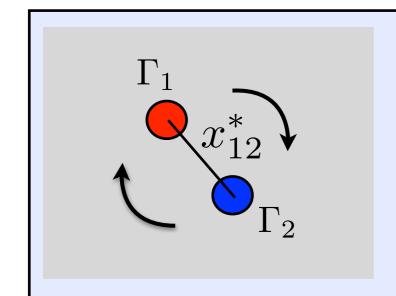
2-BH bound states in N=2 sugra are rigid, and exist only in regions of moduli space



Distance fixed in terms of charges $\Gamma_{1,2}$ and asymptotic scalar moduli h.

$$x_{12}^* = -rac{\langle \Gamma_1, \Gamma_2
angle}{\langle \Gamma_1, h
angle}$$
 Bates-Denef '00

2-BH bound states in N=2 sugra are rigid, and exist only in regions of moduli space

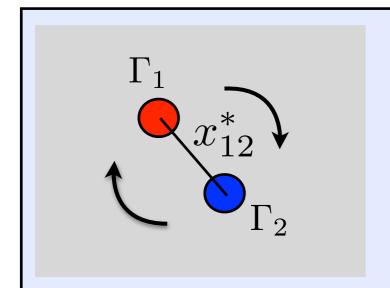


Distance fixed in terms of charges $\Gamma_{1,2}$ and asymptotic scalar moduli h.

$$x_{12}^* = -rac{\langle \Gamma_1, \Gamma_2
angle}{\langle \Gamma_1, h
angle}$$
 Bates-Denef '00

• As $\langle \Gamma_1, h \rangle = 0$, $x_{12}^* \to \infty \implies$ wall of marginal stability Upon crossing the wall, bound state disappears (wall-crossing).

2-BH bound states in N=2 sugra are rigid, and exist only in regions of moduli space

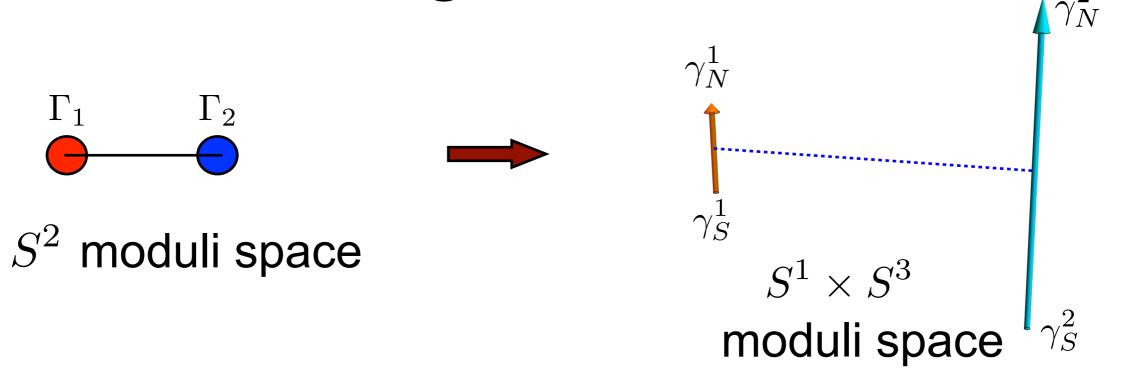


Distance fixed in terms of charges $\Gamma_{1,2}$ and asymptotic scalar moduli h.

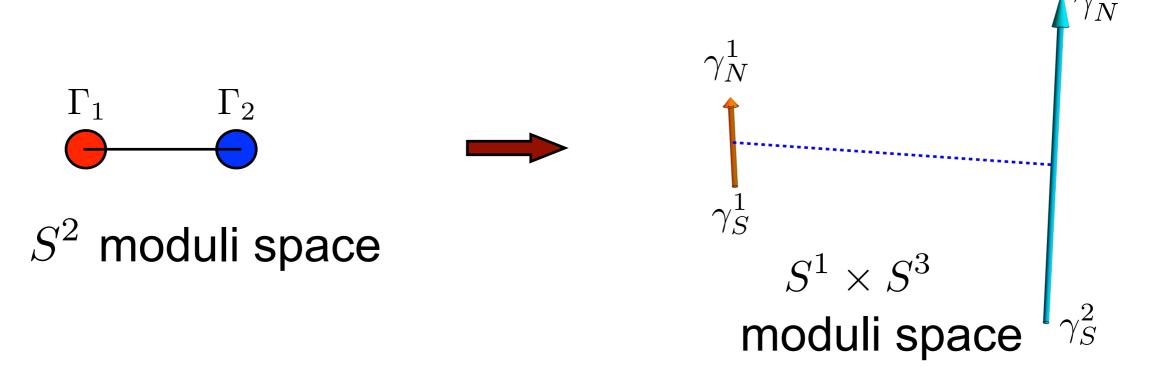
$$x_{12}^* = -rac{\langle \Gamma_1, \Gamma_2
angle}{\langle \Gamma_1, h
angle}$$
 Bates-Denef '00

- As $\langle \Gamma_1, h \rangle = 0$, $x_{12}^* \to \infty \implies$ wall of marginal stability Upon crossing the wall, bound state disappears (wall-crossing).
- For fixed charges and scalar moduli, moduli space of 2-centered bnd state is S^2 (global symmetries).

Index saddles for BH bound states can be constructed using harmonic functions 2

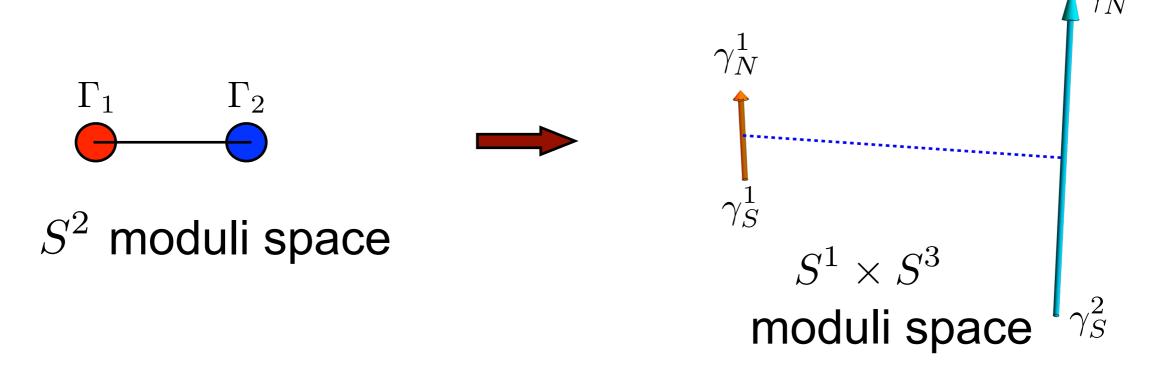


Index saddles for BH bound states can be constructed using harmonic functions



Solutions found by imposing susy + smoothness.
 Not easy to solve in general.

Index saddles for BH bound states can be constructed using harmonic functions,



- Solutions found by imposing susy + smoothness.
 Not easy to solve in general.
- Remarkably,

$$-I_{\text{on-shell}} = -\beta |Z(\Gamma, h_{\infty})| + S^{\text{ext}}(\Gamma_1) + S^{\text{ext}}(\Gamma_2)$$

Why is the moduli space compact?

• 4 centers \Longrightarrow 6 distances. When do 6 given distances come from 4 points in \mathbb{R}^3 ?

Why is the moduli space compact?

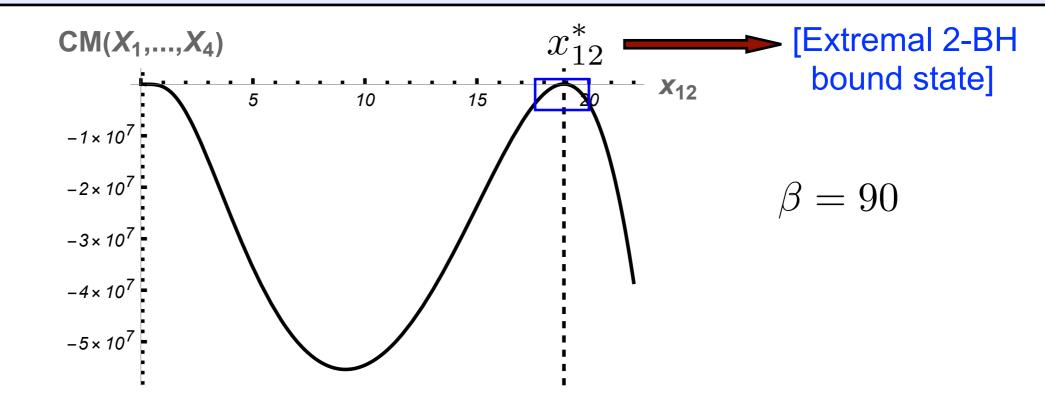
- 4 centers \Longrightarrow 6 distances. When do 6 given distances come from 4 points in \mathbb{R}^3 ?
- Vol(tetrahedron) > 0. Cayley-Menger condition.

$$CM(X_1, \dots, X_4) = \det \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & \Delta_4 \end{pmatrix} \qquad \Delta_4 = \begin{pmatrix} 0 & x_{1\bar{1}}^{-1} & x_{1\bar{2}}^{-1} & x_{1\bar{2}}^{-1} \\ x_{1\bar{1}}^2 & 0 & x_{1\bar{2}}^2 & x_{1\bar{2}}^{-1} \\ x_{1\bar{2}}^2 & x_{1\bar{2}}^2 & x_{2\bar{2}}^2 & 0 \end{pmatrix}$$

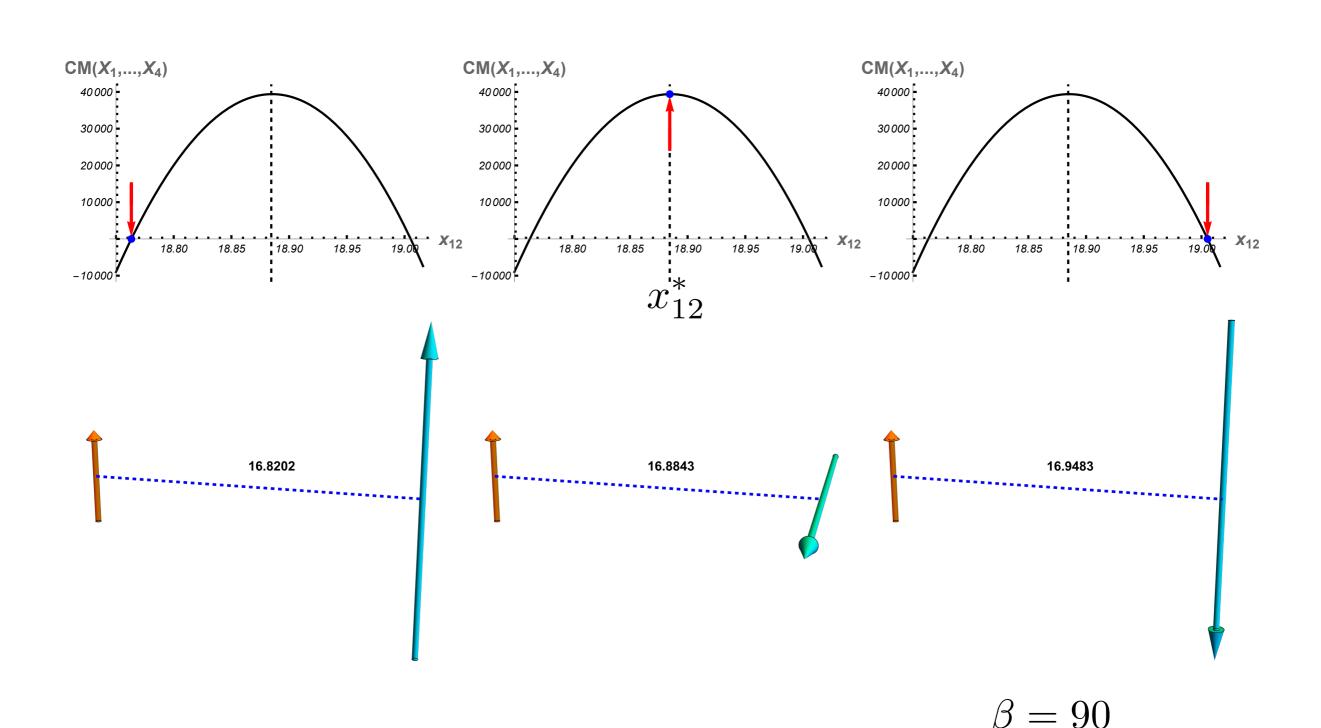
Why is the moduli space compact?

- 4 centers \Longrightarrow 6 distances. When do 6 given distances come from 4 points in \mathbb{R}^3 ?
- Vol(tetrahedron) > 0. Cayley-Menger condition.

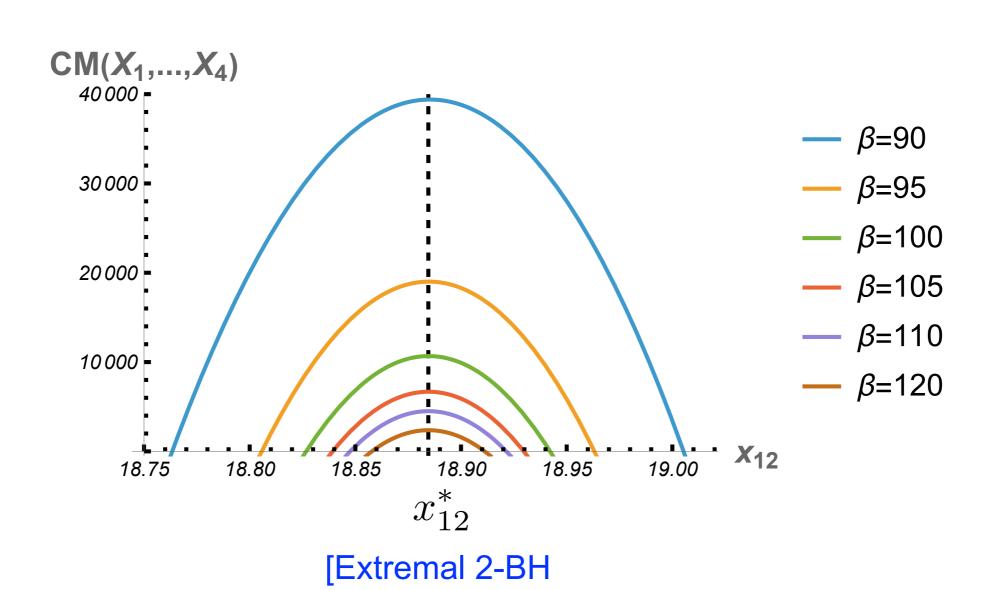
$$CM(X_1, \dots, X_4) = \det \begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & \Delta_4 \end{pmatrix} \qquad \Delta_4 = \begin{pmatrix} 0 & x_{1\bar{1}}^2 & x_{1\bar{2}}^2 & x_{1\bar{2}}^2 \\ x_{1\bar{1}}^2 & 0 & x_{1\bar{2}}^2 & x_{1\bar{2}}^2 \\ x_{1\bar{2}}^2 & x_{1\bar{2}}^2 & x_{2\bar{2}}^2 & 0 \end{pmatrix}$$



The Cayley-Menger condition cuts out a small region close to the extremal distance

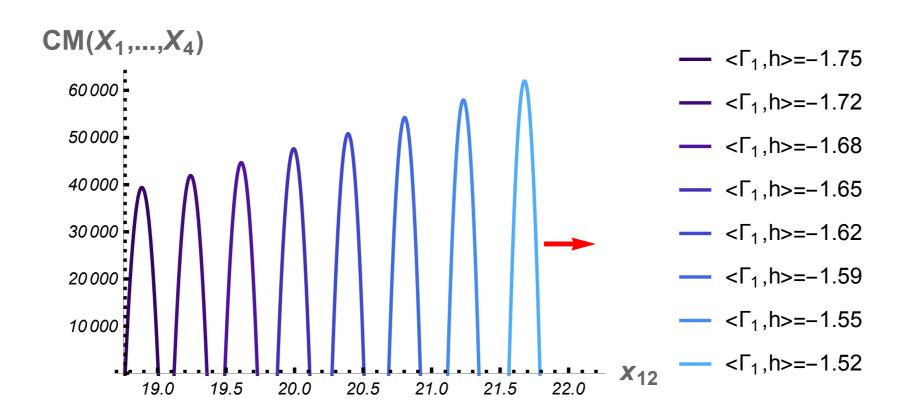


Decreasing temperature narrows the 2-BH moduli space to the extremal distance

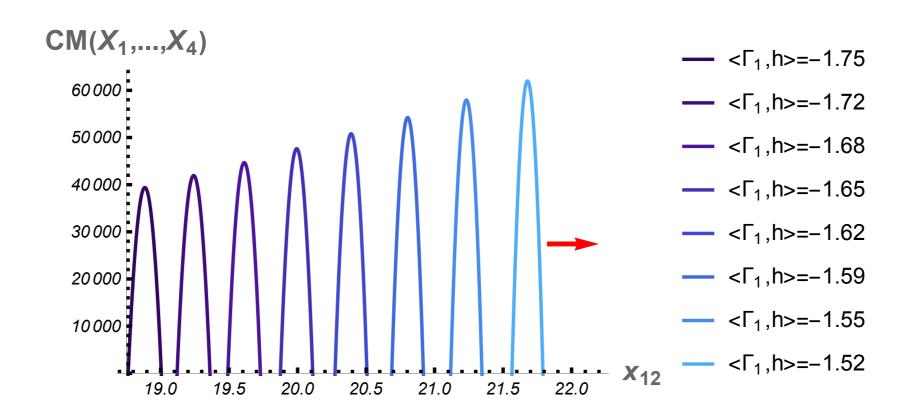


bound state]

The index moduli space varies with scalar moduli "carrying" the extremal distance



The index moduli space varies with scalar moduli "carrying" the extremal distance



- As one approaches the wall of marginal stability in asymptotic moduli space, index moduli space $\to \infty$
- Whole moduli space disappears exactly upon crossing the wall!

Index saddles for 5d black strings

[J.Boruch, R. Emparan, L.V.Iliesiu, S.M. '25]

Solns of Type IIA string theory can be lifted to solns of M-theory on circle

$$ds_{5d}^2 = (2V(x))^{2/3} (d\psi + A^0)^2 + (2V(x))^{-1/3} ds_{4d}^2$$

V= Volume(CY3) in string units

[Gaiotto, Strominger, Yin '05] [Castro, Davis, Kraus, Larsen '07] [Behrndt, Cardoso, Mahapatra' 05; de Wit, Katamadas, '09]

Solns of Type IIA string theory can be lifted to solns of M-theory on circle

$$ds_{5d}^2 = (2V(x))^{2/3} \, (d\psi + A^0)^2 + (2V(x))^{-1/3} \, ds_{4d}^2$$

$$\psi \sim \psi + 4\pi \quad \text{M-theory}$$
 circle
$$\frac{R_M}{\ell_5} = 4\pi (2V_\infty)^{1/3}$$

V= Volume(CY3) in string units

[Gaiotto, Strominger, Yin '05] [Castro, Davis, Kraus, Larsen '07] [Behrndt, Cardoso, Mahapatra' 05; de Wit, Katamadas, '09]

Solns of Type IIA string theory can be lifted to solns of M-theory on circle

$$ds_{5d}^2 = (2V(x))^{2/3} \, (d\psi + A^0)^2 + (2V(x))^{-1/3} \, ds_{4d}^2$$

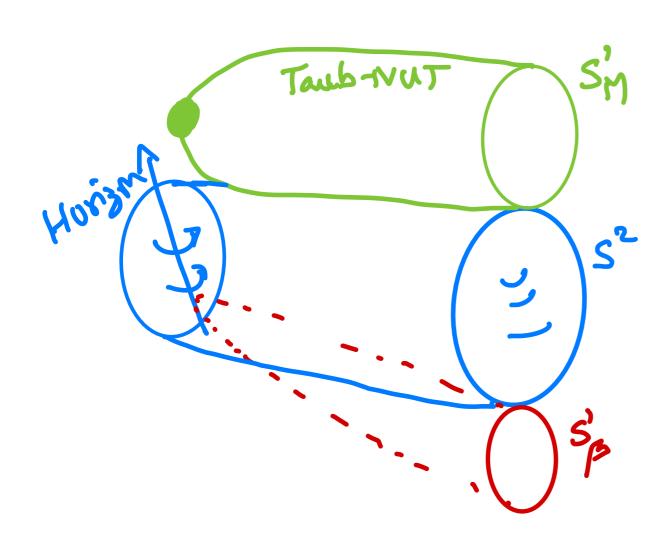
$$\psi \sim \psi + 4\pi \quad \text{M-theory} \quad \text{NUT} \quad \text{circle} \quad \text{charge}$$

$$\frac{R_M}{\ell_5} = 4\pi (2V_\infty)^{1/3}$$

V= Volume(CY3) in string units

[Gaiotto, Strominger, Yin '05] [Castro, Davis, Kraus, Larsen '07] [Behrndt, Cardoso, Mahapatra' 05; de Wit, Katamadas, '09]

Lift of new attractor solns gives finite-temp susy saddles to 5d index

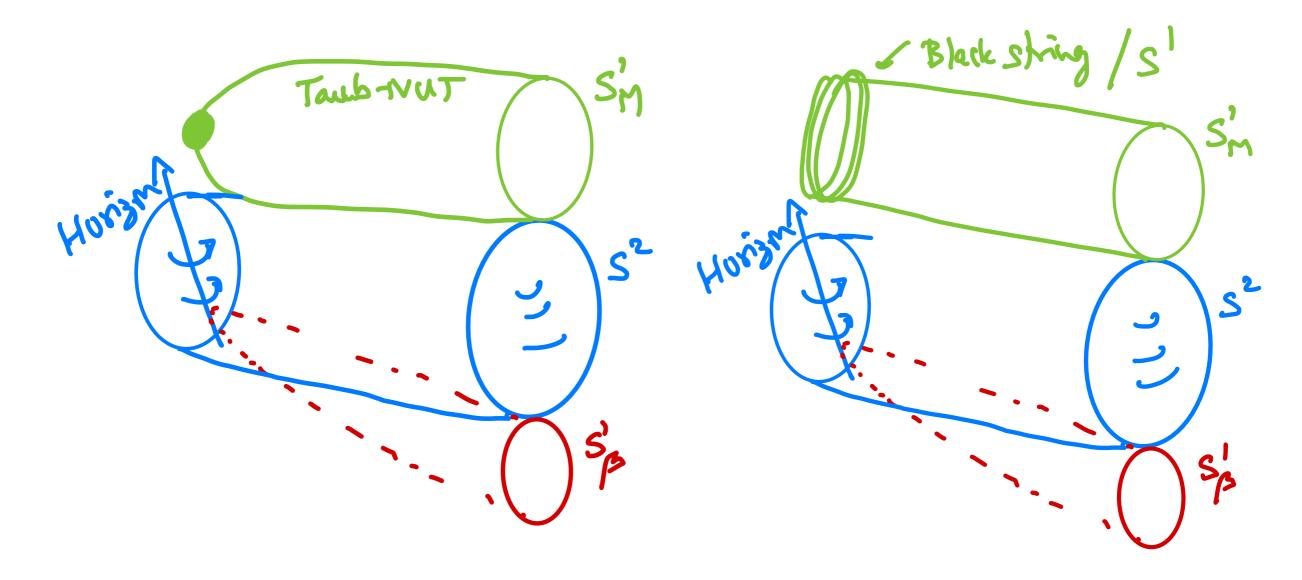


Magnetic charge

$$P^0 = 1$$

5d Black hole index

Lift of new attractor solns gives finite-temp susy saddles to 5d index



Magnetic charge

$$P^0 = 1$$

$$P^0 = 0$$

5d Black hole index

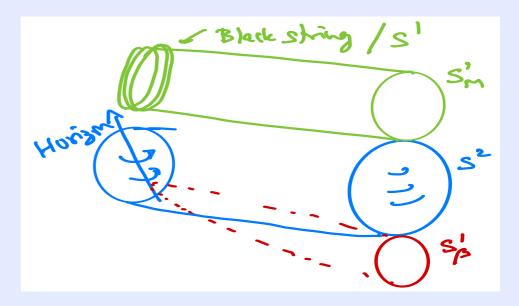
5d Black string index

The $T \rightarrow 0$ limit leads to the extremal black string (preserving susy throughout)

Finite temperature saddles for index of wrapped

black string in $\mathbb{R}^3 imes S^1_M imes S^1_{\beta_{5d}}$

$$\frac{\beta_{5d}}{\ell_5} = \frac{\beta_{4d}}{\ell_4 (2V_{\infty})^{1/6}}$$

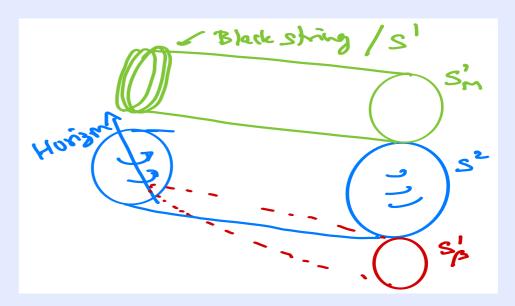


The $T \rightarrow 0$ limit leads to the extremal black string (preserving susy throughout)

Finite temperature saddles for index of wrapped

black string in $\mathbb{R}^3 imes S^1_M imes S^1_{\beta_{5d}}$

$$\frac{\beta_{5d}}{\ell_5} = \frac{\beta_{4d}}{\ell_4 (2V_\infty)^{1/6}}$$



• $\beta_{5d}/\ell_5 \to \infty$ $R_M/\ell_5 = \text{fixed}$

=> extremal (wrapped) Black String in 5d AF space

Near-horizon $AdS_3 \times S^2$ can be decoupled as usual

- Take $P^0=0$ $\beta_{5d}/\ell_5\to\infty$ $\beta_{5d}/R_M={\rm fixed}$
- Black string saddle with Near-horizon region finite-temperature spinning ${\rm BTZ} \times S^2$

- Take $P^0=0$ $\beta_{5d}/\ell_5\to\infty$ $\beta_{5d}/R_M={\rm fixed}$
- Black string saddle with Near-horizon region finite-temperature spinning ${\rm BTZ} \times S^2$
- Decouple

 Gravitational saddle dual to SCFT₂ elliptic genus [Maldacena-Strominger-Witten'98]

 [cf Farey tail Dijkgraaf, Maldacena, Moore, Verlinde, '00]

- Take $P^0=0$ $\beta_{5d}/\ell_5 \to \infty$ $\beta_{5d}/R_M={\rm fixed}$
- Black string saddle with Near-horizon region finite-temperature spinning ${\rm BTZ} \times S^2$
- Decouple
 Gravitational saddle dual to SCFT₂ elliptic genus
 [Maldacena-Strominger-Witten'98]
 [cf Farey tail Dijkgraaf, Maldacena, Moore, Verlinde, '00]
- The saddle we find is a smooth solution, w/ bdry torus having finite modular parameter $(\tau, \overline{\tau})$.

- Take $P^0=0$ $\beta_{5d}/\ell_5 \to \infty$ $\beta_{5d}/R_M={\rm fixed}$
- Black string saddle with Near-horizon region finite-temperature spinning ${\rm BTZ} \times S^2$
- Decouple

 Gravitational saddle dual to SCFT₂ elliptic genus

 [Maldacena-Strominger-Witten'98]

 [cf Farey tail Dijkgraaf, Maldacena, Moore, Verlinde, '00]
- The saddle we find is a smooth solution, w/ bdry torus having finite modular parameter $(\tau, \overline{\tau})$. Grav. free energy

$$F_{\text{grav}} = \frac{1}{G_{AdS_3} \tau} = \frac{c}{\tau}$$

- Take $P^0=0$ $\beta_{5d}/\ell_5 \to \infty$ $\beta_{5d}/R_M={\rm fixed}$
- Black string saddle with Near-horizon region finite-temperature spinning ${\rm BTZ} \times S^2$
- Decouple

 Gravitational saddle dual to SCFT₂ elliptic genus

 [Maldacena-Strominger-Witten'98]

 [cf Farey tail Dijkgraaf, Maldacena, Moore, Verlinde, '00]
- The saddle we find is a smooth solution, w/ bdry torus having finite modular parameter $(\tau, \overline{\tau})$. Grav. free energy

$$F_{
m grav} = rac{1}{G_{AdS_3}\, au} = rac{c}{ au}$$
 \Longrightarrow independent of $\overline{ au}$ \Longrightarrow equal to Cardy formula!

Yes, although slightly indirectly:

* BTZ BH and AdS_3 have same Euclidean geometry. Hyperbolic space, bdry torus of modular parameter τ . Spectrum mapped by $\tau \to -1/\tau$ modular transformation.

Yes, although slightly indirectly:

- * BTZ BH and AdS_3 have same Euclidean geometry. Hyperbolic space, bdry torus of modular parameter τ . Spectrum mapped by $\tau \to -1/\tau$ modular transformation.
- * Partition fn of bdry gravitons in AdS3 gives rise to low temp $\tau^{3/2}$ behavior in BTZ (signature of Schwarzian)

[Ghosh, Maxfield, Turiaci '19]

Yes, although slightly indirectly:

- * BTZ BH and AdS_3 have same Euclidean geometry. Hyperbolic space, bdry torus of modular parameter τ . Spectrum mapped by $\tau \to -1/\tau$ modular transformation.
- * Partition fn of bdry gravitons in AdS3 gives rise to low temp $\tau^{3/2}$ behavior in BTZ (signature of Schwarzian)

[Ghosh, Maxfield, Turiaci '19]

• We can carefully extract the precise bdry graviton spectrum from worldsheet (torus amplitude) in AdS₃

Yes, although slightly indirectly:

- * BTZ BH and AdS_3 have same Euclidean geometry. Hyperbolic space, bdry torus of modular parameter τ . Spectrum mapped by $\tau \to -1/\tau$ modular transformation.
- * Partition fn of bdry gravitons in AdS3 gives rise to low temp $\tau^{3/2}$ behavior in BTZ (signature of Schwarzian)

[Ghosh, Maxfield, Turiaci '19]

 We can carefully extract the precise bdry graviton spectrum from worldsheet (torus amplitude) in AdS₃

Superstring generalizations to ${
m AdS}_3 imes S^3 imes {T^4 \over S^3 imes S^1}$

[S.M., Rangamani '24, '25]

Rich gravitational phenomena: multi-BH bound states

independent of

[Bates, Denef, '00; Denef, Moore '07]

What are saddle points? Susy BH?

