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* BH with charge (and/or spin).

Extremal limit;

. 4d Reissner-Nordstrom
Horizons r+ — r— re =Q+ /M2 - Q2

M S
Temperature T — 0 ( 7Q) _ Ty T

We will discuss:

« Low temp == enhanced quantum grav effects,
quantitative handle

+ Explanation of BH entropy in string theory
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* (Naive) Semiclassical picture [State of the art until recently]

Spu(Q,T) = So(Q) + 47 (T/Egap) + O((T/Egap)?)
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e | arge degeneracy of ground states is unlike ordinary
gquantum-statistical systems.

e Something must go wrong with semi-classical picture
at low temperatu res. [Preskill, Schwarz, Shapere, Trivedi, Wilczek "91]




In fact, large quantum effects dramatically
change the semiclassical picture

e Correct quantum picture [uncovered in the last few years]

% Ordinary quantum system, density of states
goes to zero at zero temperature




In fact, large quantum effects dramatically
change the semiclassical picture

e Correct quantum picture [uncovered in the last few years]

% Ordinary quantum system, density of states
goes to zero at zero temperature

e Calculational control from quantization of a certain
light mode (Schwarzian) around the horizon.



In fact, large quantum effects dramatically
change the semiclassical picture

e Correct quantum picture [uncovered in the last few years]

% Ordinary quantum system, density of states
goes to zero at zero temperature

e Calculational control from quantization of a certain
light mode (Schwarzian) around the horizon.

Note: large quantum effects even for weakly-curved
horizons.
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This talk: explain quantum effects, discuss
consequences on BHs and string theory

e Large quantum effects from nearly-gapless mode:
density of states, mass gap

 Consequences on near-extremal physics
+ Exact quantum entropy of susy BHs

% Hawking radiation and scattering off BHs
% Perturbative string theory in near-extremal BHs

* Revisit BH microstates in string theory
+ decoupling of supersymmetric BHs
+ gravitational index




The appearance of
nearly-gapless modes
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Is there a notion of a BH Hilbert space?

e Treat BH as a particle/molecule to zeroth approximation,
and then assign it a large entropy.

’
H = Hpu @ Hout
N\

dim(HBH) — exp(SBH)

* When 1" > 0, quanta constantly being exchanged due
to Hawking radiation (and hence no factorization)

e Correct description is canonical ensemble, includes
environment.
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As BH approaches extremality, a long throat
is formed close to the horizon

e Effective low energy theory: gravity + vectors

E.g. Einstein-Maxwell (E-M) N
* Extremal limit: AdS2 x S2 near-horizon | =
» Near-horizon field configuration is a N

solution of the EOMs Euclidean AdS; x S

* Fixed completely by the charges [Attractor mechanism,

_ Ferrara, Kallosh,

* No dependence on asymptotic data Strominger '95]

|s the extremal BH decoupled
from the environment at the
quantum level?
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Effective action on 4dS, x S? has zero modes

e Field fluctuations around AdS> x S*. Non-zero action.

—> Quantum corrections to extremal BH entropy.
[Banerjee, Gupta, Sen 10, ... See Review Sen’'11]

* AdS> admits “pure gauge” modes which do /#

not vanish at boundary. [Camporesi, Higuchi'95] .
0 — 00 N\

h&oy) — VMC,/ - vvCu ¢ ~ Z £, (ind, — 0)

n|>2

58t [R] =0 = (13, — &(r)o,

* Note: zero mode gives important contribution to one-loop

logarithmic corrections to extremal entropy
ZM(Q) = Q= exp(nQ* +...) [Sen ’11; Jeon, S.M.’18]
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Near-AdS2 (x S2) has nearly-zero modes

* Introduce small T regulator: recouples AdS, @
glgly)(T):gﬁ‘SSQXS (1+aT+...) @

* Semiclassical entropy: -
Seu(gi)) = S0(Q) +47(T/Egap) + - Eyap =1/Q°

e Zero-modes of pure A4dS, x S* now obtain T-dependence

0 Sy h] gap/dT(gu(Ty@

Strongly-coupled
controls coupling of BH to asymptotic region

[lliesiu, S.M. Turiaci, '22]
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Schwarzian theory has been studied

Intensively in recent years

e Change of coordinates to

equivalent presentation
[lliesiu, S.M. Turiaci '22]
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» Schwarzian action for Diff(S*)/SL(2)

SPNhe] = E;p/dT(e”(T)Q—e’(T)Z)

Zeop = (T/Egap)3/2

1-loop

» Different methods to solve the theory,

Verlinde '20; Heydeman, lliesiu, Turiaci, Zhao '20;...]

cf JT gravity

(partition function, density of states, correlators,...)

[Sachdev '15; Almheiri, Kang '16; Maldacena, Stanford, Yang '16; Yang '18, Moitra,
Trivedi, Vishal '18: Ghosh, Maxfield, Turiaci ’19; lliesiu, Turiaci, '20; Mertens, Turiaci,

[See Review Mertens-Turiaci '22]
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Quantum fluctuations change the near-
extremal density of states of extremal BHs

e Partition function

Zpu(Q,T) = (Q°T)" () 'os exp(wQ + 477 QT + .. )
Ral7 as ' — 0
p(E)
Q% €7TQ2 pemiclassical Z(T) = /dEp(E) e E/T
antum
1 I >
| B 2

. Vo
e Semi-classical intuition is strongly corrected

[lliesiu, Turiaci "20; lliesiu, S.M. Turiaci '22]
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Supersymmetric BHs exhibit a mass gap

and quantum decoupling

e Large quantum fluctuations of bosonic and fermionic
super-Schwarzian modes

ZBH(Q,T) =1 XQQOg eXp(?TQZ -+ 47T2Q3T -+ .. )
p(E), |

QClox erQ Semiclassical

Quantum I Quantum

>

Egap B

* Note: decoupling justifies microscopic counting of
BPS states in string theory.

[lliesiu, Turiaci '20; lliesiu, S.M. Turiaci '22]
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1a. Exact entropy of supersymmetric BHs

* Exact formulas from localization in sugra p.phoikar Gomes,
(e.g. /s-BPS BHs in N=8 string theory). S.M.11-14]

[microscopic formula from analytic Number theory: Hardy-Ramanujan-Rademacher]

Kloosterman sum .
Amicro(Q) . I-Bessel function

= ZBu(Q) = Z K!(Q)@?/Q(WQ/C
c=1
CS co;

/ all-order quantum
Orbifolds of AdS2 fluctuations of bulk modes
[Dabholkar, Gomes,

[Dabholkar, Gomes,
S.M.’14] S.M.’11-°14]

[...]
[lliesiu, S.M., Turiaci '22]

tribution
on orbifold

e \/olume of space of super-

Schwarzian modes on orbifold
[lliesiu, S.M., Turiaci '22]
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1b. Black hole degeneracy = index

* 4d supersymmetric black holes are spherically symmetric
and therefore have zero net angular momentum Jy = F

* AdS;geometry ——> microcanonical ensemble =

—> every state has Jy = F =0

—> Try (—1 = Try 1 ‘-"Z
“=Degeneracy : Cnmnonnt ‘
Ind

[Sen '10; Dabholkar, Gomes, S.M., Sen '10]

* Argument extended to Schwarzian modes. The result is

that, again, only J, = 0 (bosonic) states contribute.
[lliesiu, Kologlu, Turiaci "19; lliesiu, S.M., Turiaci '22]
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2a. Hawking radiation from near-extremal
BHs

dE dE Saves black hole
— 7 .7 . from going below
dtdw dtdw extremality \
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Z %
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% \\ &

AN
w 1 > CU
L
E; = 100Ep. By = 1B
Semi-classical regime Quantum regime

[Brown, lliesiu, Penington, Usatyuk '24]

* Quantum effects alter the spectrum of radiation at low

temperatures, and resolve apparent paradoxes posed in
[Preskill, Schwarz, Shapere, Trivedi, Wilczek '91]
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2b. Scattering from near-extremal BHs

Tabs s New channels

™ AN Scattering off near-

extremal BHs in GR

3t z
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quantum b=
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* Extract a signal of Schwarzian modes from the one-loop
string worldsheet amplitude (slightly indirectly).

Bosonic on AdSs ; Superstrings on AdSs x S° x
[S.M., Rangamani 24, '25]

T4
S3 % St

* Which superalgebras can arise as the BH near-horizon
symmetry? Interpret 1-loop result 1. [Heydeman, Shi, Turiaci 25]

o Schwarzian far from BH [Kolanowski, Marolf, Rakic, Rangamani,
Turiaci '24]; [Castro, Mancilla, Papadimitrou "25]

o High|y Spinning BHSs. [Kapec, Sheta, Toldo, Strominger '23;
Rakic, Rangamani Turiaci '23; Arnaudo, Bonelli, Tanzini "25]
(Classical) super-radiant instability takes BH away from
extremality. Time-scale of decay comparable to
Schwarzian time-scale. [Maldacena-S.M., 23 unpublished]




Microstates of
supersymmetric BHs
In string theory

Microscopic ~— Macroscopic

Bekenstein-Hawking 74
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When “counting” susy microstates in string
theory, one really calculates the index

* [mportant success of string theory. Proceeds through
a sequence of steps:

« |n gravitational theory, focus on BPS BH solution,
and calculate its (quantum) BH entropy.

* Calculate index in weakly-coupled (micro) string theory

Z = Tr(-1)Fe P2 =nY —nY (count of BPS states)
[Strominger-Vafa "96]
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When “counting” susy microstates in string
theory, one really calculates the index

* [mportant success of string theory. Proceeds through
a sequence of steps:

« |n gravitational theory, focus on BPS BH solution,
and calculate its (quantum) BH entropy.

* Calculate index in weakly-coupled (micro) string theory

Z = Tr(-1)Fe P2 =nY —nY (count of BPS states)
[Strominger-Vafa "96]
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How can we justify this agreement between
microscopic index and grav. entropy?

* For a single BH, we can use

(/) Quantum decoupling Heua ® Heut [lliesiu, S.M. Turiaci, 22]

(/1) BH Index = BH degeneracy [Sen 09;
Dabholkar, Gomes, S.M, Sen '10]

(both discussed above) to justify agreement.
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* |s there a direct explanation from asymptotic theory?

* Microscopic index also captures multi-BH bound states
when calculable ' @
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How can we justify this agreement between
microscopic index and grav. entropy?

* For a single BH, we can use

(/) Quantum decoupling Heua ® Heut [lliesiu, S.M. Turiaci, 22]

(/1) BH Index = BH degeneracy [Sen 09;
Dabholkar, Gomes, S.M, Sen '10]

(both discussed above) to justify agreement.
* |s there a direct explanation from asymptotic theory?

* Microscopic index also captures multi-BH bound states
when calculable ' @

[Manschot, Pioline, Sen, "10-'14]
[Dabholkar, S.M., Zagier, '11] k

Hl X HZ 2 Henv

@

+ Cannot decouple both BHs while keeping bnd state!
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New picture: direct gravitational version of
index as Gibbons-Hawking path integral

Define index using non-zero temperature as regulator,
keeping supersymmetry manifest. H

Non-susy states

index _ Tr(_l)Fe—BH _ /D¢D¢ 6—S(¢,¢)

micro

$et
k1t

[Witten '82] o(te + B) = ¢(tk)
Y(te + B) = Y(te)

o
0 F \ /
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_S rav G 9
grav DGy Dippy e 78 (G ) Susy states

Vm(te + B) =vum(te)

What are the saddles of
the gravitational index”?
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There is a tension between supersymmetric

BH and the gravitational index
In gravity:

Zlndex /DGMN DwM e aV(GMN ¢M)

grav

Yu(te +8) = Yvu(te)

e Susy BHs are extremal, 5 —
Infinite throat in the interior.

Incompatible with finite 5 [Hawking, Horowitz, Ross '94]

* Periodic fermions vs smooth spin structure.
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Resolution: true saddles of the gravitational
iIndex are Euclidean susy non-extremal BHs

* Family of non-extremal susy configurations

]{AR — il
+ (—1)" = ™" converts problem to finding L

bosonic (complex) solutions C
Ry
\(\Q’(‘)

+ smooth geometry with cigar-like topology,
non-zero “temperature” 1/

Cabo-Bizet, Cassani,
< Extremal susy BH recovered as 8 — oo Martelli, S.M. *18

in AdS5
* Legendre transform of action is indepen-  ggneralized to

dent of 5 and gives extremal BH entropy! AdS_, flat space

* Note: all these complex saddles allowed by the
Konstevich-Segal-Witten criterion [P. Benetti-Genolini, S.M. '25]
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Simple example: 4d Einstein-Maxwell theory

» Solution determined by two harmonic functions
| 1) Electric

1 ~
ds* = —=<(dtg +wg)* + VVdz Foi = ——a (

I VT monopole
17 = ij_ 0 kg (11 Magnetic
VX ._ VY S VVE RN A (V v> dipole field
Rotation

~

Extremal for V =V
[Tod '93, Perjés '71, Israel+Wilson '72], [Whitt "85, Yuille '87]

eSusyM=Q Vv =1+ Y T o
y x — x|’ Ix — xg]| v
e \Well-defined Euclidean continua- Hart
. darle-
tion of Kerr-Newman soln. Heiking 7 S
. 2T BQJ —BH
Smoothness Qg = —iQ = 5 Index 1T e ’ e
[Boruch, lliesiu, S.M., Turiaci, 23] 271
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A systematic application of this idea leads
to new solutions for the gravitational index

* 4d asymptotic flat supergravity: Rotating IWP solutions.

New attractor mechanism O f [Séaf%rligiisiyz,s]
’ Chen, S.M., Turiaci, '24
* 5d AF sugra: BHs and black strings hnen uriaci, 24|

[Cassani, Ruipérez, Turetta, '24; Adhikari, Dharanipragada, Goswami, Virmani '24]
[Boruch, Emparan, lliesiu, S.M. 23]

e 4d AF space: multi-BH bound states, wall-crossing

LN

L F [Boruch, lliesiu,
Ly L S.M., Turiaci, *25]

oF

* 5d AF space: BH bnd states, Black Rings [Cassani, Ruipérez,

Turetta, '25] [Boruch, Emparan, lliesiu, S.M., Turiaci, To appear.]
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Thank you! Questions?







New attractors
for the 4d index

[J.Boruch, L.V.lliesiu, S.M., G.J.Turiaci, 23]
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IWP saddles can be generalized to the full
Type Il string theory/CY3

e Multiple gauge fields in string theory. For every gauge
field, split the harmonic function source into N/S

H(x) = h A N | s v +vs =0 Fixed charges
x —xy|  |x—xg] (monopole)

New parameters (dipole) Y~ —7s  |xn —xs|

e Smoothness condition: Dirac-Misner string must be
absorbed by smooth coordinate transformations

e Susy + smoothness fixes all parameters in terms of

monopole charges and temperature
[J.Boruch, L.V.lliesiu, S.M., G.J.Turiaci, '23]
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Free energy is determined by new attractor
mechanism [J.Boruch, L.V.liesiu, S.M., G.J.Turiaci, 23] C O

\(\Qh“‘

Extremal attractors New attractors
[Ferrara, Kallosh, %

Strominger '995]
&

» Scalars constant * Scalars depend on
on horizon angle, moduli,
Yo — Ya)” = iP'  Attractor NP Y' =Y., YI=0
G rext — (Gfext)* — ZQI €qnis SP YI =0 YI (Y'eit)*

/
7

* On-shell action gives extremal entropy
: —1 e
—Ionshen = m(qrY"' +2iF)| +7w(qrY — 2iF)|,

_ _6MBPS + Sextremal(r)

[cf Ooguri-Stromin-
ger-Vafa '04]




BH bound states and
wall-crossing

[J.Boruch, L.V.lliesiu, S. M., G.J.Turiaci, '29]
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2-BH bound states in N=2 sugra are rigid,
and exist only in regions of moduli space

I Distance fixed in terms of chargesI'; -
‘\5,;.’{2\ and asymptotic scalar moduli A .
Iy, T
k I's ZBTQ — _<<F17 h2>> Bates-Denef '00
1,

°As (I'1,h) =0, x7y — oo => wall of marginal stability
Upon crossing the wall, bound state disappears
(wall-crossing).

* For fixed charges and scalar moduli, moduli space of
2-centered bnd state is S* (global symmetries).
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moduli space s

e Solutions found by imposing susy + smoothness.
Not easy to solve in general.

e Remarkably,
_Ion—shell — _B‘Z(Fp hoo)‘ + SeXt (F1) —+ SeXt (FQ)




Why is the moduli space compact?

* 4 centers =—> 6 distances. When do 6 given distances
come from 4 points in R>?



Why is the moduli space compact?

* 4 centers —> 6 distances. \When do 6 given distances
come from 4 points in R>?

* Vol(tetrahedron) > 0. Cayley-Menger condition.
(O TP TEy T

0 1 2.0 g2 g2
CM(X1,...,Xy) = det <1 A4> Ay = i%; I ‘7“62 12

12

2
2 2 2 $2Q
\%i Li5 Loz 0/




Why is the moduli space compact?

* 4 centers —> 6 distances. \When do 6 given distances
come from 4 points in R>?

* Vol(tetrahedron) > 0. Cayley-Menger condition.
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The Cayley-Menger condition cuts out a
small region close to the extremal distance
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Decreasing temperature narrows the 2-BH
moduli space to the extremal distance

CM(Xji,...,X43)
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The index moduli space varies with scalar
moduli “carrying” the extremal distance

CM(X4,...,X4)

— <[4,h>=-1.75

60000 n — <[4,h>=-1.72
50000 ” ” n — <[1,h>=—1.68
40000 A A V\ — <[1,h>=—1.65
30000 — — <[4,h>=-1.62
20000 — <[4,h>=-1.59
10000 — <[4,h>=-1.55
<[1,h>=-1.52




The index moduli space varies with scalar
moduli “carrying” the extremal distance

CM(X+,....X4)

_ — <Iy,h>=-1.75
60000;‘ n — <[y ,h>=—1.72
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30000;- . — <[, h>=—1.62
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* As one approaches the wall of marginal stability in
asymptotic moduli space, index moduli space — oo

* \Whole moduli space disappears exactly upon crossing
the wall!




Index saddles for
5d black strings

[J.Boruch, R. Emparan, L.V.lliesiu, S.M. '25]



Solns of Type lIA string theory can be lifted
to solns of M-theory on circle

dssq = (2V(2))?° (dy + A%)? + (2V (2)) /% dsi,

V= Volume(CY3) in string units

[Gaiotto, Strominger, Yin '05] [Castro, Davis, Kraus, Larsen '07]
[Behrndt, Cardoso, Mahapatra’ 05; de Wit, Katamadas, '09]
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The T'— 0 limit leads to the extremal black
string (preserving susy throughout)

* Finite temperature saddles for index of wrapped
black string in R? x Sy, x Sj_
Bsd Bad
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The 7"— 0 limit leads to the extremal black
string (preserving susy throughout)

* Finite temperature saddles for index of wrapped
black string in R? x Sy, x Sj_
Bsd Bad

Uy 44 (2V,)1/6

o 6561/55%00 RM/€5:ﬁX6d

—> extremal (wrapped) Black String in 5d AF space

Near-horizon AdSs; x S* can be decoupled as usual
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We can also decouple the supersymmetric
black string at finite temperature

e Take PO — () 65d/€5%0(> 55d/RM:ﬁX6d

* Black string saddle with Near-horizon region
finite-temperature spinning BTZ x S?

* Decouple =>Gravitational saddle dual to SCFTs elliptic
genus [Maldacena-Strominger-Witten 98]

[cf Farey tail Dijkgraaf, Maldacena, Moore, Verlinde, '00]

* The saddle we find is a smooth solution, w/ bdry torus
having finite modular parameter (7,7) . Grav. free energy

B 1 —> Independent of T

C
I rav. — -
° Gadass;T 7 => equal to Cardy formula!




3. Can we extract a signal of Schwarzian
modes from the string worldsheet?

Yes, although slightly indirectly:

«+ BTZ BH and AdS3; have same Euclidean geometry.
Hyperbolic space, bdry torus of modular parameter 7.
Spectrum mapped by = — —1/7 modular transformation.
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« BTZ BH and AdS3; have same Euclidean geometry.
Hyperbolic space, bdry torus of modular parameter 7.
Spectrum mapped by = — —1/7 modular transformation.

« Partition fn of bdry gravitons in AdS3 gives rise to low

temp 7°/? behavior in BTZ (signature of Schwarzian)
[Ghosh, Maxfield, Turiaci "19 |

« \We can carefully extract the precise bdry graviton
spectrum from worldsheet (torus amplitude) in AdSs

4
Superstring generalizations to AdSs x S* x %73 < gl

[S.M., Rangamani 24, '25]







T — 0

e Rich gravitational phenomena: multi-BH bound states

= O

+ Independent of

[Bates, Denef, '00; Denef, Moore '07]

What are saddle points? Susy BH?




