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CFT AdS

4 dimensional  
Super Yang Mills with 

SU(N) gauge group and 
SU(4) R-symmetry 

𝒩 = 4
type IIB superstring 
theory on AdS5 × S5

• string length  

• string coupling 

α′￼

gs

• rank of the gauge group  

• coupling constant 
N

gYM

N ∼ g−1
s

λ = g2
YMN = (α′￼)−2
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AdSd+1 × Sqℝd−1,1 = ∂AdSd+1

Weakly coupled regime in the bulk is supergravity and corresponds to 
large central charge and string length to zero.

Four point 
correlators in a 

large N 
expansion

Loop 
amplitudes in 

AdS
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𝒢(u, v) = 𝒢(0)(u, v) +
1

N2
𝒢(1)(u, v) +

1
N4

𝒢(2)(u, v) + …

Large  expansion:N

Loop expansion!



Spectrum of  SYM 𝒩 = 4

7



Spectrum of  SYM 𝒩 = 4

• The single-trace sector of the spectrum is well understood, for any 
value of  (integrability methods) 

• The multi-trace sector of the spectrum is much less explored and 
little is known about the anomalous dimensions of such operators.  

• How can we access this piece of information?

λ

7



Spectrum of  SYM 𝒩 = 4

• The single-trace sector of the spectrum is well understood, for any 
value of  (integrability methods) 

• The multi-trace sector of the spectrum is much less explored and 
little is known about the anomalous dimensions of such operators.  

• How can we access this piece of information?

λ

7

1. Large N expansion of single trace four point functions



Spectrum of  SYM 𝒩 = 4

• The single-trace sector of the spectrum is well understood, for any 
value of  (integrability methods) 

• The multi-trace sector of the spectrum is much less explored and 
little is known about the anomalous dimensions of such operators.  

• How can we access this piece of information?

λ

7

1. Large N expansion of single trace four point functions

2. Large N expansion of four point functions of higher trace op



Spectrum of  SYM 𝒩 = 4
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value of  (integrability methods) 

• The multi-trace sector of the spectrum is much less explored and 
little is known about the anomalous dimensions of such operators.  

• How can we access this piece of information?

λ
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1. Large N expansion of single trace four point functions

2. Large N expansion of four point functions of higher trace op

3. Large N expansion of higher point functions of single trace op
see for instance Harris, Kaviraj, Mann, Quintavalle, Schomerus, 2024 
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Scenario 2.

Study four point functions of higher trace operators 
.𝒪DT ∼ [𝒪𝒪]

⟨𝒪DT(x1)𝒪(x2)𝒪(x3)𝒪(x4)⟩

In this case, triple-trace operators appear already at leading order 
in the large N expansion. 

One example is 
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Δ𝒪p
= p

⟨𝒪p𝒪p𝒪q⟩ = f(N)

 of [0,p,0] SU(4)R

Scalar operators sp

 angular momentum is S5 p

m2 = Δp(Δp − 4)

𝒪4 ∼ Tr ϕ2Tr ϕ2

            Graviton 

   Kaluza Klein modes
p=4                    𝒪4 ∼ Tr ϕ4

p=2      𝒪2 ∼ Tr ϕ2

p=3      𝒪3 ∼ Tr ϕ3

Bound 2-particle state 
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Quarter-BPS multi trace operators 

Bound states 
 of [q, p, q] SU(4)R

Δ = 2q + p

Quarter-BPS operators in  SYM𝒩 = 4

𝒪02 ∼ Trϕiϕ jTrϕkϕlPijkl

Δ = 4 [2,0,2]R

An example:
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Consider four point correlators made of single and 
double trace operators, half or quarter BPS.   

By disentangling the protected part of the correlators, 
infer information about the anomalous dimension of 

double and higher trace operators.
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⟨𝒪Δ1
𝒪Δ2

𝒪Δ3
𝒪Δ4

⟩ = K(Δi, xi, yi) 𝒢Δi
(u, v, σ, τ)

𝒢Δi
(u, v, σ, τ)

Kinematical term

  Space time coordinates xi

  R-symmetry coordinates yi

harmonic cross ratios

contains information of primaries 
transforming under 

[0,Δ1,0] × [0,Δ2,0] ∩ [0,Δ3,0] × [0,Δ4,0]
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ℋ(u, v, σ, τ) = ∑
Δ,ℓ,R

aR
Δ,ℓYR(σ, τ)gΔ+4,ℓ(u, v)

superconformal blocks

=R
[0,Δ1 − 2,0] × [0,Δ2 − 2,0] ∩ [0,Δ3 − 2,0] × [0,Δ4 − 2,0]

Strategy:  • compute the protected part of the correlator   

• use crossing symmetry to see which consequences 
this part has on the ℋ(u, v, σ, τ)
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It is possible to write a relation that invert the OPE allowing us to 
reconstruct the correlator by knowing only its singularities as  or v → 0

z̄ → 1
How?

cΔ,ℓ ∼ ∫
1

0
dzdz̄ μ(z, z̄) dDisc[𝒢(z, z̄)]

kernel double 
discontinuity 

cΔ,ℓ
Δ → Δk

aΔk,ℓ

Δ − Δk

has poles at the 
dimension of the 

exchanged operator with 
residue the square of the 

three point function
Caron Huot 2017

Simmons-Duffin Stanford Witten 2017 

Inversion Formula
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Consider operators with , transforming under  Δ = 4 [0,4,0]R

𝒪SP
4 = ( 4(N2 + 1)

(N2 − 1)(N2 − 4)(N2 − 9) )
1/2

(t4 −
2N2 − 3

N(N2 + 1)
t2
2)

𝒪DT
4 = ( 2

N4 − 1 )
1/2

t2
2

tp = Tr(y ⋅ ϕ)p

Orthogonal: 

And: 

⟨𝒪SP
4 𝒪DT

4 ⟩ = 0

⟨𝒪2𝒪2𝒪SP
4 ⟩ = 0 ⟨𝒪2𝒪2𝒪DT

4 ⟩ ≠ 0



Double trace  BPS
1
2

19

⟨𝒪2𝒪2𝒪DT
4 𝒪DT

4 ⟩

• Used supersymmetry and Ward identities to disentangle the 
contribution of protected vs non protected operators  



Double trace  BPS
1
2

19

⟨𝒪2𝒪2𝒪DT
4 𝒪DT

4 ⟩

• Used supersymmetry and Ward identities to disentangle the 
contribution of protected vs non protected operators  

• The non protected part is

ℋDT
2244 = 2 +

2
v2

+
4

N2 − 1 (1 +
1
v2

+
6
v

− 2u2D̄2422(u, v))



Results

20



Results

20

• Intermediate operators are  singletsSU(4)R



Results

20

• Intermediate operators are  singletsSU(4)R

• Compute the anomalous dimensions and correction to the 
OPE coefficients of double traces and triple traces appearing 
in the OPE



Results

20

• Intermediate operators are  singletsSU(4)R

• Compute the anomalous dimensions and correction to the 
OPE coefficients of double traces and triple traces appearing 
in the OPE

• At twist =6 there are triple trace operators τ = Δ − ℓ
∼ Trϕ2Trϕ2Trϕ2



Results

20

• Intermediate operators are  singletsSU(4)R

• Compute the anomalous dimensions and correction to the 
OPE coefficients of double traces and triple traces appearing 
in the OPE

• At twist =6 there are triple trace operators τ = Δ − ℓ
∼ Trϕ2Trϕ2Trϕ2

• Results are lengthy but explicitly written in the paper



Results

20

• Intermediate operators are  singletsSU(4)R

• Compute the anomalous dimensions and correction to the 
OPE coefficients of double traces and triple traces appearing 
in the OPE

• At twist =6 there are triple trace operators τ = Δ − ℓ
∼ Trϕ2Trϕ2Trϕ2

• There are issues with mixing: there is more than one state with 
the same quantum number. 

• Results are lengthy but explicitly written in the paper



Results

20

• Intermediate operators are  singletsSU(4)R

• Compute the anomalous dimensions and correction to the 
OPE coefficients of double traces and triple traces appearing 
in the OPE

• At twist =6 there are triple trace operators τ = Δ − ℓ
∼ Trϕ2Trϕ2Trϕ2

• There are issues with mixing: there is more than one state with 
the same quantum number. 

• Results are lengthy but explicitly written in the paper

• Our results agree with supergravity based ones as in Aprile, 
Giusto, Russo.
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Double trace  BPS
1
4

We studied several correlators involving half and quarter 
BPS operators and used the same strategy as before

⟨𝒪2𝒪2𝒪2𝒪02⟩

⟨𝒪2𝒪2𝒪02𝒪02⟩

⟨𝒪02𝒪02𝒪02𝒪02⟩

protected

reconstructed it up to  from  the  the 
protected part

N−2
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Difficulties:

• Proliferation of R-symmetry structures, for instance  

has 10 R-symmetry structures and  has 42.

𝒪2 × 𝒪02
𝒪02 × 𝒪02

• The solution to the Superconformal Ward identities is not 
known.

• We computed the anomalous dimension and OPE coefficient 
of classes of operators (conformal primaries) up to twist 6.

• The form of the Superconformal block is not known. 
some progress in Hansen, Heslop, Puerta Ramisa
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Conclusions 

• Study four point functions of protected operators to get 
information about the dimension of higher trace operators. 

• For double trace operators  for large spin, 

with . What happens for higher trace operators?

τ → 2Δext + 2n + γ

γ →
A

ℓτmin

• Need to understand the superconformal blocks for quarter-
BPS operators. 

• Systematics of triple and quadruple traces.


