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Weakly coupled regime in the bulk is supergravity and corresponds to
large central charge and string length to zero.

Four point
' Loop
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large N amplitudes in
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expansion
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Large /N expansion:

1 1
C(u,v) = €OV, v) 1 N €W, v) 1 Yz €(u,v) + ...

OO
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Loop expansion!
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Spectrumof /' = 4 SYM

- The single-trace sector of the spectrum is well understood, for any
value of A (integrability methods)

- The multi-trace sector of the spectrum is much less explored and
little is known about the anomalous dimensions of such operators.

- How can we access this piece of information?

1. Large N expansion of single trace four point functions
2. Large N expansion of four point functions of higher trace op

3. Large N expansion of higher point functions of single trace op

see for instance Harris, Kaviraj, Mann, Quintavalle, Schomerus, 2024
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Scenario 1.

Study four point functions of single trace operators O at large N
<@(x1)@(x2)@(x3)@(x4)>

| 1
C(u,v) = €, v) 5 €Dy, v) ECD(u,v) + ...

N N*
DOUBLE
TRACES
TRIPLE

TRACES

DOUBLE DOUBLE DOUBLE

TRACES TRACES TRACES

—m

[0,0,...0, ] are m-trace operators, with ([0,0,...0, 1[0,0,...0,1) =1
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Scenario 2.

Study four point functions of higher trace operators

Opr ~ |00].

One example is
(O pr(x) O(x,) O(x3) O(xy))

In this case, triple-trace operators appear already at leading order
in the large N expansion.
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Half-BPS operatorsin /' = 4 SYM

Ao, =P m* = A (A, —4)
(0,0,0,) = f(N)
10,p,0] of SU(4)p S° angular momentum is p

Scalar operators S,

p=2 O, ~ Tr ¢* Graviton

p=3 @3 g Tr ¢3
Kaluza Klein modes

p=4 0O, ~ Tr¢p*

O, ~ Tr ¢p*Tr ¢* Bound 2-particle state 0
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Quarter-BPS operators in / = 4 SYM

Quarter-BPS multi trace operators

[qa P> Q] of SU(4)R

Bound states
A=2qg+p

An example:
Oy ~ Trp' ' Trp*p' Py,

A — 4 [29092]R
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This talk

Consider four point correlators made of single and
double trace operators, half or quarter BPS.

By disentangling the protected part of the correlators,
infer information about the anomalous dimension of
double and higher trace operators.
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1
Four point functions of 5 BPS operators

Kinematical term  harmonic cross ratios

X; Space time coordinates

y; R-symmetry coordinates

g A, (u, V,0,T ) contains information of primaries
transforming under
[OaAlao] X [O,Az,O] N [09A390] X [07A430]
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E.g. 10,2,0] x[0,2,0] =[0,0,0] & [0,2,0] +[0,4,0] 4 [1,2,1] + [2,0,2] + [1,0,1]

|

— BPS operators

?Ai(u,v,a,f) = K + ?f(u,v, o,7)|+ R(u,v,o,t

protected (do not depend on A) long multiplet

Superconformal Ward Identities:
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Four point functions of 5 BPS operators

H(U,v,0,7) = Z aﬁ,fYR(a, T)8a44., (U, V)
A7 R

superconformal blocks

R=
[0,A, —2,0] X [0,A, — 2,0] N [0,A; — 2,0] X [0,A, — 2,0]

Strategy: compute the protected part of the correlator

. use crossing symmetry to see which consequences
this part has on the #Z'(u, v, 0, 7)
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How?

1
CAp ™~ J dzdz u(z,z) dDisc[€(z,7)]

0 double
kernel . _
discontinuity

| 1 1
dDisc[€(z,2)] = €,,./(z.2) — 5?%, 7) — 5?%, 2)

analytic continuation
around 7 — 1
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nversion Formula

It is possible to write a relation that invert the OPE allowing us to

reconstruct the correlator by knowing only its singularitiesas v — 0 or

1
%fNJ
0

CA.#

77— 1

How?

kernel

dzdz u(z,7) dDisc[€(z, ?)]
double

discontinuity

Up, ¢

A=A A—A,

16

has poles at the
dimension of the
exchanged operator with
residue the square of the
three point function

Caron Huot 2017

Simmons-Duffin Stanford Witten 2017



Strategy

Non- Protected operators

Inversion
formula

Protected operators
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5P _ 4N+ 1) . 2N -3,
Y\ (V2 = 1D(N2 = 4)(N2 —9) TONWN2Z+1) 2

DT _ 2 . 2 t =Tr(y - )P
O, = Y s D Yy

Orthogonal: (OFODTY =0

And: (0,0,057Yy =0 (0,0,0") #0
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1
Double trace E BPS

(0,0,0504")

- Used supersymmetry and Ward identities to disentangle the
contribution of protected vs non protected operators

- The non protected part is

xD! =2+£+ ! 1+i+g—2uzD (u,v)
2244 V2 N2 —1 V2 y 2422\
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Results

. Intermediate operators are SU(4)y singlets

- Compute the anomalous dimensions and correction to the

OPE coefficients of double traces and triple traces appearing
in the OPE

. Attwist 7 = A — £=6 there are triple trace operators
~ Tr*Trp*Trh?

- Results are lengthy but explicitly written in the paper

- There are issues with mixing: there is more than one state with
the same quantum number.

- Our results agree with supergravity based ones as in Aprile,
Glusto, Russo.
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1
Double trace Z BPS

We studied several correlators involving half and quarter
BPS operators and used the same strategy as before

<@2@2@2@O2>

protected

(0,0,00,0,)

< 602 @02 @02 @02>

reconstructed itupto N ~2 from the the
protected part

21



1
Double trace Z BPS

Difficulties:

22



1
Double trace Z BPS

Difficulties:

. Proliferation of R-symmetry structures, for instance 0, X O,
has 10 R-symmetry structures and 0, X 0, has 42.

22



1
Double trace Z BPS

Difficulties:

. Proliferation of R-symmetry structures, for instance 0, X O,
has 10 R-symmetry structures and 0, X 0, has 42.

- The solution to the Superconformal Ward identities is not
known.

22



1
Double trace Z BPS

Difficulties:

. Proliferation of R-symmetry structures, for instance 0, X O,
has 10 R-symmetry structures and 0, X 0, has 42.

- The solution to the Superconformal Ward identities is not
known.

- The form of the Superconformal block is not known.

some progress in Hansen, Heslop, Puerta Ramisa

22



1
Double trace Z BPS

Difficulties:

. Proliferation of R-symmetry structures, for instance 0, X O,
has 10 R-symmetry structures and 0, X 0, has 42.

- The solution to the Superconformal Ward identities is not
known.

- The form of the Superconformal block is not known.

some progress in Hansen, Heslop, Puerta Ramisa

- We computed the anomalous dimension and OPE coefficient
of classes of operators (conformal primaries) up to twist 6.
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Conclusions

Study four point functions of protected operators to get
information about the dimension of higher trace operators.

For double trace operators 7 — 2A_ .+ 2n + y for large spin,

ext

withy — . What happens for higher trace operators?

l,ﬂ Tmin

Need to understand the superconformal blocks for quarter-
BPS operators.

Systematics of triple and quadruple traces.
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