The importance of being Exact: integrability, gauge, black holes physics and their correspondence

EUROSTRINGS 2025, NORDITA, SWEDEN, 28-8-2025

Davide Fioravanti (I.N.F.N. and Univ., Bologna)

Papers (and works in progress) with <u>M.Rossi</u>, D.Gregori, R.Mahanta, H. Shu 2412.21148; 2508.19960

Elementary, not many citations (too many): apology!

Synopsis and Motivation

Quantum Integrability

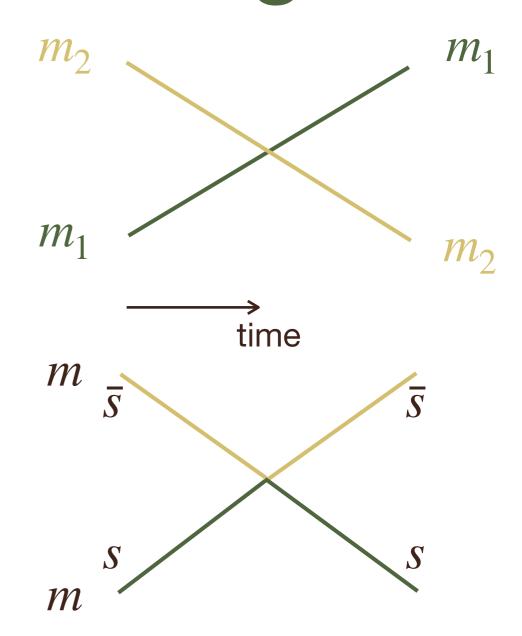
from Integral and Functional equations to classical

ODEs (Lax integrability) in gauge theories (and BH)

in the papers

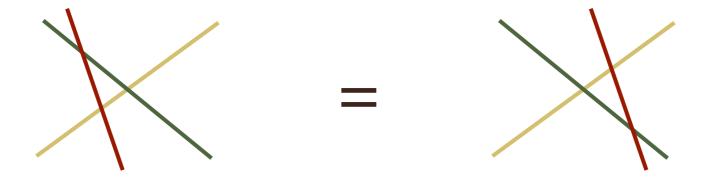
Scattering theory in 1+1d: Two body scattering

- Infinite charges implies particles maintain their rapidity θ_i : $p_i = m_i \sinh \theta_i \quad E_i = m_i \cosh \theta_i$ if $m_1 \neq m_2$: $S = e^{i\delta}$ phase shift.
- If equal masses, possible exchange of internal degrees of freedom: $s + \overline{s} \rightarrow s + \overline{s}$ or $s + \overline{s} \rightarrow \overline{s} + s$ in the quantum Sine-Gordon, i.e. non-diagonal scattering.



Three body scattering

 Infinite charges implies the scattering is independent of the order or associative: Yang-Baxter relation



* The general n-body scattering matrix factorises into two-body processes.

$$A_{Sh-G} = \int d^2x \left[(\partial_a \phi)^2 + \mu \cosh(b\phi) \right]$$

Sinh-Gordon S-matrix

Two-body S-matrix

$$S(\theta) = \frac{\sinh \theta - i \sin \pi p}{\sinh \theta + i \sin \pi p}$$

with notation for the coupling constant:

$$p = b/(b + 1/b)$$
.

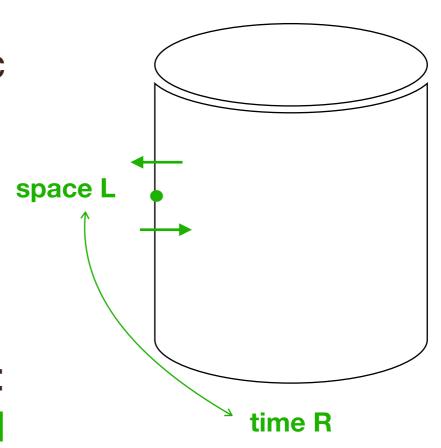
- * This is an on-shell information or infinite size.
- * How to compute finite size energy (off-shell)?

Thermodynamic Bethe Ansatz

Mirror theory (space ↔ time):

Bethe eqs. (derived via analytic continuation) in space $L \to \infty$ become exact!

Finite R no longer a problem: Thermodynamics/statistical mechanics at temperature T=1/R (Yang-Yang) gives the minimal free energy $f_{min}(L)$ so that $Z = \exp[-LRf_{min}(R)] + ... = \exp[-LE_0] + ...$



Thermodynamic Bethe Ansatz

Upon equating the two exponents of Z

$$E_0(R) = Rf_{min}(R)$$

- * Ground state energy (Sinh-Gordon in the present case) given by thermodynamic free energy.
- * Relativistic models: $S_{mirror} = S$ of original theory, because of difference of rapidities.
- * Minimising a thermodynamic functional ⇒ Non-Linear TBA equations, whose SOLUTION gives the ENERGY

Sinh-Gordon: TBA

- Ground state energy $E_0(R) = -\frac{m}{2\pi} \int_{-\infty}^{+\infty} d\theta \cosh\theta \ln[1 + e^{-\epsilon(\theta)}]$
- ◆ TBA EQUATION for the pseudoenergy (ratio of particle densities)

$$\epsilon(\theta) = mR \cosh \theta - \int_{-\infty}^{+\infty} d\theta' \varphi(\theta - \theta') \ln[1 + e^{-\epsilon(\theta')}]$$
 describe the scattering $\varphi = \delta' = -i \frac{d}{d\theta} \ln S$.

• It has only ONE solution, easy to find numerically (by recursion) $e(\theta) = R(m\cosh\theta) + ... \rightarrow \underline{\text{relativistic particle}}, \text{ and analytically in some regimes.}$

Sinh-Gordon: Y-system

* TBA equation a = 1 - 2p (coupling)

$$\varepsilon(\theta) = mR \cosh \theta - \int_{-\infty}^{\infty} \left[\frac{1}{\cosh(\theta - \theta' + ia\pi/2)} + \frac{1}{\cosh(\theta - \theta' - ia\pi/2)} \right] \ln \left[1 + e^{-\varepsilon(\theta')} \right] \frac{d\theta'}{2\pi}$$

 \Rightarrow (not the reverse: driving term disappears) $\varepsilon(\theta) = -\ln Y(\theta)$

FUNCTIONAL EQUATION: Y-system

$$Y(\theta + i\pi/2)Y(\theta - i\pi/2) = \left(1 + Y(\theta + ia\pi/2)\right)\left(1 + Y(\theta - ia\pi/2)\right)$$

 Both functional and integral equations constraint form and expansions (in conserved charges) of solutions: <u>strength and power of quantum</u> <u>integrability</u>

Introducing Ordinary Differential equations (ODE)

- * Foreword: important observation of derivation of functional equations from polynomial potentials in Schrödinger eq. for minimal CFTs: ODE→IM correspondence. Dorey, Tateo; BLZ; Dunníng; Suzukí; DF, Masoero ;...; Ito, Maríno, Shu;....
- * But need two irregular singularities, like in SW differential and HEUN EQ
- * Can we construct a GENERAL INVERSION THEORY? YES, but requires time and arrives at TWO Lax Operators: MASSIVE TH. DF, M Rossi Gaiotto, Moore, Neitzke; Lukyanov, Zam
- * Y beautiful, but not elementary (QQ-system, definition of integrability)
- * Our rough and heuristic idea: QQ-system is unitarity in QM $r(\theta)r(\theta + i\pi) + t(\theta)t(\theta + i\pi) = 1, k = ie^{\theta}$

Help from Seiberg-Witten theory, i.e. N=2 susy (effective) gauge theory

N=2 gauge periods and ODEs

Original <u>Seiberg-Witten</u> idea: <u>the prepotential is give by two periods of a differential</u>. Nekrasov-Shatashvili ħ instanton regularisation/deformation: <u>an ODE</u> quantises the differential. Moreover: **AGT correspondence**: level two null vector ODE. <u>Pure SU(2): Mathieu eq.</u> (periodic potential: <u>quasi-periodic (Floquet) sols.</u>)

$$-\frac{\hbar^2}{2}\frac{d^2}{dz^2}\psi(z) + [\Lambda^2\cos z - u]\psi(z) = 0 \quad \text{Floquet exponent: } \psi_{\pm}(z + 2\pi; a) = e^{\pm 2\pi i a}\psi_{\pm}(z; a)$$

• Quantum SW differential $\mathscr{P}(z) = -i\frac{d}{dx}\ln\psi(z) \rightarrow \underline{\text{Quantum periods}}$ $a(\hbar, u, \Lambda) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathscr{P}(z; \hbar, u, \Lambda) dz \implies u = u(a), \quad a_D(\hbar, u, \Lambda) = \frac{1}{2\pi} \int_{-\arccos(u/\Lambda^2) - i0}^{\arccos(u/\Lambda^2) - i0} \mathscr{P}(z; \hbar, u, \Lambda) dz = \partial \mathscr{F}/\partial a \implies \mathscr{F}(\hbar, a, \Lambda)$ Prepotential

Focus on how to extract <u>FUNCTIONAL EQUATIONS</u>

N=2 gauge periods and ODE

* Thinking of ODE/IM correspondence, we go to confining potential: complex $z = -iy - \pi$

$$\left\{-\frac{d^2}{dy^2} + 2e^{2\theta}\cosh y + P^2\right\}\psi(y) = 0 \quad \text{Heun DB-confluent eq.}$$

with gauge/integrability change of variable

$$\frac{\hbar}{\Lambda} = e^{-\theta} , \qquad \frac{u}{\Lambda^2} = \frac{P^2}{2e^{2\theta}}$$

Can we use this ODE for quantum sinh-Gordon?

ODE/IM correspondence:

* Introducing b: Generalised Mathieu Equation (GME) $y \in \mathbb{C}$

$$\left\{ -\frac{d^2}{dy^2} + e^{2\theta} (e^{y/b} + e^{-yb}) + P^2 \right\} \psi(y) = 0$$

Zamolodchíkov; DF, Gregori

* 2 irr. sings., guessed by some discrete symmetries

$$\Lambda_b:\theta\to\theta+i\pi\frac{b}{q} \qquad y\to y+\frac{2\pi i}{q} \quad ; \quad \Omega_b:\theta\to\theta+i\pi\frac{1}{bq} \qquad y\to y-\frac{2\pi i}{q}$$

Fundamental Ingredients

- Discrete Symmetries BROKEN: acting on a solution they generate a new one
- Fundamental ODE/IM basis: decaying solutions

$$V_0(y) \simeq \frac{1}{\sqrt{2}} \exp\left\{-\theta/2 + yb/4\right\} \exp\left\{-\frac{2}{b}e^{\theta-yb/2}\right\} \qquad y \to -\infty ;$$

$$U_0(y) \simeq \frac{1}{\sqrt{2}} \exp\left\{-\theta/2 - y/4b\right\} \exp\left\{-2be^{\theta+y/2b}\right\} \qquad y \to +\infty$$

• From asymptotic, <u>new solutions</u> by 'rotations' $U_k=\Lambda_b^kU_0,\ V_k=\Omega_b^kV_0$, while <u>invariant</u> $U_0=\Omega_b^kU_0,\ V_0=\Lambda_b^kV_0$

Fundamental object Q-function=Wronskian of decaying solutions

$$Q(\theta, P^2) = W[U_0, V_0]$$

• Thanks to the Λ_b and then Ω_b symmetries

$$\begin{split} iV_0(y) &= Q(\theta + i\pi p)U_0(y) - Q(\theta)U_1(y) \\ iV_1(y) &= Q(\theta + i\pi)U_0(y) - Q(\theta + i\pi(1-p))U_1(y) \end{split}$$

• That is CONNEXION COEFFICIENT $Q(\theta) \to {\it Stokes\ MONODROMY}$: $T(\theta)$ or $Y(\theta)$

$$T(\theta, P^2) = -iW[U_1, U_{-1}] = Q(\theta - i\pi p)Q(\theta + i\pi) - Q(\theta + i\pi(1 - 2p))Q(\theta + i\pi p), \ \ \tilde{T}(\theta, P^2) = iW[V_1, V_{-1}] = T(b \to 1/b)$$

Wronskian of both sides: QQ-system

$$1 = Q(\theta + i\pi)Q(\theta) - Q(\theta + i\pi(1-p))Q(\theta + i\pi p)$$
 for AdS/CFT: Quantum Spectral Curve

The return of the Y-system

 Q is the most basic object which generates all the integrability structures from the QQ-system: e.g. the Y-system upon

composition
$$Y(\theta) = Q(\theta + i\pi a/2)Q(\theta - i\pi a/2)$$

$$Y(\theta + i\pi/2)Y(\theta - i\pi/2) = \left(1 + Y(\theta + ia\pi/2)\right)\left(1 + Y(\theta - ia\pi/2)\right)$$

- The same as Sinh-Gordon! Same solution Y?
- The Y-system inversion is <u>not unique</u>: take the log and invert the shift operator, but ZERO MODES

$$s * l = l(\theta + i\pi/2) + l(\theta - i\pi/2) \Rightarrow s^{-1} \sim \frac{1}{\cosh}$$

NO: massless limit $m \sim 0, \theta \sim +\infty \Rightarrow m \cosh \theta \sim e^{\theta}$

Liouville Field theory

* TBA equation has only one exponent:

$$\varepsilon(\theta) = \frac{8\sqrt{\pi^3} \, q}{\Gamma(\frac{b}{2q})\Gamma(\frac{1}{2bq})} e^{\theta} - \int_{-\infty}^{\infty} \left[\frac{1}{\cosh(\theta - \theta' + ia\pi/2)} + \frac{1}{\cosh(\theta - \theta' - ia\pi/2)} \right] \ln\left[1 + e^{-\varepsilon(\theta')}\right] \frac{d\theta'}{2\pi}$$

 Thanks to this (kink form), finite size scaling can be computed exactly and gives

$$c = 1 + 6(b + b^{-1})^2$$
 $\Delta = (c - 1)/24 - P^2$

T, Q and N=2 gauge periods

• The same equation of Liouville at the selfdual point b=1

$$\left\{-\frac{d^2}{dy^2} + 2e^{2\theta}\cosh y + P^2\right\}\psi(y) = 0 \qquad z = -iy - \pi$$

upon gauge/integrability change of variable

$$\frac{\hbar}{\Lambda} = e^{-\theta} , \qquad \frac{u}{\Lambda^2} = \frac{P^2}{2e^{2\theta}}$$

New integrability/gauge Correspondence: identification

integrability transfer matrix
$$T(\hbar,u,\Lambda) \equiv T(\theta,P^2) = iW[V_1,V_{-1}] = 2\cos{\{2\pi a(\hbar,u,\Lambda)\}}$$

integrability Q-function dual gauge period
$$Q(\hbar,u,\Lambda)\equiv Q(\theta,P^2)=\exp\{2\pi i a_D(\hbar,u,\Lambda)\}$$

The fundamental relation of the theory: QQ-SYSTEM

* From the gauge Y-system the gauge TBA eqs.

$$\varepsilon(\theta,u,\Lambda) = -4\pi i a_D^{(0)}(u,\Lambda) \frac{e^{\theta}}{\Lambda} - 2 \int_{-\infty}^{\infty} \frac{\ln\left[1 + \exp\{-\varepsilon(\theta',-u,\Lambda)\}\right]}{\cosh\left(\theta - \theta'\right)} \frac{d\theta'}{2\pi}$$
 Unique integrability TBA
$$\varepsilon(\theta,-u,\Lambda) = -4\pi i a_D^{(0)}(-u,\Lambda) \frac{e^{\theta}}{\Lambda} - 2 \int_{-\infty}^{\infty} \frac{\ln\left[1 + \exp\{-\varepsilon(\theta',u,\Lambda)\}\right]}{\cosh\left(\theta - \theta'\right)} \frac{d\theta'}{2\pi}$$
 eq. above

dyon, i.e. strong coupling spectrum

* Quantum integrability tells more: e.g. $T \rightarrow$ weak coupling spectrum (a electric period), inside **TQ-system** ($a/\hbar \rightarrow a$, $a_D/\hbar \rightarrow a_D$)

$$2\cos\{2\pi a\} \exp\{2\pi i a_D\}$$

 $T(\theta)Q(\theta) = Q(\theta - i\pi/2) + Q(\theta + i\pi/2)$

* +periodicity, gauge interpretation: quantum Bilal-Ferrari relations. In fact T and Q are generating functions $\hbar/\Lambda = e^{-\theta} \to 0$ (asymptotic expansion) of for <u>Conserved Charges</u> and <u>Quantum Periods</u> (zero order=Seiberg-Witten). Opposite to <u>instanton expansion</u> $\Lambda/\hbar = e^{\theta} \to 0$ (other charges).

ODE/IN Correspondence

- Prepotential $\mathcal{F} = pert \cdot (1 loop) + (INstantons)$ from Nekrasov Partition via Young diagrams in instanton series (AGT correspondence)
- IN stanton coupling constant $\Lambda/\hbar=e^{\theta}$ expansion
- Dual instanton period/prepotential $A_D = \partial \mathcal{F}/\partial a$ appears in the **Q-function** simplest $\sinh A_D$ formula of

ODE/INstanton correspondence: $Q(a, \Lambda/\hbar) = i \frac{\sinh A_D}{\sinh 2\pi i a}$

this kind ∀Heun eq.

• A way to see this: solution of the QQ-system equivalent to $A_D(\theta + i\pi/2) = A_D(\theta) + 2\pi ia$ (check the asymptotic $\theta \to \pm \infty$), functional equation solved by prepotential!

Unveiling Prepotential in ODE/IN

DF, Rossí

* Deeper understanding: **prepotential** i.e. **SW geometry** inside **Floquet basis**, +:

$$\psi_{+}(y + 2\pi i; a) = e^{+2\pi i a} \psi_{+}(y; a)$$

• behaves at $y \to -\infty$ as

$$\psi_{+}(y;a) \simeq (const.)(e^{\frac{y}{4}}e^{2e^{\theta}e^{-\frac{y}{2}}})$$

* and acquires a scattering phase at $y \to +\infty$

$$\psi_{+}(y;a) \simeq (const.) e^{\varphi} e^{-\frac{y}{4}} e^{2e^{\theta}e^{\frac{y}{2}}}$$

* It can be proven via $\varphi\left(\theta + \frac{i\pi}{2}, P\right) = \varphi(\theta, P) - 2\pi ia$

$$A_D = \stackrel{A_D = \partial \mathcal{F}/\partial a}{\varphi \Rightarrow \mathcal{F}} = \mathcal{F}(\Lambda/\hbar, a/\hbar)$$

- Explicit exact expression for φ : an alternative computation to and of instantons, at all
- orders small $\frac{\Lambda}{\hbar} = e^{\theta}, \ \theta \to -\infty$ (and **beyond,** e.g. large instanton coupling $\theta \to +\infty$) $= \frac{d \ln \psi_+}{dy'} \to \text{quantum momentum}$ Since $\varphi(\theta, P) = \int_{-\infty}^{+\infty} dy' \left(\Pi_+(y') reg.\right)$, not so easy as $2\pi i a = \int_0^{2i\pi} dy' \Pi_+(y')$ non-compact: kink method: $y \to y \pm 2\theta$ LESSON from gauge dual period $\varphi = -4a\theta + \sum_{n=0}^{+\infty} c_n e^{4n\theta}$: better expand

$$\Pi_{+}(y \mp 2\theta) = \sum_{n=0}^{+\infty} \Pi_{\gtrless}^{(n)}(y; P) e^{4n\theta}, \ y \ge \pm 2\theta \text{ two different intervals of validity!}$$

* Check: $\psi_+ = Z_{quiver}$, but ours partially re-summed (product of instanton couplings only) ...Bíanchí, Fucito, Morales;

Bonelli, Jossa, Tanzini,

Decaying vs. Floquet sols.

- * The <u>quasi periodic Floquet solutions</u> are the novelty in ODE/IN correspondence w.r.t. decaying ones of ODE/IM.
- * Change of basis (simple idea: cancel the dominant divergence):

$$\begin{split} V_{0}(y) &= \frac{\sqrt{2}e^{\frac{\theta}{2}}}{W[\psi_{+}, \psi_{-}]} \left[e^{-\frac{\varphi}{2}} \psi_{-}(y) - e^{\frac{\varphi}{2}} \psi_{+}(y) \right] , \\ U_{0}(y) &= \frac{\sqrt{2}e^{\frac{\theta}{2}}}{W[\psi_{+}, \psi_{-}]} \left[e^{-\frac{\varphi}{2}} \psi_{+}(y) - e^{\frac{\varphi}{2}} \psi_{-}(y) \right] \implies Q(a, \theta) = -4e^{\theta} \frac{\sinh \varphi(a, \theta)}{W[\psi_{+}, \psi_{-}]} \end{split}$$

General formulae: same form ∀Heun-like (H and confluences) eqs.

- * All V_0, U_0 INGREDIENTS: $W[\psi_+, \psi_-], \varphi, \Pi_\pm = d/dy[\ln \psi_\pm(y)]$ computed
- * Why and where Floquet approximation $U_0(y) \simeq C\psi_-(y), +e^{-\varphi} \sim e^{a\theta}$ non-perturbative
- Here $W[\psi_+, \psi_-] = -4e^{\theta} \sin 2\pi a \implies Q(a, \Lambda/\hbar) = \frac{\sinh \varphi}{\sinh 2\pi i a}, \ \Lambda/\hbar = e^{\theta}$

Perturbation of BH (simplified): scalar perturbation D3 stack brane

Upon radial-angular separation of Black Hole wave-form

$$\frac{d^2\phi}{dr^2} + \left[\omega^2\left(1 + \frac{M^4}{r^4}\right) - \frac{(l+2)^2 - \frac{1}{4}}{r^2}\right]\phi = 0 \quad \text{radial Regge-Wheeler eq.}$$
• Change of variables $r = Me^{-\frac{y}{2}} \quad \omega M = 2ie^{\theta} \quad P = \frac{1}{2}(l+2)$
to bring it into the integrability form $\phi = e^{\frac{y}{4}}\psi$

BH frequency

$$-\frac{d^2}{dy^2}\psi + \left[e^{2\theta}(e^y + e^{-y}) + P^2\right]\psi = 0$$

• ODE/IM basis reproduce gravitational BH boundary conditions.

$$U_0(r) \sim e^{i\omega L^2/r}, r \to 0 \ (y \to +\infty); \quad V_0(y) \sim e^{i\omega r}, r \to +\infty \ (y \to -\infty)$$

in: ingoing at horizon r = 0

up: outgoing at $r = \infty$

Extensions to realistic cases

• $N_f = 2$ — Intersection of <u>four stacks of D3 branes</u> (extremal **Kerr BH**; equal charges: extremal **Reissner-Nöstrom BH**)

$$\frac{d^2\phi}{dr^2} + \left[-\frac{(l+\frac{1}{2})^2 - \frac{1}{4}}{r^2} + \omega^2 \sum_{k=0}^4 \frac{\Sigma_k}{r^k} \right] \phi = 0$$

* which becomes in integrability form confluent Heun eq

$$-\frac{d^2}{dy^2}\psi + \left[e^{2\theta}(e^{2y} + e^{-2y}) + 2e^{\theta}(M_1e^y + M_2e^{-y}) + P^2\right]\psi = 0$$

- fully new forms of Y-systems and TBA equations
- $* N_f = 3 \rightarrow {\bf confluent \ Heun \ \underline{Schwarzshild}}, {\bf Kerr \ both \ radial \ and \ angular}$
- $N_f = 4 \rightarrow$ Heun eq. AdS BH ($N_f = 4$): Heun and all confluences. Quiver gauge theories.....

Approach by gauge instantons: Atsuda, Grassi, Hatsuda; Bianchi, Di Russo, Fucito, Morales, Russo, Poghossian; Arnaudo, Bonelli, Iossa, Tanzini,

Quasinormal modes=Bethe roots

• Imposing the BH boundary conditions on

$$iV_0(y) = Q(\theta + i\pi/2)U_0(y) - Q(\theta)U_1(y)$$

• Proper eigen-frequencies of the back hole

$$Q(\theta_n) = 0$$

Integrability Thermodynamic Bethe Ansatz equation

$$\ln Q(\theta) = -\frac{8\sqrt{\pi^3}}{\Gamma^2(\frac{1}{4})}e^{\theta} + \int_{-\infty}^{\infty} \frac{\ln \left[1 + Q^2(\theta')\right]}{\cosh(\theta - \theta')} \frac{d\theta'}{2\pi}$$

- Sort of solution up to quadratures. Important: Q is the full <u>spectral</u> <u>determinant</u> (Bethe roots=QNMs are only the zeroes).
- * ODE/IM fundamental Wronskian $Q(\theta, P^2) = W[U_0, V_0]$ is the same as the **gravitational** PDE solution \Rightarrow more info (wavefunction, space-time solution, etc.): applications to

BH and Gravitational waves?

Conclusions and <u>some</u> perspectives

- * Painlevé/gauge (NS) theory correspondence → Floquet.
- * Many exact results for gauge SU(2) theories with matter.
- * Thorough application to BH physics and Cosmology?
- * Gauge prepotential 'solves' particular ODE/IM: what about general ODE/IM? Integrability community is unsatisfied......
- Extension to more complicated higher rank gauge theories (by now only pure SU(3)).
- * NS limit $\epsilon_1=\hbar,\ \epsilon_2=0\to \text{ODE/IM}$ description: $\epsilon_2\neq 0$ quantum ODE/IM? q-TBA? Similarly about classical string in N=4 SYM for null-polygonal Wls.
- * Mathieu ODE is level 2 null vector equation, but our Liouville field theory is not AGT: meaning of $b \neq 1$?

Thank you!