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integrability, gauge, black holes physics 

and their correspondence
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Quantum Integrability
from Integral and Functional equations to classical 
ODEs (Lax integrability) in gauge theories (and BH) 

Synopsis and Motivation

in the papers



Scattering theory in 1+1d: 
Two body scattering

Infinite charges implies 
particles maintain their 
rapidity :  

 
if :  phase shift. 


If equal masses, possible 
exchange of internal degrees 
of freedom:  or

 in the quantum 
Sine-Gordon, i.e. non-
diagonal scattering.
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pi = mi sinh θi Ei = mi cosh θi
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Three body scattering
Infinite charges implies the scattering is 
independent of the order or associative:       
Yang-Baxter relation


The general n-body scattering matrix 
factorises into two-body processes.
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=



Sinh-Gordon S-matrix
Two-body S-matrix                                        

                           

with notation for the coupling constant:        
.


This is an on-shell information or infinite size.


How to compute finite size energy (off-shell)?

S(θ) =
sinh θ − i sin πp
sinh θ + i sin πp

p = b/(b + 1/b)

5

ASh−G = ∫ d2x [(∂aϕ)2 + μ cosh(bϕ)]



Thermodynamic Bethe Ansatz

time R

space L
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Mirror theory (space time): 

Bethe eqs. (derived via analytic 
continuation) in space  
become exact! 


Finite R no longer a problem: 
The rmodynamics /s ta t i s t i ca l 
mechanics at temperature T=1/R 
(Yang-Yang) gives the minimal free 
e n e r g y   s o t h a t 

    

↔

L → ∞

fmin(L)
Z = exp[−LRfmin(R)] + … = exp[−LE0] + …



Thermodynamic Bethe Ansatz

Upon equating the two exponents of Z 



Ground state energy (Sinh-Gordon in the present 
case) given by thermodynamic free energy.


Relativistic models:  of original theory, 
because of difference of rapidities.


Minimising a thermodynamic functional  Non-Linear 
TBA equations, whose SOLUTION gives the ENERGY 

E0(R) = Rfmin(R)

Smirror = S

⇒
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Sinh-Gordon: TBA

Ground state energy 


TBA EQUATION for the pseudoenergy (ratio of particle densities)  

                      

describe the scattering .


It has only ONE solution, easy to find numerically (by recursion) 
relativistic particle, and analytically 

in some regimes. 

E0(R) = −
m
2π ∫

+∞

−∞
dθ cosh θ ln[1 + e−ϵ(θ)]

ϵ(θ) = mR cosh θ − ∫
+∞

−∞
dθ′￼φ(θ − θ′￼)ln[1 + e−ϵ(θ′￼)]

φ = δ′￼= − i
d
dθ

ln S

ϵ(θ) = R(m cosh θ) + …→
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Sinh-Gordon: Y-system
TBA equation  (coupling) 

 

(not the reverse: driving term disappears)  


FUNCTIONAL EQUATION: Y-system 

 


Both functional and integral equations constraint form and expansions 
(in conserved charges) of solutions: strength and power of quantum 
integrability 

a = 1 − 2p

ε(θ) = mR cosh θ − ∫
∞

−∞ [ 1
cosh(θ − θ′￼+ iaπ/2)

+
1

cosh(θ − θ′￼− iaπ/2) ] ln [1 + e−ε(θ′￼)] dθ′￼

2π

⇒ ε(θ) = − ln Y(θ)

Y(θ + iπ/2)Y(θ − iπ/2) = (1 + Y(θ + iaπ/2))(1 + Y(θ − iaπ/2))
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Introducing Ordinary Differential 
equations (ODE)

Foreword: important observation of derivation of functional 
equations from polynomial potentials in Schrödinger eq. for 
minimal CFTs: ODE IM correspondence.


But need two irregular singularities, like in SW differential and HEUN EQ


Can we construct a GENERAL INVERSION THEORY? YES, but 
requires time and arrives at TWO Lax Operators:MASSIVE TH.


Y beautiful, but not elementary (QQ-system, definition of integrability)


Our rough and heuristic idea: QQ-system is unitarity in QM 
 

→

r(θ)r(θ + iπ) + t(θ)t(θ + iπ) = 1, k = ieθ
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DF, M Rossi 

Dorey,Tateo;BLZ;Dunning;Suzuki;DF,Masoero
;….;Ito,Marino,Shu;….

Gaiotto,Moore,Neitzke;Lukyanov,Zam 



Help from

Seiberg-Witten theory, 


i.e. N=2 susy (effective) gauge 
theory



N=2 gauge periods and 
ODEs

Original Seiberg-Witten idea: the prepotential is give by two 
periods of a differential. Nekrasov-Shatashvili  instanton 
regularisation/deformation: an ODE quantises the differential. 
Moreover: AGT correspondence: level two null vector ODE. Pure 
SU(2): Mathieu eq. (periodic potential: quasi-periodic (Floquet) sols.) 

Quantum SW differential  Quantum periods


Focus on how to extract FUNCTIONAL EQUATIONS

ℏ

𝒫(z) = − i
d

dx
ln ψ(z) →

−
ℏ2

2
d2

dz2
ψ (z) + [Λ2 cos z − u]ψ (z) = 0

a(ℏ, u, Λ) =
1

2π ∫
π

−π
𝒫(z; ℏ, u, Λ) dz ⟹ u = u(a) , aD(ℏ, u, Λ) =

1
2π ∫

arccos(u/Λ2)−i0

−arccos(u/Λ2)−i0
𝒫(z; ℏ, u, Λ) dz = ∂ℱ/∂a ⟹ ℱ(ℏ, a, Λ)
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Floquet exponent: ψ±(z + 2π; a) = e±2πiaψ±(z; a)

Prepotential



N=2 gauge periods and 
ODE

Thinking of ODE/IM correspondence, we go 
to confining potential: complex 


with gauge/integrability change of variable


Can we use this ODE for quantum sinh-Gordon? 

z = − iy − π
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ℏ
Λ

= e−θ ,
u

Λ2
=

P2

2e2θ

{−
d2

dy2
+ 2e2θ cosh y + P2}ψ(y) = 0 Heun DB-confluent eq.



ODE/IM correspondence:

Introducing b: Generalised Mathieu Equation (GME) 




2 irr. sings.,guessed by some discrete symmetries

y ∈ ℂ

{−
d2

dy2
+ e2θ(ey/b + e−yb) + P2}ψ(y) = 0

Λb : θ → θ + iπ
b
q

y → y +
2πi
q

; Ωb : θ → θ + iπ
1

bq
y → y −

2πi
q
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Zamolodchikov; DF,Gregori



• Discrete Symmetries BROKEN: acting on a solution they generate a new one


• Fundamental ODE/IM basis: decaying solutions


 




• From asymptotic, new solutions by ‘rotations’ ,  while 
invariant  

V0(y) ≃
1

2
exp{−θ/2 + yb/4}exp{−

2
b

eθ−yb/2} y → − ∞ ;

U0(y) ≃
1

2
exp{−θ/2 − y/4b}exp{−2beθ+y/2b} y → + ∞

Uk = Λk
bU0, Vk = Ωk

bV0
U0 = Ωk

bU0, V0 = Λk
bV0
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Fundamental Ingredients



• Fundamental object Q-function=Wronskian of decaying solutions                                    




• Thanks to the  and then  symmetries        
 




• That is CONNEXION COEFFICIENT   Stokes MONODROMY:  or 


• Wronskian of both sides: QQ-system 

Q(θ, P2) = W[U0, V0]

Λb Ωb

iV0(y) = Q(θ + iπp)U0(y) − Q(θ)U1(y)
iV1(y) = Q(θ + iπ)U0(y) − Q(θ + iπ(1 − p))U1(y)

Q(θ) → T(θ) Y(θ)

1 = Q(θ + iπ)Q(θ) − Q(θ + iπ(1 − p))Q(θ + iπp)
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T(θ, P2) = − iW[U1, U−1] = Q(θ − iπp)Q(θ + iπ) − Q(θ + iπ(1 − 2p))Q(θ + iπp), T̃(θ, P2) = iW[V1, V−1] = T(b → 1/b)

for AdS/CFT: Quantum Spectral Curve



The return of the Y-system
Q is the most basic object which generates all the integrability 
structures from the QQ-system: e.g. the Y-system upon 
composition  




The same as Sinh-Gordon! Same solution Y?


The Y-system inversion is not unique: take the log and invert 
the shift operator, but ZERO MODES 

 

Y(θ) = Q(θ + iπa/2)Q(θ − iπa/2)
Y(θ + iπ/2)Y(θ − iπ/2) = (1 + Y(θ + iaπ/2))(1 + Y(θ − iaπ/2))

s * l = l(θ + iπ/2) + l(θ − iπ/2) ⇒ s−1 ∼
1

cosh
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Liouville Field theory

TBA equation has only one exponent: 




Thanks to this (kink form), finite size scaling 
can be computed exactly and gives 

   

ε(θ) =
8 π3 q

Γ( b
2q )Γ( 1

2bq )
eθ−∫

∞

−∞ [ 1
cosh(θ − θ′￼+ iaπ/2)

+
1

cosh(θ − θ′￼− iaπ/2) ] ln [1 + e−ε(θ′￼)] dθ′￼

2π

c = 1 + 6(b + b−1)2 Δ = (c − 1)/24 − P2
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NO: massless limit m ∼ 0,θ ∼ + ∞ ⇒ m cosh θ ∼ eθ



T, Q and N=2 gauge periods

The same equation of Liouville at the self-
dual point  

upon gauge/integrability change of variable 

b = 1

{−
d2

dy2
+ 2e2θ cosh y + P2}ψ(y) = 0

ℏ
Λ

= e−θ ,
u

Λ2
=

P2

2e2θ

z = − iy − π
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New integrability/gauge Correspondence: identification 

 

The fundamental relation of the theory: QQ-SYSTEM  

 

From the gauge Y-system the  gauge TBA eqs. 

T(ℏ, u, Λ) ≡ T(θ, P2) = iW[V1, V−1] = 2 cos {2πa(ℏ, u, Λ)}

6 Functional relations, gauge TBA and Z2 symmetry

As we have a gauge interpretation (5.5) and (5.13) of the self-dual Liouville integrability Baxter’s T and Q functions,
respectively, we can search for a gauge interpretation of the integrability functional relations (the QQ system, the
TQ relation, the periodicity relation, cf. Section 3 with b = 1). First, we write the QQ relation (3.9) at b = 1, and
then the same in the gauge variables (5.4)

1+Q
2(✓, P 2) = Q(✓� i⇡/2, P 2)Q(✓+ i⇡/2, P 2) , 1+Q

2(✓, u) = Q(✓� i⇡/2,�u)Q(✓+ i⇡/2,�u) , (6.1)

where we have considered that ✓ ! ✓ ⌥ i⇡/2 means u ! �u (as P 2 is fixed). The latter equation, the gauge QQ

system, has been verified by using the expansion (5.15) in several complex regions of u, in particular in the circle
|u| < ⇤2. In the present case it is a ’square root’ of the Y system and then gives us the gauge TBA equations. In
fact, we can take the logarithm of both members and invert to obtain an explicit expression for lnQ(✓, u). As usual,
this inversion possesses zero-modes and so does not fix completely the forcing term. For it we need to consider the
asymptotic expansion (5.15) as Re ✓ ! +1, lnQ(✓, u) ' 2⇡ia(0)D (u,⇤)e✓/⇤. In this way we find a TBA integral
equation for the deformed dual period �2 lnQ(✓, u) = "(✓, u) = �4⇡iaD(}(✓), u) and then we close the system
by writing the same for modulus u ! �u

"(✓, u,⇤) = �4⇡ia(0)D (u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0,�u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡

"(✓,�u,⇤) = �4⇡ia(0)D (�u,⇤)
e
✓

⇤
� 2

Z 1

�1

ln [1 + exp{�"(✓0, u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡
.

(6.2)

In contrast with Liouville TBA (where was no P ), the forcing terms have non-trivial u-dependences, the SW periods
indeed, which can be interpreted (as in [23]) as the mass of a BPS state of a monopole and dyon (via Bilal-Ferrari
[15] formulæ, i.e. (6.7) for n = 0), respectively. Actually, the quantum period

2⇡iaD(}(✓),�u,⇤) = 2⇡ia(0)D (�u,⇤)
e
✓

⇤
+

Z 1

�1

ln [1 + exp {4⇡iaD(}(✓0), u,⇤)}]
cosh (✓ � ✓0)

d✓
0

2⇡
. (6.3)

can take the place of the first period a(}, u) (linked to T in any case) as the latter can be expressed in terms of
the former two via (6.5). From the large ✓ asymptotic expansion of the integral part, we find all the quantum dual
periods modes (m � 1), as well

2⇡i a(m)
D (u,⇤) = �⇤1�2m(�1)m

Z 1

�1
e
✓0(2m�1) ln

h
1 + exp{�"(✓0,�u,⇤))}

i
d✓

0

⇡
. (6.4)

By solving with numerical iterations the two coupled equations of gauge TBA (6.2), we tested these expressions
with the analytic WKB recursive periods (2.13, 2.14) for a region of the complex plane slightly larger than |u| < ⇤2.
The u = 0 unique equation from (6.2) was conjectured numerically in [28].

Consider now the TQ relation (3.11) at b = 1, which we also write in the gauge variables (5.4)

T (✓, P 2) =
Q(✓ � i⇡/2, P 2) +Q(✓ + i⇡/2, P 2)

Q(✓, P 2)
, T (✓, u) =

Q(✓ � i⇡/2,�u) +Q(✓ + i⇡/2,�u)

Q(✓, u)
(6.5)

For the asymptotic } ! 0 analysis of the latter relation, we keep only the dominant exponents (fixed by SW order
(5.17))

exp
n
� sgn (Im u)2⇡i

1X

n=0

e
✓(1�2n)

a
(n)(+u)

o
.
= exp

n
�2⇡

1X

n=0

e
✓(1�2n)

h
sgn (Im u)(�1)na(n)D (�u)+ia

(n)
D (u)

io
.

(6.6)
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o
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sgn (Im u)(�1)na(n)D (�u)+ia

(n)
D (u)

io
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dyon, i.e. strong coupling spectrum 

integrability gauge

integrability transfer matrix gauge period, Floquet exponent

Q(ℏ, u, Λ) ≡ Q(θ, P2) = exp{2πiaD(ℏ, u, Λ)}

monopole

integrability Q-function dual gauge period

20

⟺

⟺
Unique 

integrability TBA 
eq. above



Quantum integrability tells more: e.g. T weak 
coupling spectrum (  electric period), inside TQ-
system ( )  

+periodicity, gauge interpretation: quantum 
Bilal-Ferrari relations. In fact T and Q are 
g e n e r a t i n g f u n c t i o n s 
(asymptotic expansion) of for Conserved 
Charges and Quantum Periods (zero 
order=Seiberg-Witten). Opposite to instanton 
expansion  (other charges).

→
a

a/ℏ → a , aD/ℏ → aD

ℏ/Λ = e−θ → 0

Λ/ℏ = eθ → 0

T(θ)Q(θ) = Q(θ − iπ/2) + Q(θ + iπ/2)
2 cos {2πa} exp{2πiaD}
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ODE/IN Correspondence
Prepotential  from Nekrasov 
Partition via Young diagrams in instanton series (AGT correspondence) 


INstanton coupling constant  expansion  

Dual instanton period/prepotential  appears in the Q-function


A way to see this: solution of the QQ-system equivalent to 
 (check the asymptotic ), 

functional equation solved by prepotential!   

ℱ = pert . (1 − loop) + (INstantons)

Λ/ℏ = eθ

AD = ∂ℱ/∂a

AD(θ + iπ/2) = AD(θ) + 2πia θ → ± ∞

22

Q(a, Λ/ℏ) = i
sinh AD

sinh 2πia
ODE/INstanton correspondence:

SW geometry

simplest 
formula of 
this kind  
Heun eq.∀



Unveiling Prepotential in ODE/IN
Deeper understanding: prepotential i.e. SW geometry inside 
Floquet basis, +: 


behaves at  as


and acquires a scattering phase at 


It can be proven via 


y → − ∞

y → + ∞

φ (θ +
iπ
2

, P) = φ(θ, P) − 2πia

23

ψ+(y; a) ≃ (const.)(e
y
4e2eθe− y

2)

ψ+(y + 2πi; a) = e+2πiaψ+(y; a)

ψ+(y; a) ≃ (const.) eφ e− y
4 e2eθe

y
2

AD = φ ⇒ ℱ = ℱ(Λ/ℏ, a/ℏ)
AD = ∂ℱ/∂a

DF, Rossi



Explicit exact expression for : an alternative computation to and of instantons, at all 

orders small  (and beyond, e.g. large instanton coupling )


Since , not so easy as  


LESSON from gauge dual period : better expand 

 two different intervals of validity!


Check: , but ours partially re-summed (product of instanton couplings only) 

φ
Λ
ℏ

= eθ, θ → − ∞ θ → + ∞

φ(θ, P) = ∫
+∞

−∞
dy′￼(Π+(y′￼) − reg . ) 2πia = ∫

2iπ

0
dy′￼Π+(y′￼)

φ = − 4aθ +
+∞

∑
n=0

cne4nθ

Π+(y ∓ 2θ) =
+∞

∑
n=0

Π(n)
≷ (y; P)e4nθ, y ≷ ± 2θ

ψ+ = Zquiver

24

non-compact: kink method: y → y ± 2θ

…Bianchi,Fucito,Morales; 
Bonelli,Iossa,Tanzini, …..

quantum momentum=
d ln ψ+

dy′￼
→



Decaying vs. Floquet sols.
The quasi periodic Floquet solutions are the novelty in ODE/IN correspondence w.r.t. 
decaying ones of ODE/IM.


Change of basis (simple idea: cancel the dominant divergence): 

 

General formulae: same form Heun-like (H and confluences) eqs.


All  INGREDIENTS:  computed


Why and where Floquet approximation ,  non-perturbative


Here 

V0(y) =
2e

θ
2

W[ψ+, ψ−] [e− φ
2 ψ−(y) − e

φ
2 ψ+(y)] ,

U0(y) =
2e

θ
2

W[ψ+, ψ−] [e− φ
2 ψ+(y) − e

φ
2 ψ−(y)] ⟹ Q(a, θ) = − 4eθ sinh φ(a, θ)

W[ψ+, ψ−]
∀

V0, U0 W[ψ+, ψ−], φ, Π± = d /dy[ln ψ±(y)]

U0(y) ≃ Cψ−(y) +e−φ ∼ eaθ

W[ψ+, ψ−] = − 4eθ sin 2πa ⟹ Q(a, Λ /ℏ) =
sinh φ

sinh 2πia
, Λ /ℏ = eθ
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Perturbation of BH (simplified): 
scalar perturbation D3 stack brane

Upon radial-angular separation of Black Hole wave-form  

Change of variables                                             

to bring it into the integrability form     

ODE/IM basis reproduce gravitational BH boundary conditions. 
 

r = Me− y
2 ωM = 2ieθ P =

1
2

(l + 2)

ϕ = e
y
4ψ

U0(r) ∼ eiωL2/r, r → 0 (y → + ∞) ; V0(y) ∼ eiωr, r → + ∞ (y → − ∞)

26

d2ϕ
dr2

+ ω2 (1 +
M4

r4 ) −
(l + 2)2 − 1

4

r2
ϕ = 0

−
d2

dy2
ψ + [e2θ(ey + e−y) + P2] ψ = 0

BH frequency

up: outgoing at r = ∞in: ingoing at horizon r = 0

radial Regge-Wheeler eq.

Regge-Wheeler, Teukolsky, Zerilli,…..



Extensions to realistic cases
Intersection of four stacks of D3 branes (extremal Kerr BH; equal 

charges: extremal Reissner-Nöstrom BH) 

which becomes in integrability form confluent Heun  eq 

fully new forms of Y-systems and TBA equations 

confluent Heun Schwarzshild, Kerr both radial and angular


 Heun eq. AdS BH ( ): Heun and all confluences. 
Quiver gauge theories…..

Nf = 2 →

Nf = 3 →

Nf = 4 → Nf = 4
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d2ϕ
dr2

+ −
(l + 1

2 )2 − 1
4

r2
+ ω2

4

∑
k=0

Σk

rk
ϕ = 0

−
d2

dy2
ψ + [e2θ(e2y + e−2y) + 2eθ(M1ey + M2e−y) + P2] ψ = 0

Regge-Wheeler, Teukolsky

Regge-Wheeler, Teukolsky,….

Approach by gauge instantons: Atsuda,Grassi,Hatsuda;Bianchi,Di Russo,Fucito, 
Morales,Russo,Poghossian;Arnaudo,Bonelli,Iossa,Tanzini,……  



Quasinormal modes=Bethe roots

Imposing the BH boundary conditions on 

Proper eigen-frequencies of the back hole

28

iV0(y) = Q(θ + iπ/2)U0(y) − Q(θ)U1(y)

Q(θn) = 0



• Integrability Thermodynamic Bethe Ansatz equation 

• Sort of solution up to quadratures. Important: Q is the full spectral 
determinant (Bethe roots=QNMs are only the zeroes).


ODE/IM fundamental Wronskian  is the 
same as the gravitational PDE solution more info (wave-
function, space-time solution, etc.): applications to 

Q(θ, P2) = W[U0, V0]
⇒

29

ln Q(θ) = −
8 π3

Γ2( 1
4 )

eθ + ∫
∞

−∞

ln [1 + Q2(θ′￼)]
cosh(θ − θ′￼)

dθ′￼

2π

BH and Gravitational waves?



Conclusions and some 
perspectives

Painlevé/gauge (NS) theory correspondence Floquet. 

Many exact results for gauge SU(2) theories with matter. 

Thorough application to BH physics and Cosmology ? 

Gauge prepotential ’solves’ particular ODE/IM: what about 
general ODE/IM? Integrabilty community is unsatisfied……


Extension to more complicated higher rank gauge theories (by now 
only pure SU(3)). 

NS limit  ODE/IM description:  quantum 
ODE/IM? q-TBA? Similarly about classical string in N=4 SYM for 
null-polygonal Wls.


Mathieu ODE is level 2 null vector equation, but our Liouville field 
theory is not AGT: meaning of ?

→

ϵ1 = ℏ, ϵ2 = 0 → ϵ2 ≠ 0

b ≠ 1
30



Thank you!


