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e 7 Is not fixed a priori but determined dynamically, e.g., by semi-classical
gravitational path-integral [Lewkowycz, Maldacena; "13]

Look “under the hood” of this mechanism...
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Area as state counting
a la horizon
microstate counting

Minimization Inverse coupling (instead of UV cutoff
Consequence of diffeomorphism
invariance, subject to some Appearance ot low-energy

gauge-invariant condition effective field theory
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 Emergent spaces in the quantum mechanics of large-N matrices

[Gross, Miljkovic; Brezin et. al; [Banks, Fischler, Shenker, Stanford: ’97] [Berenstein, Maldacena, Nastase; '98]

Ginsparg, Zinn-Justin; "90] (BFSS) (BMN)
(c=1 matrix model)

X% NxN matrices

These models describe dynamics of emergent D-brane world-volumes...

e Xaeigenvalues = locations of O-branes in d-dim ambient space.
-‘Non-commutativity = open strings stretching between branes.
-Can coalesce into extended membranes. jvyers; 99

Not (necessarily) quantum gravity or holography.
Regardless, interesting, tractable, models displaying similar key features



An example: the “fuzzy sphere” state



An example: the “fuzzy sphere” state

{Xa}a:172’3 V(X) _ Tr (VXCL _I_ ieabC[Xb, XC])2

» Configurations minimizing the potential satisfy SU(2) commutation relations.



An example: the “fuzzy sphere” state

{Xa}a:172’3 V(X) _ Tr (VXa _I_ ieabC[Xb, XC])2

» Configurations minimizing the potential satisfy SU(2) commutation relations.

» Ui (X) is sharply peaked on {X} = N - dim irrep of SU(2)

2

> (Xa)’ = = N(N - 1)

Qa



An example: the “fuzzy sphere” state
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» Configurations minimizing the potential satisfy SU(2) commutation relations.

» Ui (X) is sharply peaked on {X} = N - dim irrep of SU(2)

2

> (Xa)’ = = N(N - 1)

Qa

vIN

 Non-commutative sphere of radius N
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The goal: VPD-invariant entanglement entropies
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The result:

Area as state counting

Dimension of “edge modes” under
gauge transformations acting at the
edge of the subsystem

Minimization ~ Inverse coupling (instead of UV cutoff)

Saddle-point in average over Area is regulated by N, and is
VPDs that change the subsystem  rgplaced by coupling of NC field

theory describing low-energy  gyax =
dynamics of the brane

A7
Nuv3
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Gauge invariant entanglement

» Partition of matrix entries «— subregion of the emergent geometry.

* U(N) mixes matrix blocks «— VPDs mix subregions

 Gauge-invariant question:

' what is the entropy of any what is the entropy of any '
| MxM matrix block? | region of fixed volume? ,
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 Start with a gauge-fixed state |iqf) € Hext and average over gauge orbit
o) = | dgi(g)lu) = [ vy,
U(N) F

 |Yv) is invariant under U(M) acting on a MxM block in basis transformed by V.

» U(M)xU(N — M) :similar to story in lattice gauge thy

 Maximally entangled edge modes in irreps s of UM).

[ :no analogue in local gauge theory

|V € I leads to different subsystems being traced out.
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 UM) invariance —% for any physical reduced density matrix

Pin ~ @pug_ﬂ
L H

——
reps of U(M)

* Quantum variance of U(M) Casimir — dominating irrep, p*, with pu+ =~ 1

and an exponentially large dimension d ;-

 Read off this dimension from the Casimir: (1)|Cal|v))

Under Moyal map, each row length is proportional to the r :;
area of a separate component of the entangling surface

N>
logd,+» ~ Z€ log Z 0% ()| log (|8Z(T)|>
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 Haar averaged integrals ~——————1 establish dominance of saddle

Trp&fv/
F

X exp ((1 —n) m‘;n log du@)

saddle point

| | ‘
" S — 1 d x 1 oy N
/i o m‘}n 05 Sy H%in gMax 08 (gM ‘ 0. |
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Recap

“Geometry from entanglement” in matrix quantum mechanics.
Gauge-invariant entanglement — invariance under VPDs

When gauge orbit admits a saddle-point, results in a minimal area formula

Outlook

Revisit replica symmetry: accurate for n~1, but RS breaking important for
Renyis

Incorporating Lorentz /| SUSY: MQMs relevant for flat-space supergravity,
e.qg. BFSS, BMIN

Towards an RT formula outside of holography: gauge fixing to more
abstract features than a boundary. QRFs.



Thank you for your attention.
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Fine print on the saddle point

/\ G_In (saddle)

n — 1., (saddle — 1, (typical
Trpin ~ Zl—lOOp6 ( ) T € (typ ) 1—Hlocp
W =5

® Establishing the existence + dominance of a saddle point.

 the value of I,,(saddle) itself and that it is @ minimum
» Z1.100p : the order of fluctuations about the saddle point

o [,,(typical): value of logd w:, for a typical configuration 4

~ Haar averaged
integrals

Can be checked, e.q. in the fuzzy sphere state



/\ G_In (saddle)

more serious fine print...

n — 1., (saddle — 1, (typical
Trpin ~ Zl-lOOp6 ( ) _I_ € ( or ) 1_H10Cp
\/\ﬂ\,ﬂ/\/\]VMN\, e—In (typical)

 U(N) is much larger than smooth continuum VPDs.

e [ contains many elements that act non-geometrically (send 3 to fractal
and/or fragmented Planck-sized regions)

e [hese non-geometric maps proliferate and wash out the saddle-point

We find it necessary to “coarse-grain” the integral over F to elements that
act geometrically on )

Does not seem special to matrix character of the problem... may be generic
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Return to the factorization map

/ v / U / A0 #(UTV)|thes)
U (M) U (N— M)

* |Integrals over UM), UN-M) — reduced state at any V is indistinguishable
against VPDs preserving a subregion.

* Integral over F — different reduced states that are distinguishable for
different V’s.

* The reduced state of a low-energy observer in any sector should not be
orthogonal to one related by a Planck-sized diffeo —# remove from integral.

In practicality: integrate over a quotient of F

o Still large enough to account for geometric VPDs as N — oo, but
suppressed enough that the geometric area dominates as a saddle.



E.qg. in the fuzzy sphere state:

e A “low-tech” solution...

F=U(N')/(UM') 2 UN' = M) N'=Njp M =M/p

« By comparing I, (saddle) to Z;,,., andtol, (typical) we find a range of p
such that the minimal area dominates.

N34 «p< N



