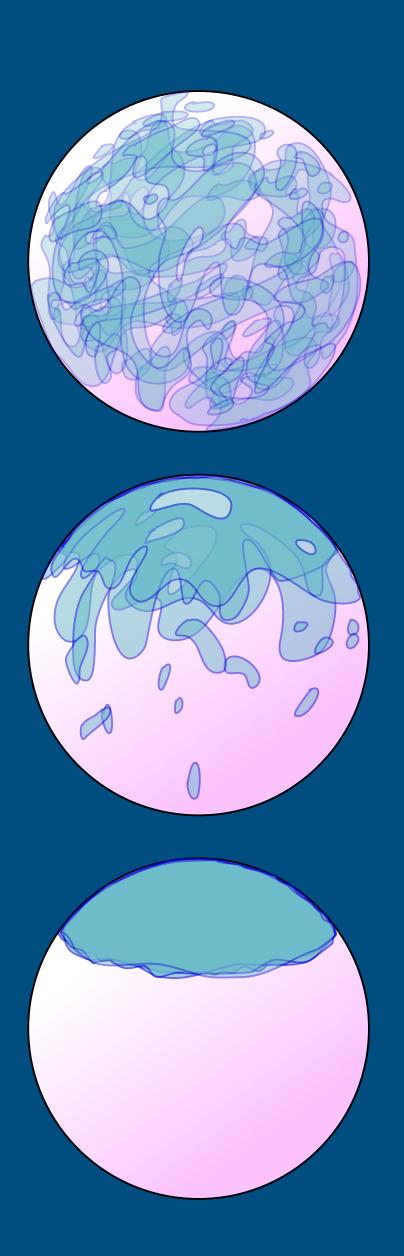


Minimal areas from entangled matrices

2408.05274

w/ Alex Frenkel, Sean Hartnoll, and Ronak Soni

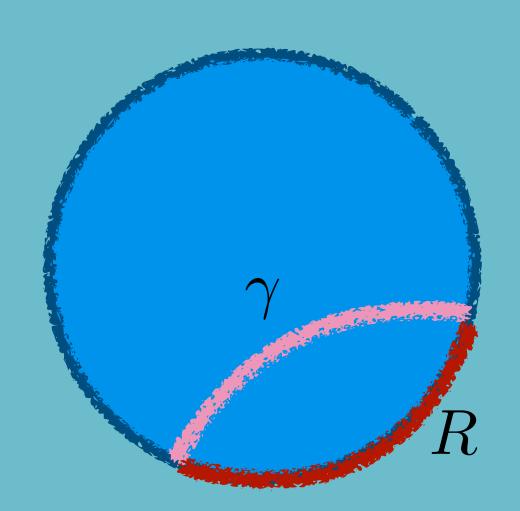


- Bekenstein-Hawking: [Bekenstein; '73] [Hawking; '75]
 - Black holes are thermodynamic with an entropy ~ horizon area.

- Bekenstein-Hawking: [Bekenstein; '73] [Hawking; '75]
 - Black holes are thermodynamic with an entropy ~ horizon area.
- AdS/CFT + Ryu-Takayanagi formula: [Ryu, Takayanagi; '06]...

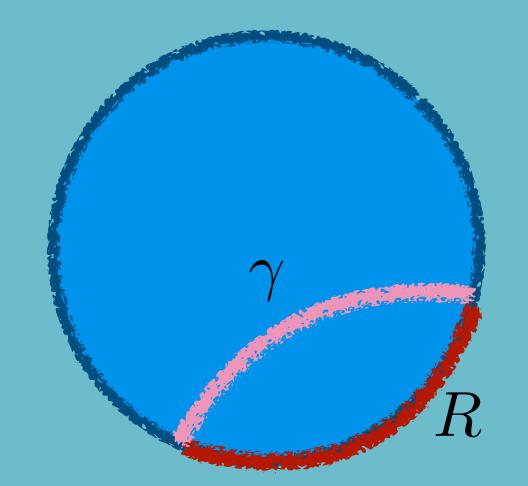
- Bekenstein-Hawking: [Bekenstein; '73] [Hawking; '75]
 - Black holes are thermodynamic with an entropy ~ horizon area.
- AdS/CFT + Ryu-Takayanagi formula: [Ryu, Takayanagi; '06]...
- Microscopic (CFT) entanglement --> geometry in the bulk

$$S_{EE} = \min_{\gamma} \frac{\text{Area}(\gamma)}{4G_N} + \dots$$



- Bekenstein-Hawking: [Bekenstein; '73] [Hawking; '75]
 - Black holes are thermodynamic with an entropy ~ horizon area.
- AdS/CFT + Ryu-Takayanagi formula: [Ryu, Takayanagi; '06]...
- Microscopic (CFT) entanglement --> geometry in the bulk

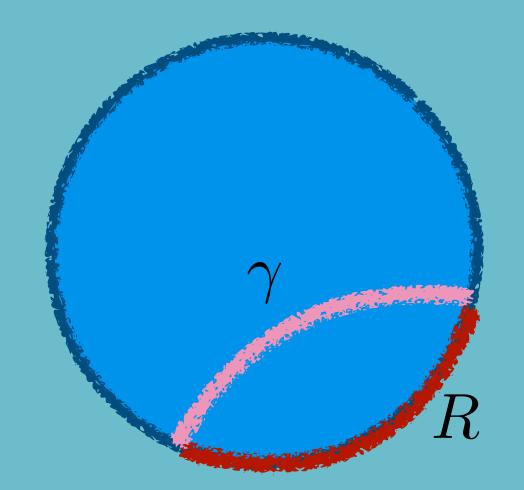
$$S_{EE} = \min_{\gamma} \frac{\text{Area}(\gamma)}{4G_N} + \dots$$



• γ is not fixed a priori but determined dynamically, e.g., by semi-classical gravitational path-integral [Lewkowycz, Maldacena; '13]

- Bekenstein-Hawking: [Bekenstein; '73] [Hawking; '75]
 - Black holes are thermodynamic with an entropy ~ horizon area.
- AdS/CFT + Ryu-Takayanagi formula: [Ryu, Takayanagi; '06]...
- Microscopic (CFT) entanglement --> geometry in the bulk

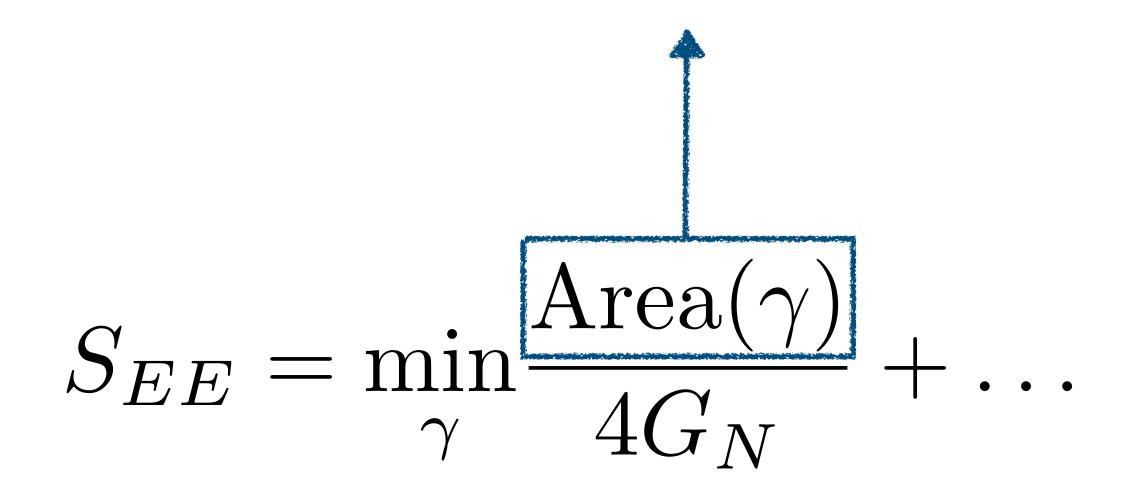
$$S_{EE} = \min_{\gamma} \frac{\text{Area}(\gamma)}{4G_N} + \dots$$

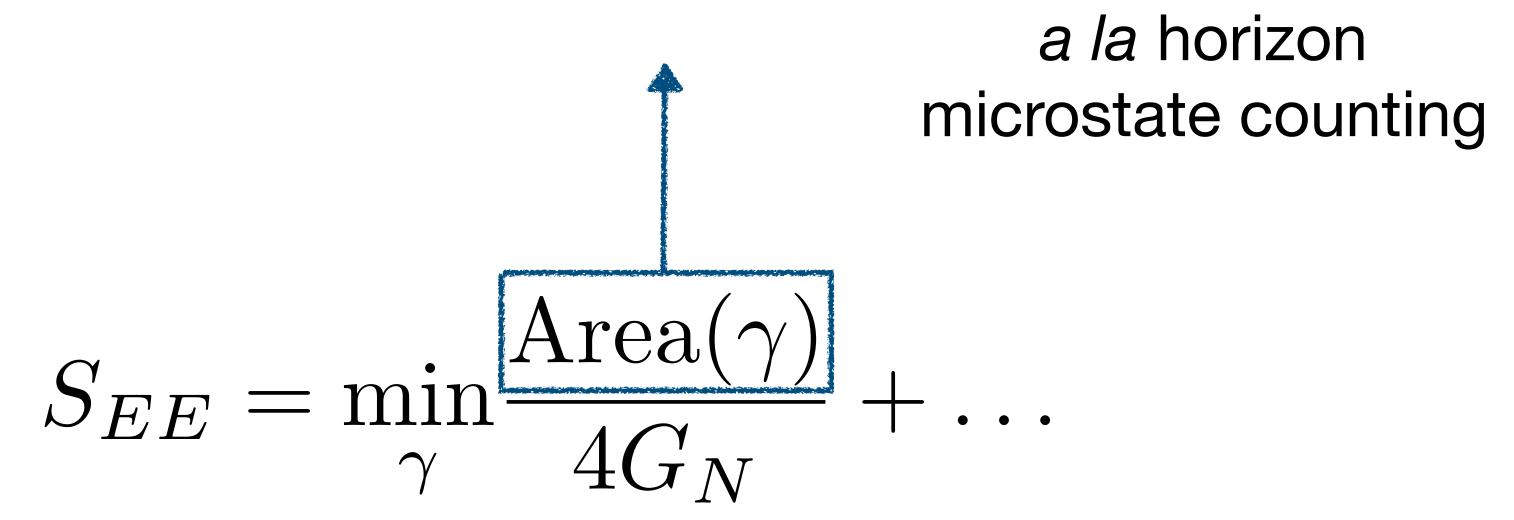


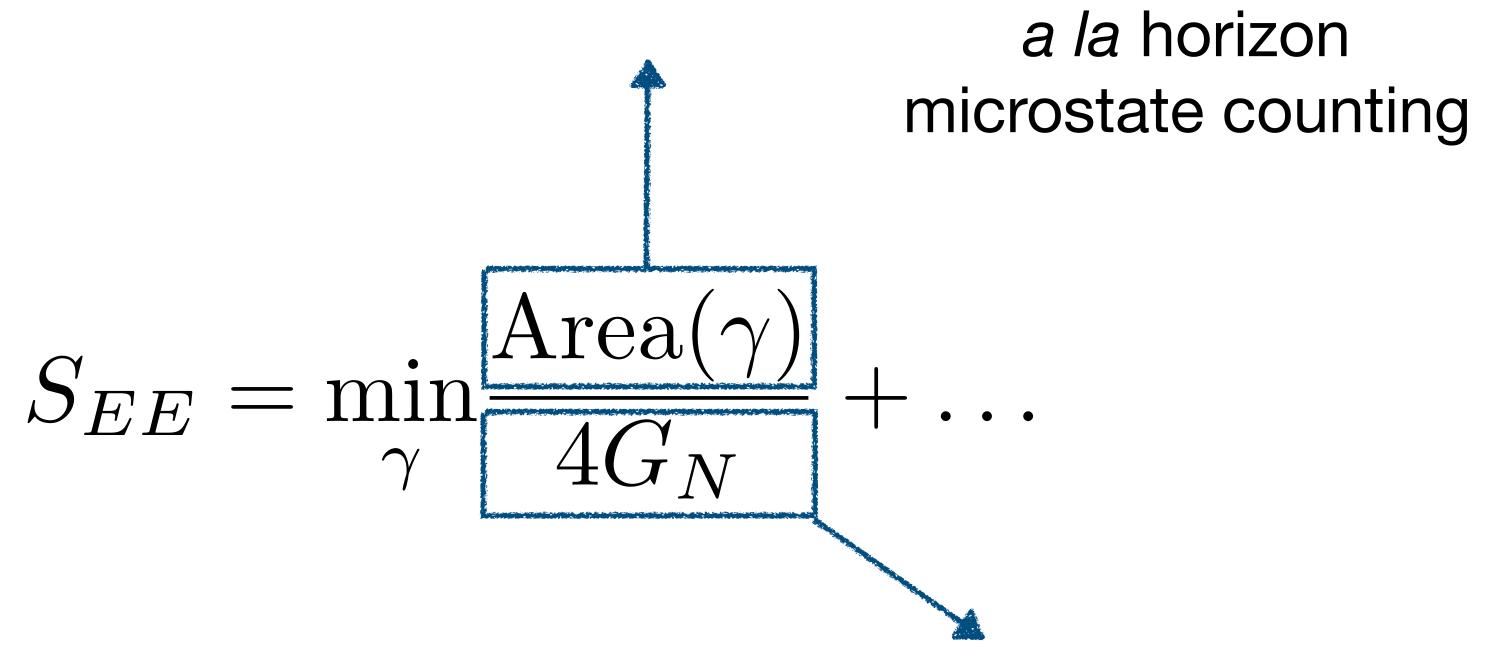
• γ is not fixed a priori but determined dynamically, e.g., by semi-classical gravitational path-integral [Lewkowycz, Maldacena; '13]

Look "under the hood" of this mechanism...

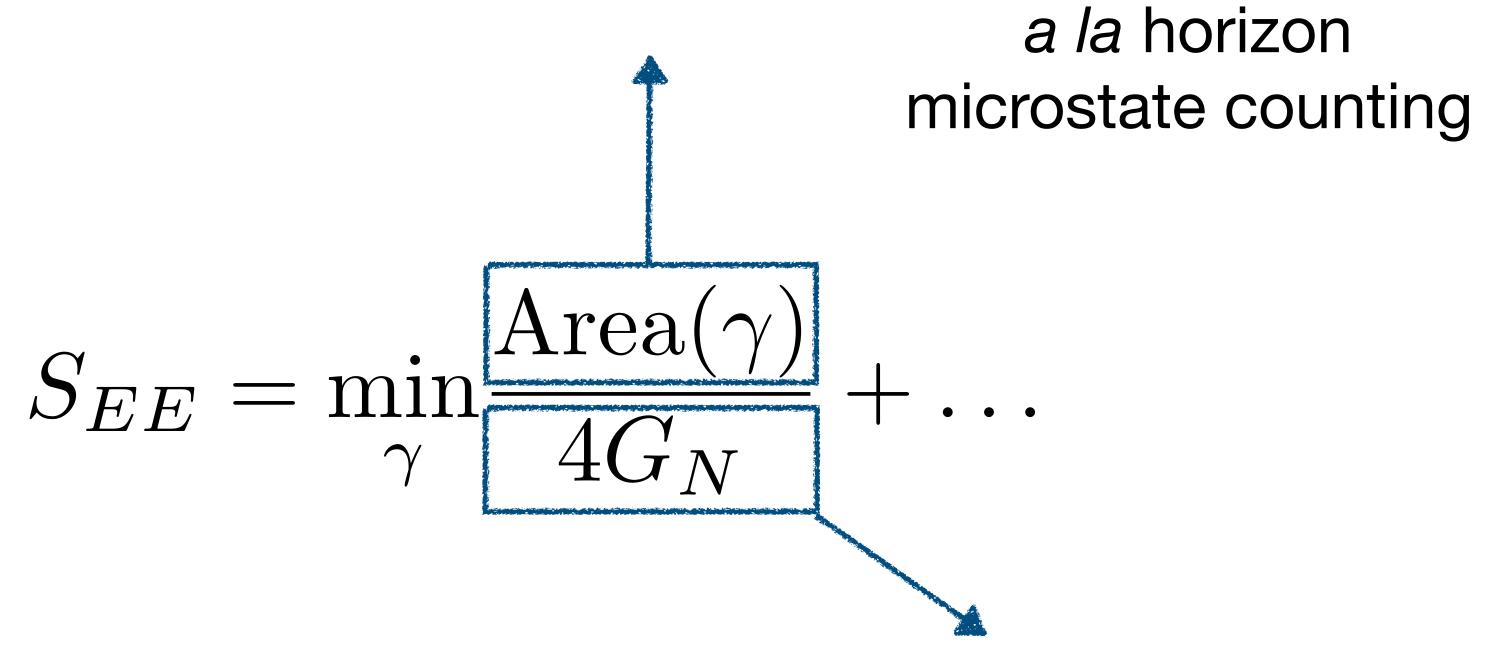
$$S_{EE} = \min_{\gamma} \frac{\text{Area}(\gamma)}{4G_N} + \dots$$





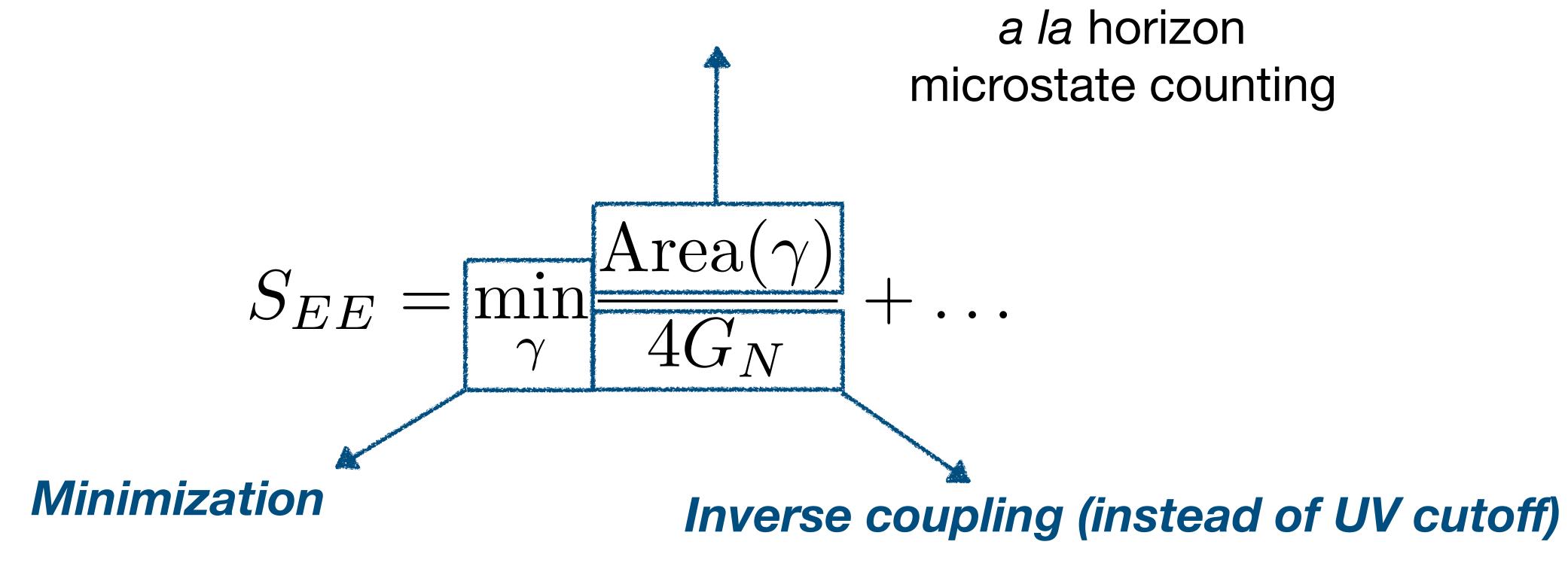


Inverse coupling (instead of UV cutoff)

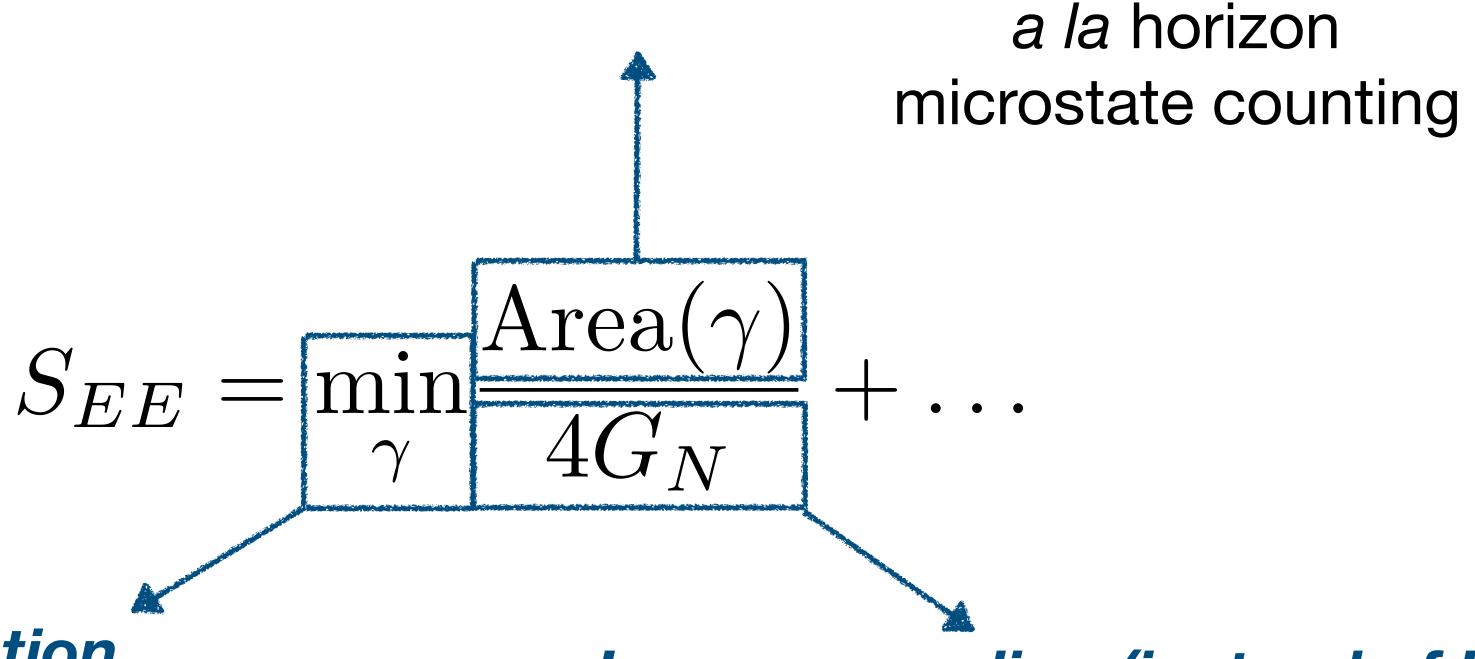


Inverse coupling (instead of UV cutoff)

Appearance of low-energy effective field theory



Appearance of low-energy effective field theory



Minimization

Consequence of diffeomorphism invariance, subject to some gauge-invariant condition

Inverse coupling (instead of UV cutoff)

Appearance of low-energy effective field theory

Emergent spaces in the quantum mechanics of large-N matrices

[Gross, Miljkovic; Brezin et. al; Ginsparg, Zinn-Justin; '90] (c=1 matrix model)

[Banks, Fischler, Shenker, Stanford; '97] [Berenstein, Maldacena, Nastase; '98] (BFSS)

(BMN)

Emergent spaces in the quantum mechanics of large-N matrices

[Gross, Miljkovic; Brezin et. al; Ginsparg, Zinn-Justin; '90] (c=1 matrix model)

[Banks, Fischler, Shenker, Stanford; '97] [Berenstein, Maldacena, Nastase; '98] (BFSS)

(BMN)

$$\mathcal{L} = \operatorname{Tr}\left[\sum_{a=1}^d \left(\dot{X}^a\right)^2 + \sum_{a < b} [X^a, X^b]^2 + \ldots\right]$$
 X^a : NxN matrices

These models describe dynamics of emergent D-brane world-volumes...

Emergent spaces in the quantum mechanics of large-N matrices

[Gross, Miljkovic; Brezin et. al; Ginsparg, Zinn-Justin; '90] (c=1 matrix model)

[Banks, Fischler, Shenker, Stanford; '97] [Berenstein, Maldacena, Nastase; '98] (BFSS)

(BMN)

$$\mathcal{L} = ext{Tr}\left[\sum_{a=1}^d \left(\dot{X}^a
ight)^2 + \sum_{a < b} [X^a, X^b]^2 + \ldots
ight] \qquad X^a$$
: NxN matrices

These models describe dynamics of emergent D-brane world-volumes...

- X^a eigenvalues = locations of 0-branes in d-dim ambient space.
 - ·Non-commutativity = open strings stretching between branes.
 - ·Can coalesce into extended membranes. [Myers; '99]

Emergent spaces in the quantum mechanics of large-N matrices

[Gross, Miljkovic; Brezin et. al; Ginsparg, Zinn-Justin; '90] (c=1 matrix model)

[Banks, Fischler, Shenker, Stanford; '97] [Berenstein, Maldacena, Nastase; '98] (BFSS)

(BMN)

$$\mathcal{L} = ext{Tr}\left[\sum_{a=1}^d \left(\dot{X}^a
ight)^2 + \sum_{a < b} [X^a, X^b]^2 + \ldots
ight] \qquad X^a$$
: NxN matrices

These models describe dynamics of emergent D-brane world-volumes...

- X^a eigenvalues = locations of 0-branes in d-dim ambient space.
 - ·Non-commutativity = open strings stretching between branes.
 - ·Can coalesce into extended membranes. [Myers; '99]

Not (necessarily) quantum gravity or holography. Regardless, interesting, tractable, models displaying similar key features

$$\{X^a\}_{a=1,2,3}$$
 $V(X) = \text{Tr}\left(\nu X^a + i\epsilon^{abc}[X^b, X^c]\right)^2$

• Configurations minimizing the potential satisfy SU(2) commutation relations.

$$\{X^a\}_{a=1,2,3}$$
 $V(X) = \text{Tr}\left(\nu X^a + i\epsilon^{abc}[X^b, X^c]\right)^2$

- Configurations minimizing the potential satisfy SU(2) commutation relations.
- $\Psi_{\mathrm{fs}}(X)$ is sharply peaked on $\{X^a_{\mathrm{cl}}\}=N$ dim irrep of SU(2)

$$\sum_{C} (X_{\rm cl})^2 = \frac{\nu^2}{4} N(N-1)$$

$$\{X^a\}_{a=1,2,3}$$
 $V(X) = \text{Tr}\left(\nu X^a + i\epsilon^{abc}[X^b, X^c]\right)^2$

- Configurations minimizing the potential satisfy SU(2) commutation relations.
- $\Psi_{\mathrm{fs}}(X)$ is sharply peaked on $\{X^a_{\mathrm{cl}}\}=N$ dim irrep of SU(2)

$$\sum_{\alpha} (X_{\rm cl})^2 = \frac{\nu^2}{4} N(N-1)$$

• Non-commutative sphere of radius $\frac{\nu N}{2}$

• The matrix models of interest have a *U(N)* symmetry that we will gauge.

$$X^a o U \, X^a \, U^\dagger$$
 generated by $G = 2i \sum_a : [X^a, \Pi^a]:$

• The matrix models of interest have a *U(N)* symmetry that we will gauge.

$$X^a o U \, X^a \, U^\dagger$$
 generated by $G = 2i \sum_{G} : [X^a, \Pi^a] :$

- At large N acts on membrane theory as volume preserving diffeomorphisms.
 - Moyal map: the trace integral over non-commutative functions.

$$\operatorname{Tr} \hat{F}[X_{\operatorname{cl}}^a] \stackrel{N \to \infty}{\to} \int d\Omega \, f_*(x^a)$$

• The matrix models of interest have a *U(N)* symmetry that we will gauge.

$$X^a o U \, X^a \, U^\dagger$$
 generated by $G = 2i \sum_{G} : [X^a, \Pi^a] :$

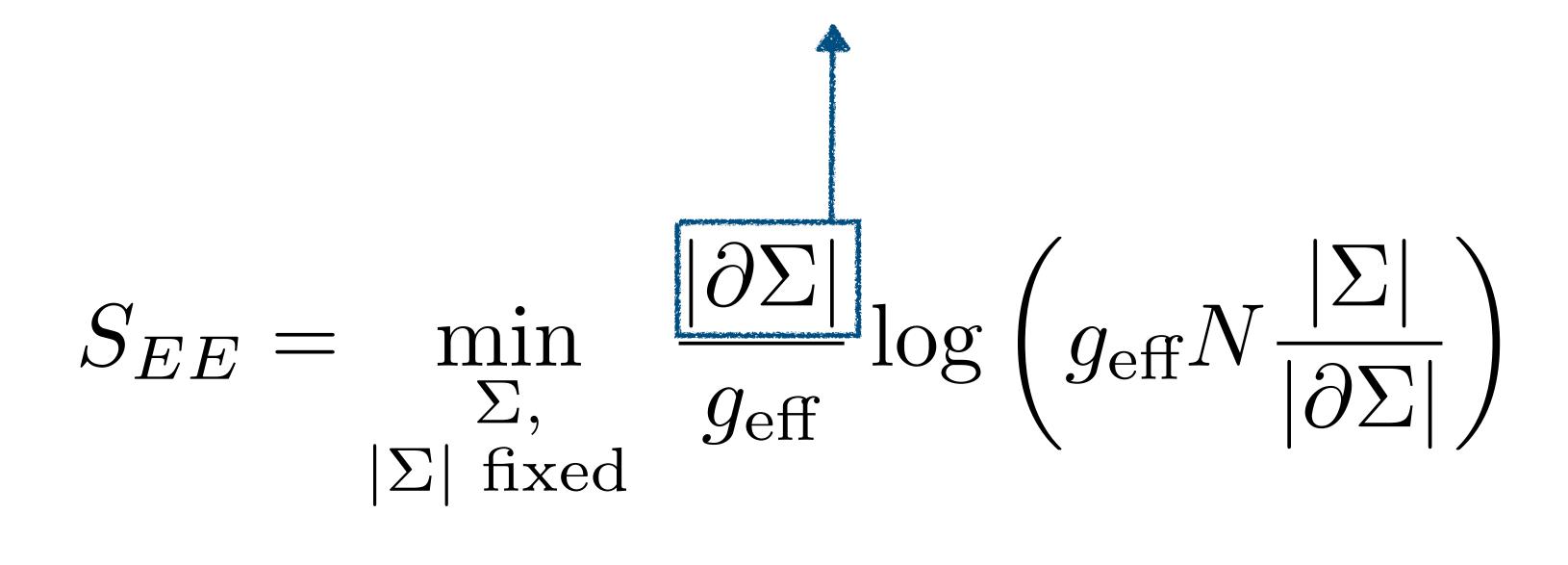
- At large N acts on membrane theory as volume preserving diffeomorphisms.
 - Moyal map: the trace integral over non-commutative functions.

$$\operatorname{Tr} \hat{F}[X_{\operatorname{cl}}^a] \stackrel{N \to \infty}{\to} \int d\Omega \, f_*(x^a)$$

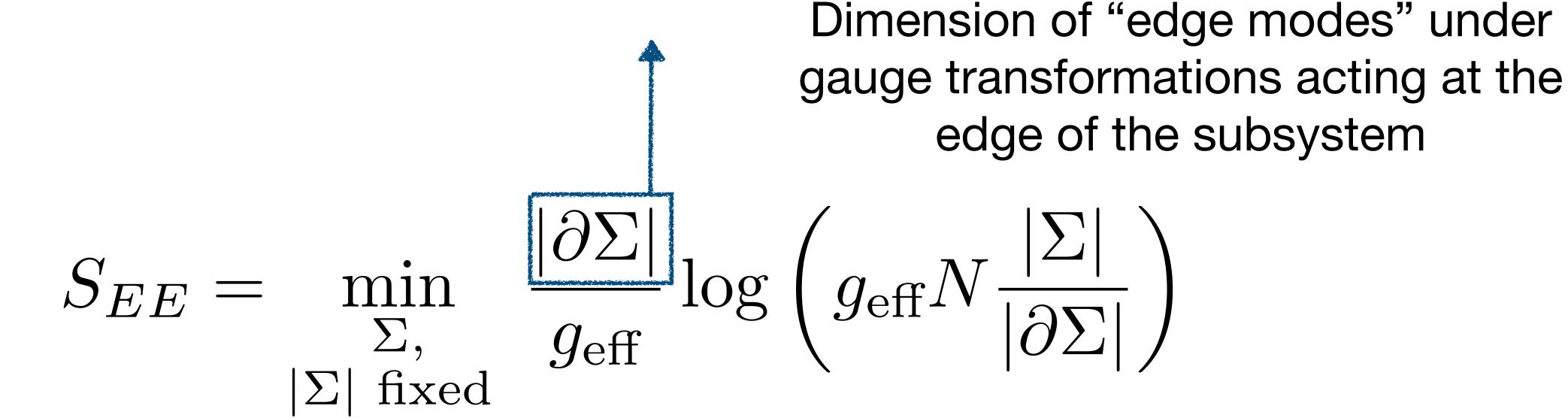
The goal: VPD-invariant entanglement entropies

$$S_{EE} = \min_{\substack{\Sigma, \\ |\Sigma| \text{ fixed}}} \frac{|\partial \Sigma|}{g_{\text{eff}}} \log \left(g_{\text{eff}} N \frac{|\Sigma|}{|\partial \Sigma|} \right)$$

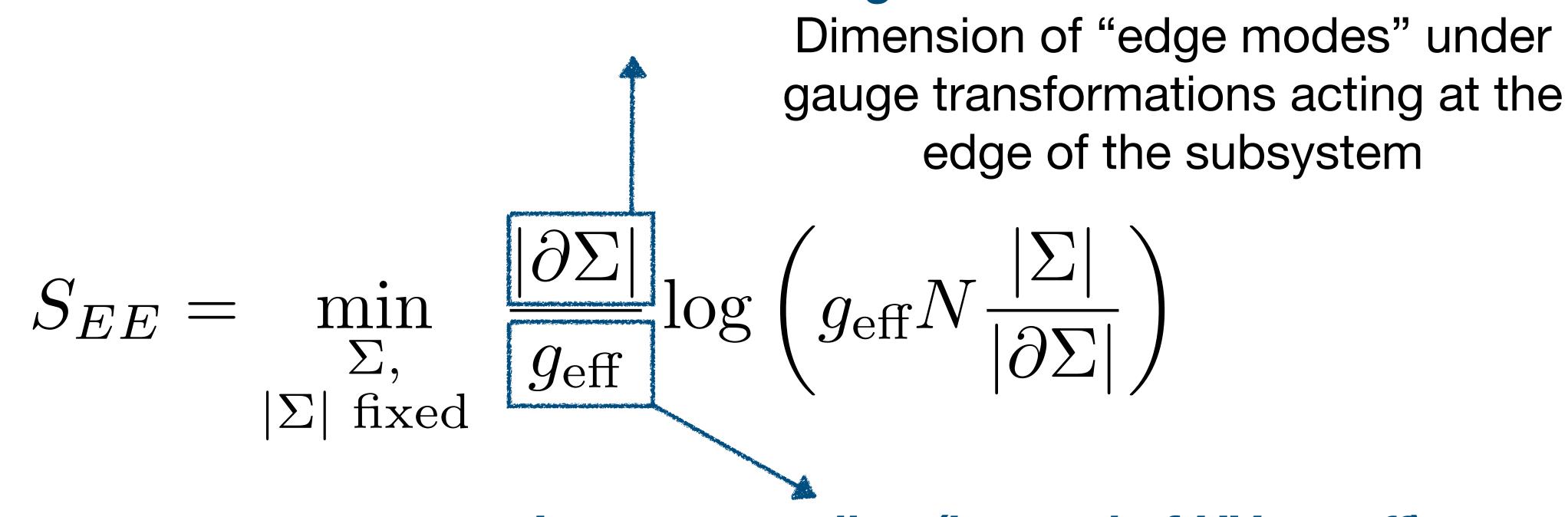
Area as state counting



Area as state counting

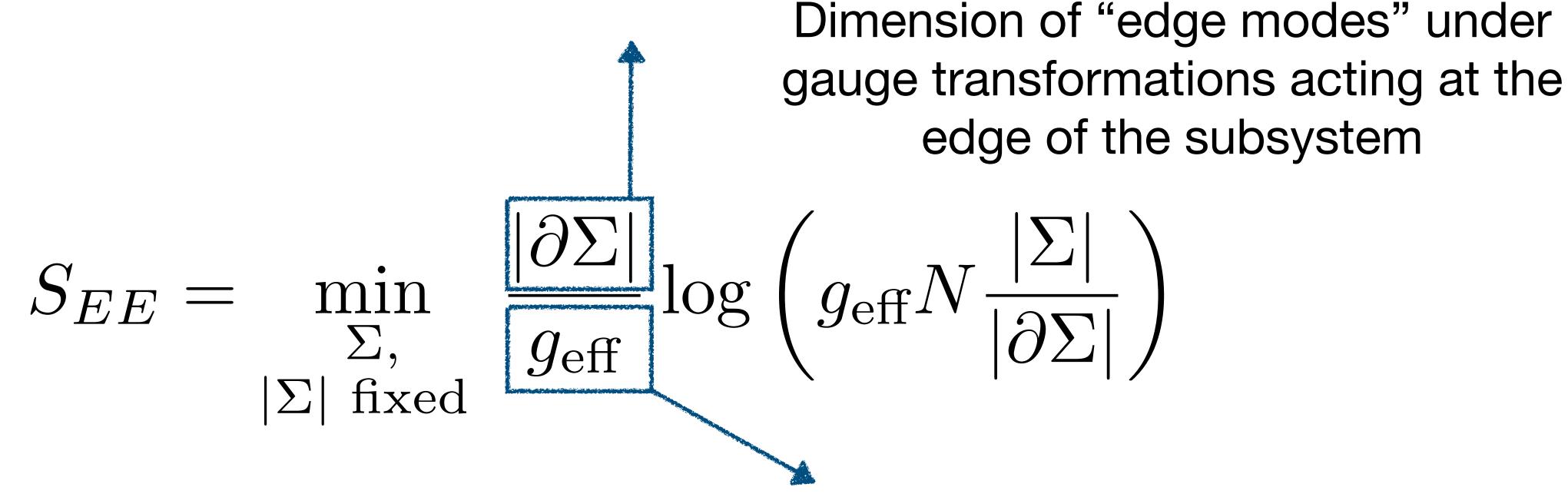


Area as state counting



Inverse coupling (instead of UV cutoff)

Area as state counting

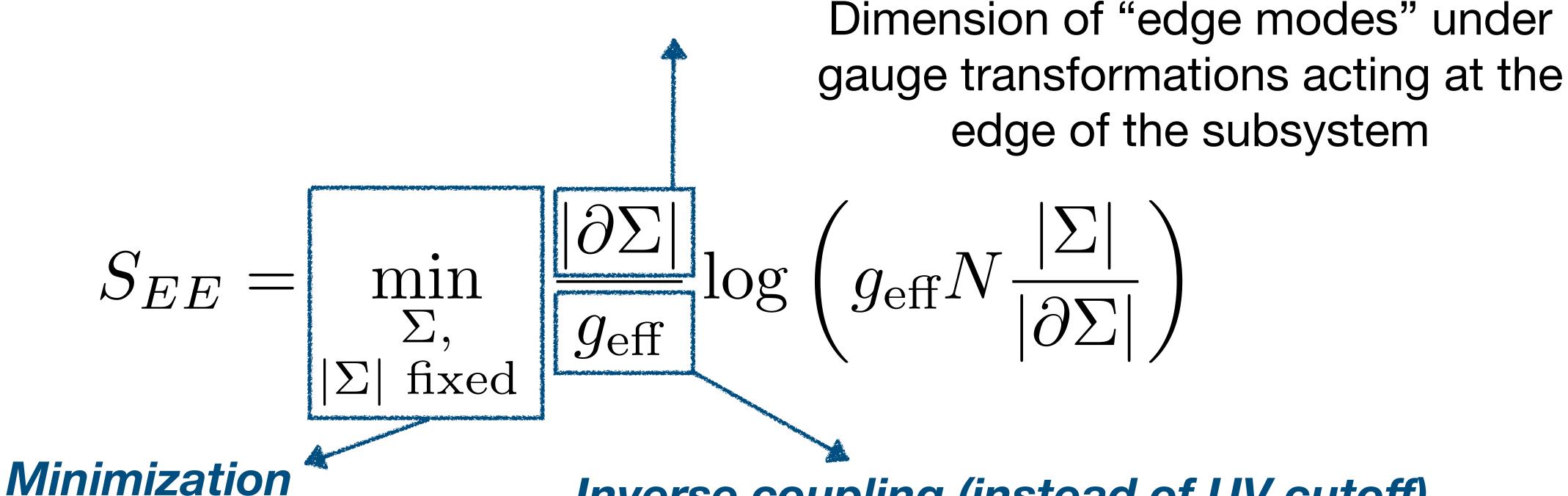


Inverse coupling (instead of UV cutoff)

Area is regulated by *N*, and is replaced by coupling of NC field theory describing low-energy dynamics of the brane

$$g_{\text{Max}} = \sqrt{\frac{4\pi}{N\nu^3}}$$

Area as state counting

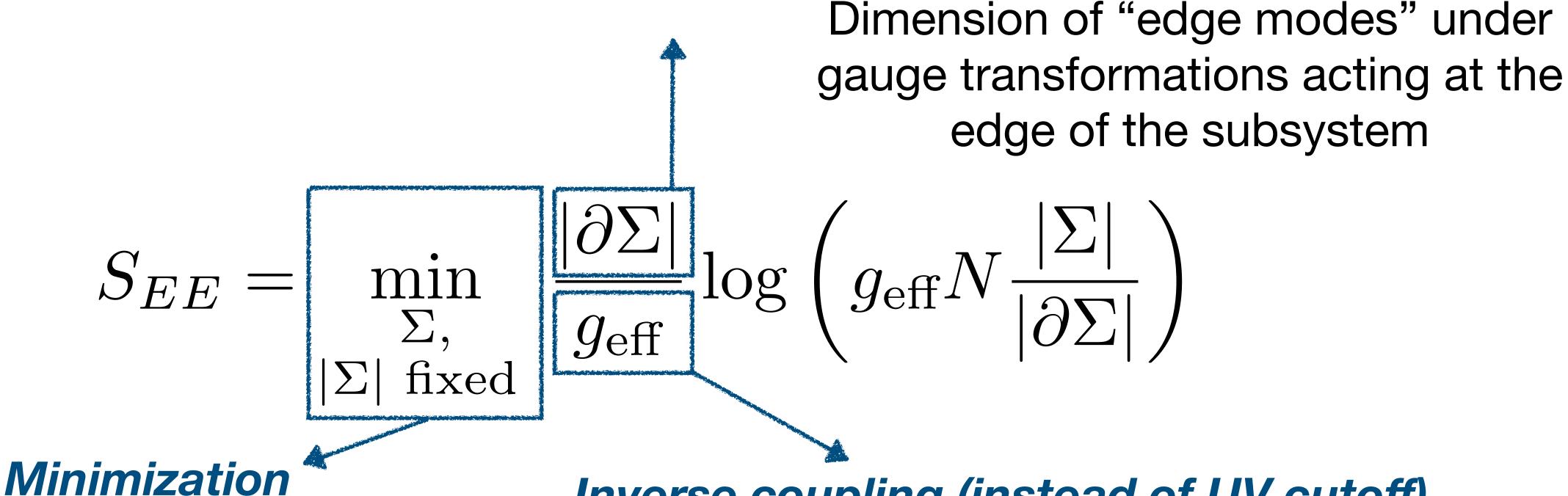


Inverse coupling (instead of UV cutoff)

Area is regulated by *N*, and is replaced by coupling of NC field theory describing low-energy dynamics of the brane

$$g_{\text{Max}} = \sqrt{\frac{4\pi}{N\nu^3}}$$

Area as state counting



Saddle-point in average over VPDs that change the subsystem

Inverse coupling (instead of UV cutoff)

Area is regulated by *N*, and is replaced by coupling of NC field theory describing low-energy dynamics of the brane

$$g_{\text{Max}} = \sqrt{\frac{4\pi}{N\nu^3}}$$

Subsystems and gauge (in)variance

• Initial partition: matrix elements in a MxM block in a fixed basis

$$X^a = \begin{pmatrix} X^a_{\Sigma\Sigma} & X^a_{\Sigma\bar{\Sigma}} \\ X^a_{\bar{\Sigma}\Sigma} & X^a_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix}$$

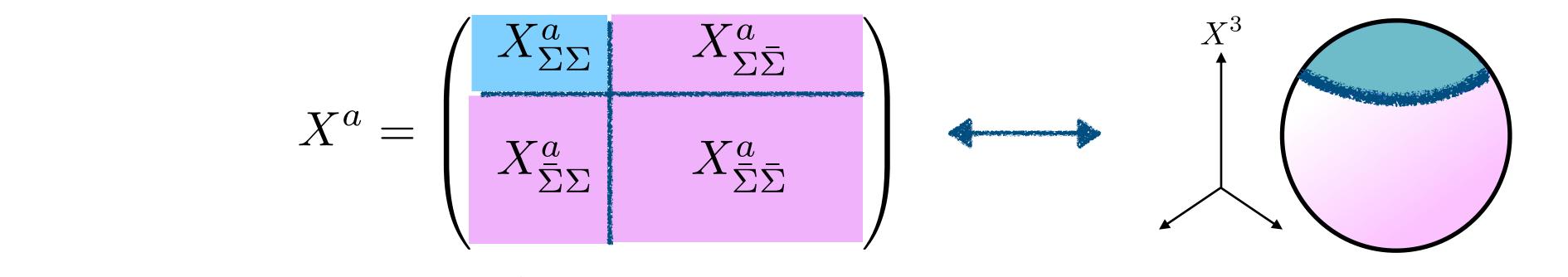
- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^a = \begin{pmatrix} X^a_{\Sigma\Sigma} & X^a_{\Sigma\bar{\Sigma}} \\ X^a_{\bar{\Sigma}\Sigma} & X^a_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix}$$

- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^{a} = \begin{pmatrix} X^{a}_{\Sigma\Sigma} & X^{a}_{\Sigma\bar{\Sigma}} \\ X^{a}_{\bar{\Sigma}\Sigma} & X^{a}_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix} \longrightarrow \begin{pmatrix} X^{3}_{\bar{\Sigma}\bar{\Sigma}} \\ X^{a}_{\bar{\Sigma}\bar{\Sigma}} & X^{a}_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix}$$

- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered



- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^{a} = \begin{pmatrix} X_{\Sigma\Sigma}^{a} & X_{\Sigma\bar{\Sigma}}^{a} \\ X_{\bar{\Sigma}\Sigma}^{a} & X_{\bar{\Sigma}\bar{\Sigma}}^{a} \end{pmatrix} \longrightarrow \begin{pmatrix} X_{\Sigma\bar{\Sigma}}^{a} & X_{\bar{\Sigma}\bar{\Sigma}}^{a} \\ X_{\bar{\Sigma}\bar{\Sigma}}^{a} & X_{\bar{\Sigma}\bar{\Sigma}}^{a} \end{pmatrix}$$

$$\mathcal{H}_{\text{phys}} \hookrightarrow \mathcal{H}_{\text{ext}} = \bigotimes_{a=1}^{d} \bigotimes_{i,j} \operatorname{span}_{\mathbb{C}} \left\{ |X_{ij}^{a}\rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}}\right)$$

- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^a = \begin{pmatrix} X^a_{\Sigma\Sigma} & X^a_{\Sigma\bar{\Sigma}} \\ X^a_{\bar{\Sigma}\Sigma} & X^a_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix}$$

$$\mathcal{H}_{\mathrm{phys}} \hookrightarrow \mathcal{H}_{\mathrm{ext}} = \bigotimes_{a=1}^{a} \bigotimes_{i,j} \mathrm{span}_{\mathbb{C}} \left\{ |X_{ij}^{a}\rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}}\right) := \mathcal{H}_{\mathrm{in}} \otimes \mathcal{H}_{\mathrm{out}}$$

- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

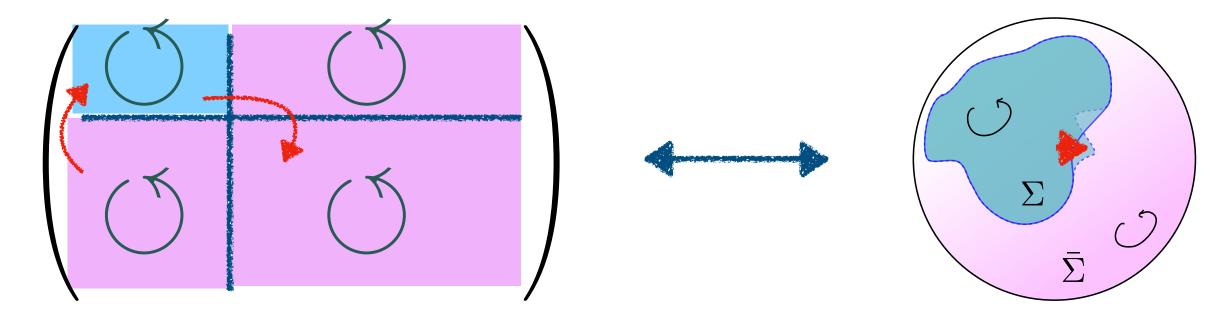
$$X^a = \left(egin{array}{c|c} X^a_{\Sigma\Sigma} & X^a_{\Sigmaar{\Sigma}} \\ X^a_{ar{\Sigma}\Sigma} & X^a_{ar{\Sigma}ar{\Sigma}} \end{array}
ight)$$

$$\mathcal{H}_{\mathrm{phys}} \hookrightarrow \mathcal{H}_{\mathrm{ext}} = \bigotimes_{a=1}^{d} \bigotimes_{i,j} \mathrm{span}_{\mathbb{C}} \left\{ |X_{ij}^a \rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}} \right) := \mathcal{H}_{\mathrm{in}} \otimes \mathcal{H}_{\mathrm{out}}$$

- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^a = egin{pmatrix} X^a_{\Sigma\Sigma} & X^a_{\Sigmaar{\Sigma}} \ X^a_{ar{\Sigma}\Sigma} & X^a_{ar{\Sigma}ar{\Sigma}} \end{pmatrix}$$

$$\mathcal{H}_{\mathrm{phys}} \hookrightarrow \mathcal{H}_{\mathrm{ext}} = \bigotimes_{a=1}^{d} \bigotimes_{i,i} \mathrm{span}_{\mathbb{C}} \left\{ |X_{ij}^{a}\rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}}\right) := \mathcal{H}_{\mathrm{in}} \otimes \mathcal{H}_{\mathrm{out}}$$

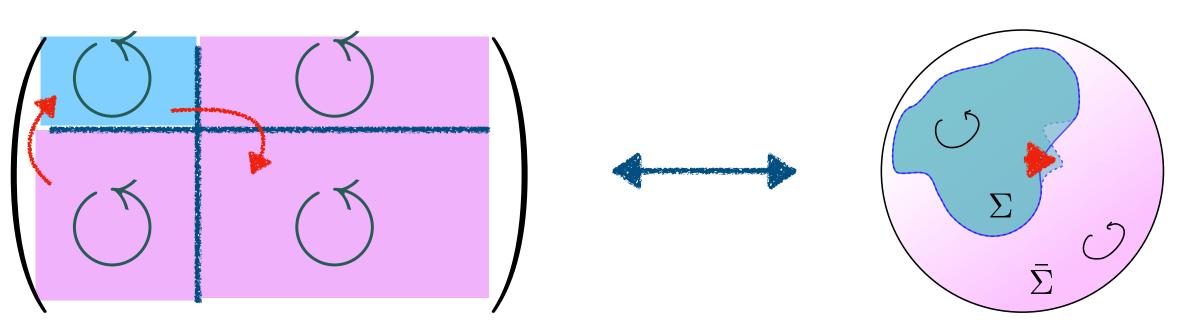


- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^a = \left(\begin{array}{c|c} X^a_{\Sigma\Sigma} & X^a_{\Sigmaar{\Sigma}} \\ X^a_{ar{\Sigma}\Sigma} & X^a_{ar{\Sigma}ar{\Sigma}} \end{array} \right)$$

$$\mathcal{H}_{\mathrm{phys}} \hookrightarrow \mathcal{H}_{\mathrm{ext}} = \bigotimes_{a=1}^{d} \bigotimes_{i,j} \mathrm{span}_{\mathbb{C}} \left\{ |X_{ij}^a \rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}} \right) := \mathcal{H}_{\mathrm{in}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$U(M) \times U(N-M)$$

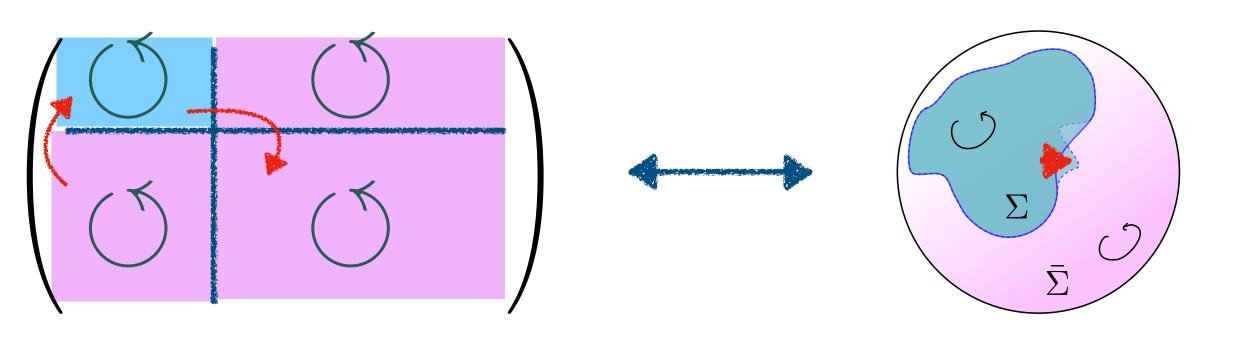


- Initial partition: matrix elements in a MxM block in a fixed basis
 - e.g. *Fuzzy sphere*, in basis where X^3 is diagonal and ordered

$$X^a = \begin{pmatrix} X^a_{\Sigma\Sigma} & X^a_{\Sigma\bar{\Sigma}} \\ X^a_{\bar{\Sigma}\Sigma} & X^a_{\bar{\Sigma}\bar{\Sigma}} \end{pmatrix}$$

$$\mathcal{H}_{\mathrm{phys}} \hookrightarrow \mathcal{H}_{\mathrm{ext}} = \bigotimes_{a=1}^{d} \bigotimes_{i,j} \mathrm{span}_{\mathbb{C}} \left\{ |X_{ij}^a \rangle \right\} = \mathcal{H}_{\Sigma\Sigma} \bigotimes \left(\mathcal{H}_{\Sigma\bar{\Sigma}} \otimes \mathcal{H}_{\bar{\Sigma}\bar{\Sigma}} \right) := \mathcal{H}_{\mathrm{in}} \otimes \mathcal{H}_{\mathrm{out}}$$

$$U(M) \times U(N-M)$$
 $U(N)/(U(M) \times U(N-M))$
 $\equiv F$



Partition of matrix entries
 subregion of the emergent geometry.

- Partition of matrix entries
 subregion of the emergent geometry.
- U(N) mixes matrix blocks
 VPDs mix subregions

- Partition of matrix entries
 subregion of the emergent geometry.
- U(N) mixes matrix blocks
 VPDs mix subregions
- Gauge-invariant question:

- Partition of matrix entries
 subregion of the emergent geometry.
- U(N) mixes matrix blocks
 VPDs mix subregions
- Gauge-invariant question:

what is the entropy of *any MxM* matrix block?

what is the entropy of any region of fixed volume?

• Start with a gauge-fixed state $|\psi_{\rm gf}\rangle\in\mathcal{H}_{\rm ext}$ and average over gauge orbit

$$|\psi\rangle = \int_{U(N)} dg \,\hat{\pi}(g) |\psi_{\text{gf}}\rangle \equiv \int_{F} dV \,|\psi_{V}\rangle$$

• Start with a gauge-fixed state $|\psi_{\rm gf}\rangle\in\mathcal{H}_{\rm ext}$ and average over gauge orbit

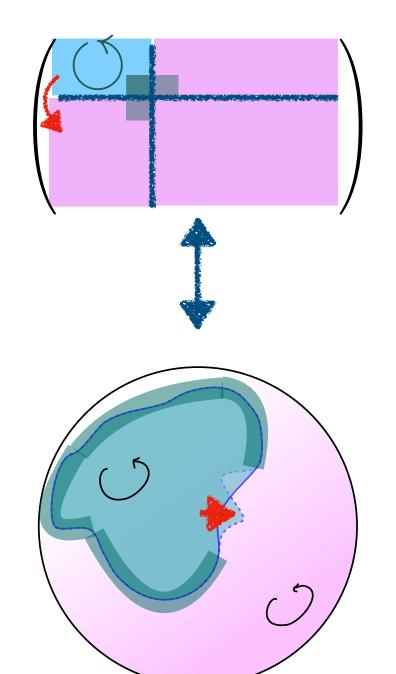
$$|\psi\rangle = \int_{U(N)} dg \,\hat{\pi}(g) |\psi_{\text{gf}}\rangle \equiv \int_{F} dV \,|\psi_{V}\rangle$$

• $|\psi_V\rangle$ is invariant under U(M) acting on a MxM block in basis transformed by V.

• Start with a gauge-fixed state $|\psi_{\mathrm{gf}}\rangle\in\mathcal{H}_{\mathrm{ext}}$ and average over gauge orbit

$$|\psi\rangle = \int_{U(N)} dg \,\hat{\pi}(g) |\psi_{\text{gf}}\rangle \equiv \int_{F} dV \,|\psi_{V}\rangle$$

• $|\psi_V\rangle$ is invariant under U(M) acting on a MxM block in basis transformed by V.

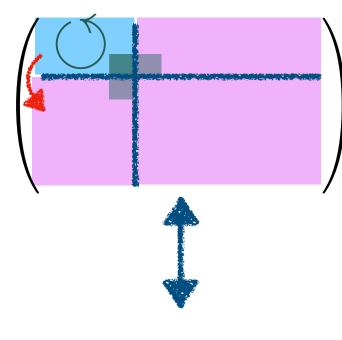


- U(M) imes U(N-M) : similar to story in lattice gauge thy
 - Maximally entangled edge modes in irreps μ_{Σ} of U(M).

• Start with a gauge-fixed state $|\psi_{\rm gf}\rangle\in\mathcal{H}_{\rm ext}$ and average over gauge orbit

$$|\psi\rangle = \int_{U(N)} dg \,\hat{\pi}(g) |\psi_{\rm gf}\rangle \equiv \int_F dV \,|\psi_V\rangle$$

• $|\psi_V\rangle$ is invariant under U(M) acting on a MxM block in basis transformed by V.



- U(M) imes U(N-M) : similar to story in lattice gauge thy
 - Maximally entangled edge modes in irreps μ_{Σ} of U(M).



- F: no analogue in local gauge theory
 - $V \in F$ leads to different subsystems being traced out.

Area from the U(M) charge

$$\rho_{\rm in} \approx \bigoplus_{\mu} p_{\mu} \frac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$

reps of *U(M)*

$$\rho_{\rm in} \approx \bigoplus_{\mu} p_{\mu} \frac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$

reps of *U(M)*

• Quantum variance of U(M) Casimir — dominating irrep, μ^{\star} , with $p_{\mu^{\star}} \approx 1$ and an exponentially large dimension $d_{\mu^{\star}}$ [Frenkel, Hartnoll; '23] [Frenkel; '23]

$$ho_{
m in}pproxigoplus_{p_{\mu}}rac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$
 reps of $U(M)$

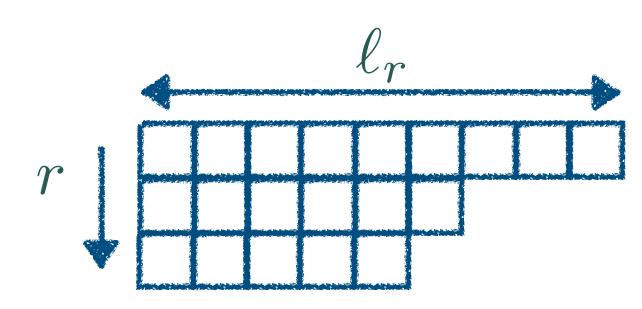
• Quantum variance of U(M) Casimir — dominating irrep, μ^{\star} , with $p_{\mu^{\star}} \approx 1$ and an exponentially large dimension $d_{\mu^{\star}}$ [Frenkel, Hartnoll; '23] [Frenkel; '23]

• Read off this dimension from the Casimir: $\langle \psi | C_2 | \psi \rangle$

$$\rho_{\rm in} \approx \bigoplus_{\mu} p_{\mu} \frac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$

reps of *U(M)*

- Quantum variance of U(M) Casimir dominating irrep, μ^{\star} , with $p_{\mu^{\star}} \approx 1$ and an exponentially large dimension $d_{\mu^{\star}}$ [Frenkel, Hartnoll; '23] [Frenkel; '23]
 - Read off this dimension from the Casimir: $\langle \psi | C_2 | \psi \rangle$

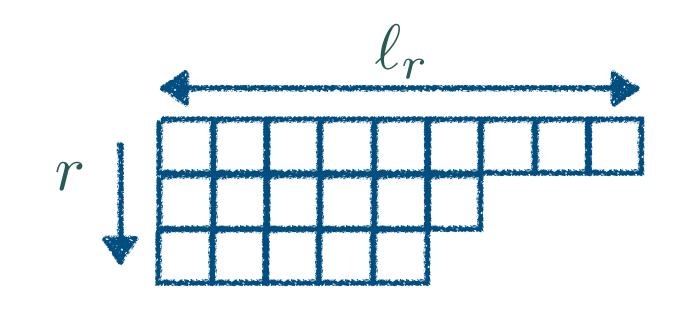


$$\rho_{\rm in} \approx \bigoplus_{\mu} p_{\mu} \frac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$

reps of *U(M)*

- Quantum variance of U(M) Casimir dominating irrep, μ^* , with $p_{\mu^*} \approx 1$ and an exponentially large dimension d_{μ^*} [Frenkel, Hartnoll; '23] [Frenkel; '23]
 - Read off this dimension from the Casimir: $\langle \psi | C_2 | \psi \rangle$

Under Moyal map, each row length is proportional to the area of a separate component of the entangling surface



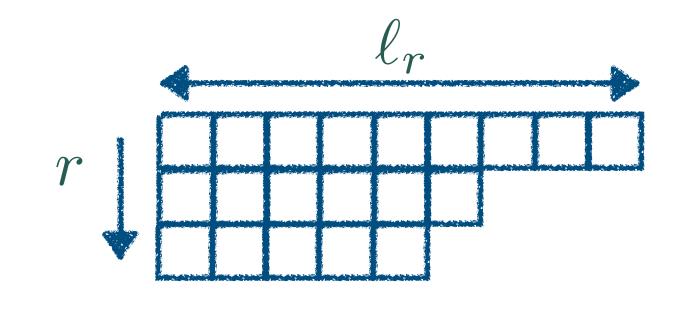
[Frenkel; '23]

$$\rho_{\rm in} \approx \bigoplus_{\mu} p_{\mu} \frac{\mathbb{I}_{\mu}}{\mathsf{d}_{\mu}}$$

reps of *U(M)*

- Quantum variance of U(M) Casimir dominating irrep, μ^* , with $p_{\mu^*} \approx 1$ and an exponentially large dimension d_{μ^*} [Frenkel, Hartnoll; '23] [Frenkel; '23]
 - Read off this dimension from the Casimir: $\langle \psi | C_2 | \psi \rangle$

Under Moyal map, each row length is proportional to the area of a separate component of the entangling surface



[Frenkel; '23]

$$\log \mathsf{d}_{\mu^\star} \approx \sum_r \ell_r \log \frac{M}{\ell_r} = \sum_r |\partial \Sigma_{(r)}| \log \left(\frac{N|\Sigma|}{|\partial \Sigma_{(r)}|}\right)$$

what is the entropy of any MxM matrix block?

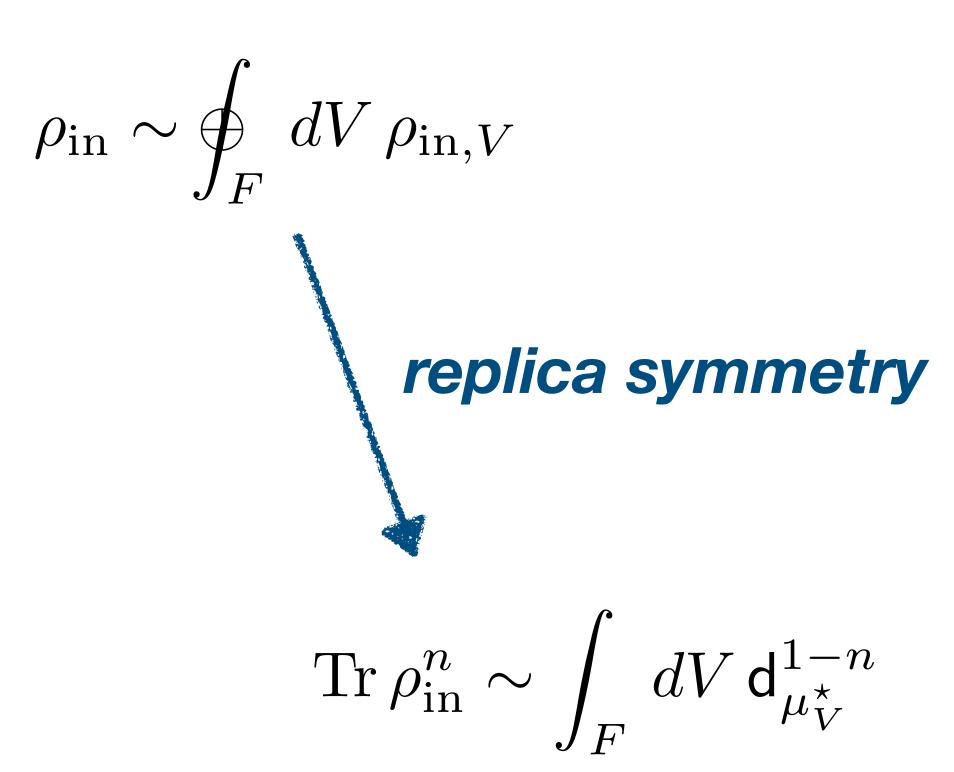
Incorporating F

$$\rho_{\rm in} \sim \oint_F dV \, \rho_{{\rm in},V}$$

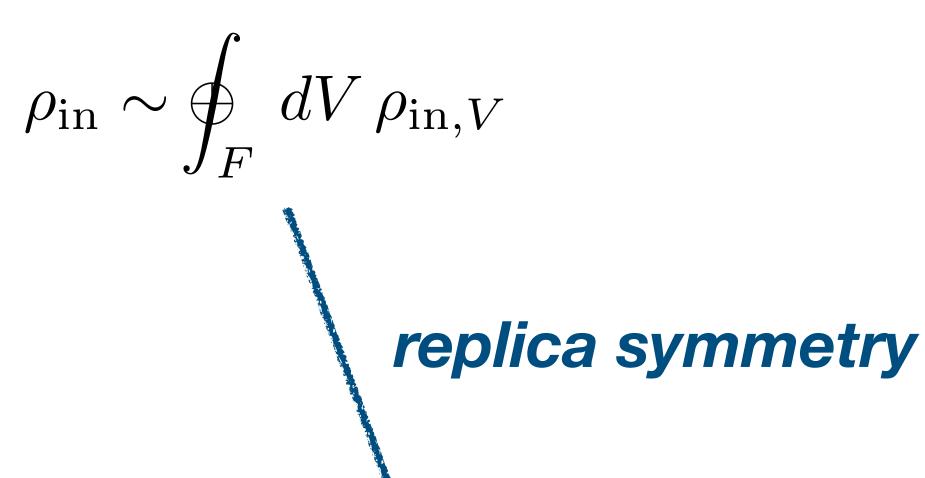
corroborated by Haar random sampling

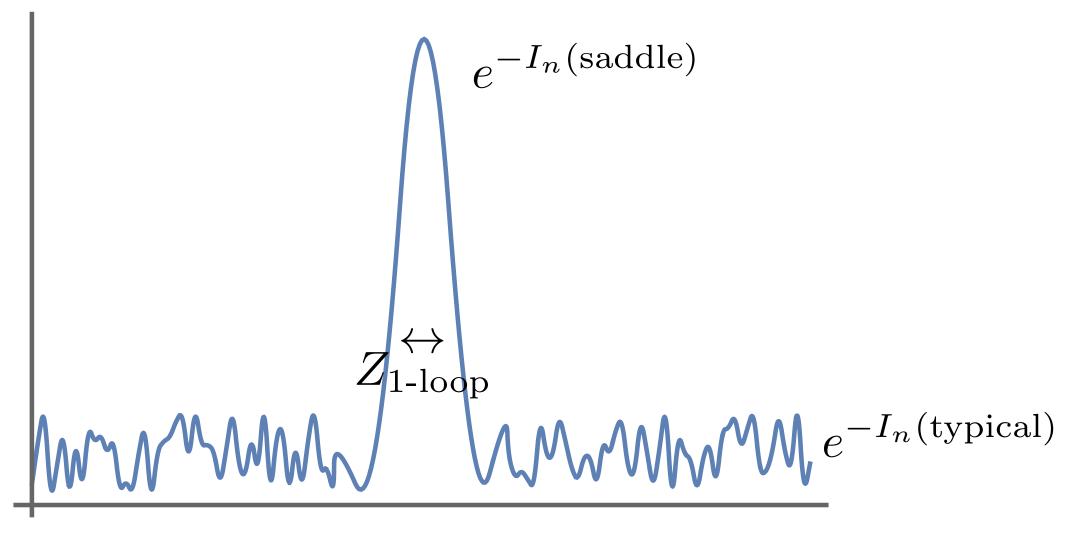
$$\rho_{\rm in} \sim \oint_F dV \, \rho_{{\rm in},V}$$

corroborated by Haar random sampling



corroborated by Haar random sampling





$$\operatorname{Tr} \rho_{\text{in}}^{n} \sim \int_{F} dV \, \mathsf{d}_{\mu_{V}^{\star}}^{1-n}$$

$$\approx Z_{1-\text{loop}} e^{-I_{n}(\text{saddle})} + e^{-I_{n}(\text{typical})}$$

Haar averaged integrals
 establish dominance of saddle

Haar averaged integrals
 establish dominance of saddle

$$\operatorname{Tr} \rho_{\mathrm{in}}^n \sim \int_F dV \, \mathrm{d}_{\mu_V^\star}^{1-n}$$

Haar averaged integrals
 establish dominance of saddle

$$\operatorname{Tr} \rho_{\mathrm{in}}^n \sim \int_F dV \, \mathrm{d}_{\mu_V^\star}^{1-n} \quad \approx \exp\left((1-n) \min_V \log \mathrm{d}_{\mu_V^\star}\right)$$
 saddle point

Haar averaged integrals
 establish dominance of saddle

$$\operatorname{Tr} \rho_{\mathrm{in}}^{n} \sim \int_{F} dV \, \mathsf{d}_{\mu_{V}^{\star}}^{1-n} \approx \exp\left((1-n) \min_{V} \log \mathsf{d}_{\mu_{V}^{\star}}\right)$$

saddle point

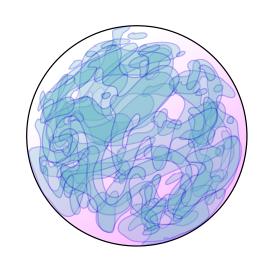
$$S_{EE} = \min_{V} \log \mathsf{d}_{\mu_{V}^{\star}} = \min_{\substack{\Sigma, \\ |\Sigma| \text{ fixed}}} \frac{|\partial \Sigma|}{g_{\text{Max}}} \log \left(g_{\text{Max}} N \frac{|\Sigma|}{|\partial \Sigma|} \right)$$

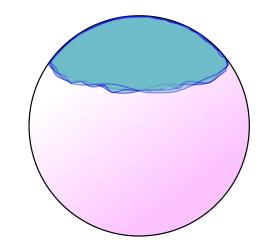
Haar averaged integrals ———— establish dominance of saddle

$$\operatorname{Tr} \rho_{\mathrm{in}}^n \sim \int_F dV \, \mathsf{d}_{\mu_V^\star}^{1-n} \quad \approx \exp\left((1-n) \min_V \log \mathsf{d}_{\mu_V^\star}\right)$$

saddle point

$$S_{EE} = \min_{V} \log \mathsf{d}_{\mu_{V}^{\star}} = \min_{\substack{\Sigma, \\ |\Sigma| \text{ fixed}}} \frac{|\partial \Sigma|}{g_{\text{Max}}} \log \left(g_{\text{Max}} N \frac{|\Sigma|}{|\partial \Sigma|} \right)$$





- "Geometry from entanglement" in matrix quantum mechanics.
- Gauge-invariant entanglement invariance under VPDs
- · When gauge orbit admits a saddle-point, results in a minimal area formula

- "Geometry from entanglement" in matrix quantum mechanics.
- Gauge-invariant entanglement invariance under VPDs
- · When gauge orbit admits a saddle-point, results in a minimal area formula

Outlook

- "Geometry from entanglement" in matrix quantum mechanics.
- Gauge-invariant entanglement --> invariance under VPDs
- · When gauge orbit admits a saddle-point, results in a minimal area formula

Outlook

 Revisit replica symmetry: accurate for n~1, but RS breaking important for Rényis

- "Geometry from entanglement" in matrix quantum mechanics.
- Gauge-invariant entanglement ---> invariance under VPDs
- · When gauge orbit admits a saddle-point, results in a minimal area formula

Outlook

- Revisit replica symmetry: accurate for n~1, but RS breaking important for Rényis
- Incorporating Lorentz / SUSY: MQMs relevant for flat-space supergravity, e.g. BFSS, BMN

- "Geometry from entanglement" in matrix quantum mechanics.
- Gauge-invariant entanglement ---> invariance under VPDs
- · When gauge orbit admits a saddle-point, results in a minimal area formula

Outlook

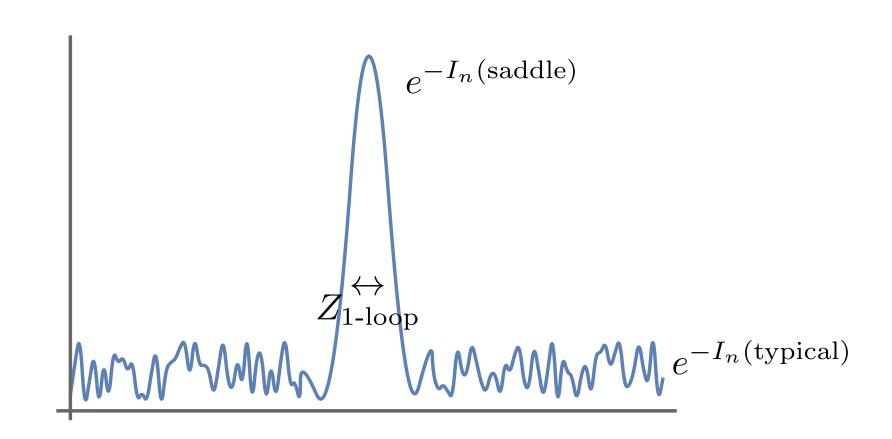
- Revisit replica symmetry: accurate for n~1, but RS breaking important for Rényis
- Incorporating Lorentz / SUSY: MQMs relevant for flat-space supergravity, e.g. BFSS, BMN
- Towards an RT formula outside of holography: gauge fixing to more abstract features than a boundary. QRFs.

Thank you for your attention.

Extra slides

Fine print on the saddle point

$$\operatorname{Tr}\rho_{\mathrm{in}}^{n} \approx Z_{1-\mathrm{loop}}e^{-I_{n}(\mathrm{saddle})} + e^{-I_{n}(\mathrm{typical})}$$



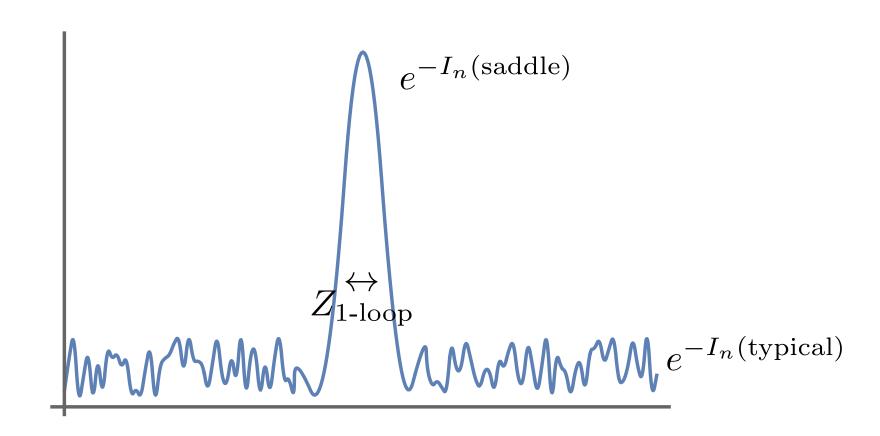
- Establishing the existence + dominance of a saddle point.
 - the value of $I_n(\text{saddle})$ itself and that it is a minimum
 - $Z_{1 ext{-loop}}$: the order of fluctuations about the saddle point
 - $I_n(ext{typical})$: value of $\log \mathsf{d}_{\mu_V^\star}$ for a typical configuration \blacktriangleleft

Haar averaged integrals

Can be checked, e.g. in the fuzzy sphere state

more serious fine print...

$$\operatorname{Tr}\rho_{\mathrm{in}}^{n} \approx Z_{1-\mathrm{loop}}e^{-I_{n}(\mathrm{saddle})} + e^{-I_{n}(\mathrm{typical})}$$



- *U(N)* is much larger than smooth continuum VPDs.
 - F contains many elements that act non-geometrically (send Σ to fractal and/or fragmented Planck-sized regions)
 - These non-geometric maps proliferate and wash out the saddle-point

We find it necessary to "coarse-grain" the integral over F to elements that act geometrically on Σ

Does not seem special to matrix character of the problem... may be generic

On coarse-grained diffeos

Return to the factorization map

$$|\psi\rangle = \int_{F} dV \int_{U(M)} dU \int_{U(N-M)} d\tilde{U} \,\hat{\pi}(U\tilde{U}V) |\psi_{\text{gf}}\rangle$$

- Integrals over U(M), U(N-M) reduced state at any V is *indistinguishable* against VPDs preserving a subregion.
- The reduced state of a low-energy observer in any sector should not be orthogonal to one related by a Planck-sized diffeo --> remove from integral.

In practicality: integrate over a quotient of F

• Still large enough to account for geometric VPDs as $N \to \infty$, but suppressed enough that the geometric area dominates as a saddle.

E.g. in the fuzzy sphere state:

A "low-tech" solution...

$$F = U(N')/(U(M') \otimes U(N' - M'))$$
 $N' = N/p$ $M' = M/p$

• By comparing $I_n(\text{saddle})$ to $Z_{1\text{-loop}}$ and to $I_n(\text{typical})$ we find a range of p such that the minimal area dominates.

$$N^{3/4} \ll p \ll N$$