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Integrability and the early emergence of the   operator TT̄

CFTIR

CFTUV

massless

massive

Massive and Massless integrable CFT perturbations:

Exact S-matrix

Finite-Size spectrum 
(Thermodynamic Bethe Ansatz)

Correlation Functions 
(Form-Factors)

(Zamolodchikov^2-Lukyanov-Bazhanov, Martins,  Ravanini, Dorey, Martins, Mussardo,  Delfino, Takacs, Watts, Fendley, Saleur)
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Massless integrable CFT perturbations:

Sometimes  is the leading attracting operators in the IR
 

TT̄

Ising CFT

ordered

disordered 
Tricritical Ising 

CFT

first order p.t

𝑇 𝑇 + … 𝑇𝑇(𝑧, 𝑧) = 𝑇(𝑧)𝑇(𝑧)

Txx = − Tyy = −
1

2π
(T̄ + T )

Tyx = Txy =
i

2π
(T̄ − T )

In a CFT

and 

Recent interest one massless flows related to 
non-invertible symmetries:

ℳ(kq + I, q) ⟶ ℳ(kq − I, q)

(Katsevich-Klebanov-Sun '23,  Tanaka-Nakayama ’24)



  
   
 

CFTIR

??
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Can we reverse the renormalisation group trajectory?

CFTIR

CFTUV

Let us try with the   perturbation …𝑇𝑇
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We need the correct definition of  outside a CFT fixed point:  TT̄

Txx = −
1

2π (T̄ + T − 2Θ) ,

Sasha Zamolodchikov ’04: 

𝒪TT̄ := − det[Tμ
ν ] =

1
2 (TμνTμν − Tμ

μTν
ν) = −

1
2

ϵμνϵρσTμρTνσ

Therefore,  up to total derivatives and a classical level:

Tyy =
1

2π (T̄ + T + 2Θ) , Txy =
i

2π (T̄ − T)
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The  Lagrangian flow equationTT̄

∂τ ℒ(τ) = 𝒪(τ)
TT̄

,

Tμν(τ) = −
2
|g |

∂ℒ(τ)
∂gμν

(In the following, we will initially focus on  deformation in flat spacetime.)TT̄

(Smirnov-Zamolodchikov ’16) 



ℒV(τ) = −
V

1 − τV
+

1
2τ̄ (1 − 1 − 4τ̄ ℒ(0) − 4τ̄2 ℬ)

τ̄ = τ (1 − τV)with
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and

Simple example: bosons with generic potential 

ℒV(0) = ℒ(0) − V with ℒ(0) =
1
2

gμν∂μ
⃗ϕ ⋅ ∂ν

⃗ϕ , V = V( ⃗ϕ )

(Cavaglià-Negro-Szécsényi-RT  ’16 ,  Bonelli-Doround-Zue  ’18)

[See also  earlier results earlier hints:  Dubovsky-Flauger-Gorbenko ’12, Caselle-Fioravanti-Gliozzi-RT ’13 ]

ℬ = |∂ ⃗ϕ × ∂̄ ⃗ϕ |2



The deformed  Lagrangian can be obtained by solving the following PDE

∂ℒ
∂τ

= 2gμρgνσ ∂ℒ
∂gμν

∂ℒ
∂gρσ

− 2 (gμν ∂ℒ
∂gμν )

2

+ 2ℒgμν ∂ℒ
∂gμν

− ℒ2 .

The latter equation can be solved either perturbatively or by using the method of characteristics.

- Free bosons  Nambu-Goto theory in the static gauge.⟶



-   

However,  performing a Legendre  transformation:

Formally identical equations also hold in the case of perturbations of quantum mechanical models. 
(Gross-Kruthoff-Rolph-Shaghoulian).

- Fermions can be included (Bonelli-Doround-Zue, Frolov, Lee-Yi-Yoon).

- The perturbation is compatible with supersymmetry (Baggio-Sfondrini-Tartaglino Mazzucchelli-Walsh).

YM2 ⟶

ℒYM2(τ) =
3
4τ ( 3F2 (−

1
2

, −
1
4

,
1
4

;
1
3

,
2
3

;
256
27

τ ℒYM2(0)) − 1) .

ℋYM2(τ) =
ℋYM2(0)

1 − τ ℋYM2(0)
.
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Geometric interpretations

1) There exists a random geometry interpretation of the  deformation  (Cardy ’18)TT̄

The infinitesimally deformed action near a point  is t = − τ

S(t + δt) = S(t) +
δt
2 ∫ℳ

ϵμνϵρσTμρTνσd2x ,

where  is the domain on which the theory is defined. ℳ

Since  is quadratic in components of the stress energy tensor, we can rewrite the infinitesimal 
deformation of the partition function by performing a Hubbard-Stratonovich transformation.

det[Tμ
ν ]



By the definition of stress energy tensor , the second term is equivalent to an infinitesimal change in the metric: 

The infinitesimal parameter  appears in the action  as  . 

Since , the “gravity” sector is dominated by the saddle-point.
 

n principle, the functional integral should be taken over all possible geometries, including those with non-zero curvature.

However, by computing the variation of the Ricci curvature and imposing the conservation of the stress-energy tensor, 
one can show that it is sufficient to restrict to diffeomorphisms.

e
δt
2 ∫ℳ d2x ϵμνϵρσTμρTνσ ∝ ∫ 𝒟h e− 1

2δt ∫ℳ ϵμνϵρσhμρhνσ d2x+ ∫ℳ d2x hμνTμν .

Tμν

gμν = δμν + hμν .

δt 1/δt

δt → 0

The relevant identity is
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2) The - deformation of a generic field theory is equivalent to coupling the undeformed 
     field theory to d=2 ghost-free massive gravity  (Tolley  ’19).

TT̄

-  is an arbitrary undeformed action,  where  indicates a generic collection of matter fields.

-  denotes an auxiliary dynamical zweibein, with associated metric  .

-   is coupled to  a second zweibein  , associated to the metric tensor   .

-   will eventually emerge as the metric of the manifold on which the  deformed theory lives.

S0[ϕ, ea
μ] ϕ

ea
ν gμν = ηabea

μeb
ν

ea
ν f a

μ hμν = ηab f a
μ f b

ν

f a
μ 𝑇𝑇

Then, the   deformation can be generated from the action:TT̄

Sτ[ϕ, ea
μ, f a

μ] = S0[ϕ, ea
μ] + Sgrav[ea

μ, f a
μ] ,



Where the  topological gravity action is:

Sgrav[ea
μ, f a

μ] =
1
2τ ∫ d2xϵμνϵab(ea

μ − f a
μ)(eb

ν − f b
ν ) ,

The deformed action is obtained by extremising  the total action  with respect to the auxiliary zweibein .

Denoting  the solution of the equation of motion by , then:

S(τ)[ϕ, ea
μ, f a

μ] ea
μ

e*a
μ

Sτ[ϕ, f a
μ] = Sτ[ϕ, e*a

μ, f a
μ] .



The deformed theory is related to the original theory by a field-dependent coordinate transformation. 

The deformed theory can be reformulated as

      (  )

where  and  are coordinates for the original and the deformed theory, respectively. 
They are related by a field-dependent coordinate transformation involving the stress–energy tensor:

This also implies that the -deformed solutions of the equations of motion may be constructed directly from 
the undeformed solutions through the corresponding transformation:

Sτ = ∫ d2wℒτ = ∫
d2w
det J

(ℒ0(ϕ(x(w))) − τ𝒪(τ=0)), Jij = ∂xiwj ,

x w

dwμ = dxμ − τϵμβϵανTα
βdxν .

TT̄

ϕ(x, τ) = ϕ(w(x),0) .

3) Field-dependent coordinate transformation. 
(Conti et al.  ’18,  Coleman-Aguilera Damia-Freedman-Son,  ’19)   
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τ > 0

τ < 0

Deformed solutions (NLS - Peregrine’s solutions)

(a) (b)

(c)

(d) (e)

Figure 2. The modulus of the TT̄-deformed Peregrine’s soliton solution  0(x, ⌧) for different values
of ⌧ . The parameters are chosen as follows: m = 1 and k = 1.

4.3 The Peregrine’s soliton

As in the case of the bright soliton, we shall set g = �k with k 2 R+. The Peregrine’s soliton
has the following analytical expression

 0(y) =
1p
2k

✓
1� 4(1 + 2it0)

1 + 4mx02 + 4t02

◆
eit

0
. (4.23)

Plugging the solution and its c.c. in (4.3) we get
8
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τ = 0

(Conti et al.,  Esper-Frolov) 
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4) Any -deformed field theory is dynamically equivalent to the corresponding undeformed theory coupled 
to flat Jackiw–Teitelboim gravity. (Dubovsky-Gorbenko-Mirbabayi  ’17)

TT̄

5)  -deformed and the light-cone gauge (Frolov ’19)TT̄

- It  gives a direct relation between   the condition of the gauge invariance of the target space-time energy and 
momentum of a (non-critical) string theory quantised in a generalised uniform light-cone gauge which depends on the 
deformation parameter and homogeneous inviscid Burgers equation associated to the evolution of the finite-size 
spectrum under the  perturbation.TT̄
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A novel classically marginal  deformation in d=2, was recently introduced, and denoted root-  ,  𝑇𝑇

It commutes with the  deformationTT̄

It corresponds to a change of the metric, but not to a global change of coordinates.

(Conti et al., Ferko-Sfondrini-Smith-Tartaglino Mazzucchelli,  Babaei Aghbolagh-Babaei Velni-Mahdavian Yekta 
-Mohammadzadeh) 

∂γℒ(γ) =
1
2

TμνTμν −
1
4

Tμ
μTν

ν .

The root-  deformationTT̄

∂γ∂τℒ(γ, τ) = ∂τ∂γℒ(γ, τ) .

ℒ(0,0) ⟶ ℒ(0,τ)

ℒ(γ,0) ⟶ ℒ(γ, τ)
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Exact Quantum Integrability:  S-matrix and CDD ambiguity 

Consider a  relativistic integrable field theory with factorised scattering: 

Castillejo-Dalitz-Dyson ambiguity: 

The simplest possibility, consistent with the crossing and unitarity relations is:

(Aliosha Zamolodchikov, Mussardo-Simon, Dubovsky-Flauger-Gorbenko, Caselle et al.)  



    CDD-deformed Conformal Field Theories  

The deformed energy, obtained introducing  the CDD  factor in the Thermodynamic Bethe Ansatz equations, is:

   (primary)ceff = c − 24 Δ

which matches the form of  the (D=26, ) Nambu-Goto spectrum. However, this result 
holds for a generic CFT!

ceff = 24

20

 (Dubovsky-Flauger-Gorbenko ‘12, Caselle-Gliozzi-Fioravanti-RT ’13)
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Quantum -deformations on infinite cylinder of circumference RTT̄

∂τℋ(τ) = det(Tμν(τ)) ⟶ ∂τ⟨n |ℋ(τ) |n⟩ = ⟨n | det(Tμν(τ)) |n⟩ .

⟨n | det(Tμν(τ)) |n⟩ = ⟨n |T11 |n⟩ ⟨n |T22 |n⟩ − ⟨n |T12 |n⟩ ⟨n |T21 |n⟩ ,

Assuming the validity of Zamolodchikov’s factorisation property also for the fully deformed theory, one can derive closed 
flow equations for the finite-volume spectrum.

and

with
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∂τEn(R, τ) = En(R, τ) ∂REn(R, τ) +
P2

n(R)
R

The inviscid Burgers equation for the quantum spectrum

Pn = 0 ⟶ En(R, τ) = En(R + τ En(R, τ), 0)

(The same result was obtained using the TBA/NLIE together with a set of relations that can essentially be 
regarded as the quantum version of the ‘uniform light-cone’ approach to the -deformation introduced by 
Frolov.)

TT̄



(Typical  finite-volume spectrum)τ = 0

23

(𝜏 > 0,𝑐𝑒𝑓𝑓 > 0)

(𝜏 > 0,𝑐𝑒𝑓𝑓 < 0)
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Point particles  Finite size particles

A possible quantum interpretation:

(Cardy-Doyon)

(Jiang)

≡ a = τ



TT̄ deformations provide an exactly solvable example of irrelevant flows in 2D QFT.

In AdS/CFT, for , they correspond to introducing a finite radial cutoff with Dirichlet boundary conditions.

In black hole backgrounds, as the cutoff approaches the outer horizon, the spectrum becomes complex — signaling 
instabilities and loss of unitarity.

 the complex energy levels  are not part of the spectrum.

τ < 0

⟶

 and AdS/CFTTT̄

(McGough-Mezei-Verlinde ‘16, Guica-Monten ’19)



In , for a theory on the sphere, it has been shown that the energy levels which develop singularities 
(in this case, pole singularities) disappear from the spectrum for  . 

The correct regularisation of the partition function for  , involving instanton-like subtractions, was 
also identified.

YM2
τ > 0

τ < 0

  on the sphere   - perturbedYM2 TT̄

main goals of this work.

D
ouglas–Kazakov critical line
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Figure 1. The phase diagram of the theory at large N has three phases: weak coupling, strong
coupling, and mixed coupling. The blue line is the deformed Douglas–Kazakov critical line, associ-
ated with a third-order phase transition. The black line is a critical line associated with a second
order-phase transition. The two lines join at a multicritical point represented by a blue dot. The
thin gray line at · = 0 corresponds to the undeformed theory.

Summary of results. Contrary to previous investigations on the subject [32, 33], we
follow an approach based on iteratively solving the system of partial di�erential equations
governing the deformation of the large-N expansion of the free energy. We find exact
solutions at all orders in 1/N . These are obtained by propagating the initial conditions
at · = 0 associated with both the weak-coupling and the strong-coupling regime along a
system of characteristic curves determined by the leading order F0 of the free energy. These
curves e�ectively chart the phase diagram of the deformed theory; much of the information
on the large-N dynamics can be obtained by studying their properties. The entire phase
diagram is shown in Figure 1.

The characteristic curve emanating from the Douglas–Kazakov critical point acts as
an interface between the characteristics transporting the weak-coupling and the strong-
coupling initial conditions. In other words, the critical point of the undeformed theory
is now a critical line with an associated third-order phase transition. The critical line is
monotonically decreasing as a function of · . It reaches the – = 0 axis at a value ·max above
which the theory exists only in the strong phase. At such a point, the discontinuity of F

ÕÕÕ
0

diverges.
There is a second endpoint of this critical line where F

ÕÕÕ
0 again diverges. This happens

at ·mcp < 0. We can interpret this behavior by observing that the Douglas–Kazakov

– 3 –

(Griguolo–Panerai–Papalini–Seminara ’22)



- They can be always interpreted as metric deformations.

- Connections with modified gravity models emerge, in particular with massive gravity.

-  -deformed theory can be coupled to Einstein gravity.

    - There are connections with nonlinear electrodynamics and the so-called Modified Maxwell theory (ModMax).

TT̄

(Taylor, Cardy, Conti, Romano, Morone, Negro, Ferko, Sethi, Bielli, Smith, Sorokin, Tartaglino-Mazzucchelli, Kuzenko, Lechner,  
Tsolakidis,  Blair,  Lahnsteiner, Obers, Yan, Babaei-Aghbolagh,2, ∗He, 3,Ouyang, Hou,…  )

  in d>2
(Stress-energy tensor deformations)

TT̄



We have 

Another interesting and recently discovered model of non-linear electrodynamics is the Modified Maxwell (ModMax) 
theory, described by the Lagrangian

this Lagrangian describes the effective dynamics of the gauge field on the worldvolume of a D3-brane in string theory, 
and the parameter , where  is the tension of the brane. τ ∝ 1/T T

ℒBI(τ) =
−1 + 1 − τ FμνFμν + τ2

4 (Fμν F̃ μν)
2

2τ
,

ℒModMax(γ) =
1
4 (−cosh(γ)FμνFμν + sinh(γ) (FμνFμν)

2
+ (Fμν F̃ μν)

2

) .

∂ℒBI(τ)
∂τ

=
1
8 (T(τ)μνT(τ)

μν −
1
2

(T(τ)μ
μ)2) .

(Bandos,  Lechner,  Sorokin, Townsend ’20)

Unique, nonlinear duality-invariant conformal extension of Maxwell’s theory!

The Born-Infeld lagrangian is:



Similarly, the ModMax Lagrangian satisfies the d=4 version of the so-called root-  flow equation TT̄

̂Tμν = Tμν −
1
4

gμνT
ρ
ρ .

∂ℒ(γ)

∂γ
=

1
2

̂T (γ)μν ̂T (γ)
μν , (Babaei-Aghbolagh, Velni, Yekta, Mohammadzadeh)

Like ordinary Maxwell theory, both the Born–Infeld and ModMax theories also possess invariance under electric–
magnetic duality rotations.

where
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Consider the family of deformations defined by the flow equation 

Quadratic stress-energy tensor deformations

∂τℒ(τ) = 𝒪(τ)(d, r) =
1
2d (T(τ)μνT(τ)

μν − r (T(τ)μ
μ)2) .

dh(τ)
μν

dτ
=

2
d (T(τ)

μν − rT(τ)α
αh(τ)

μν ) .

Then, denoting the deformed metric by , such that , one hash(τ)
μν h(0)

μν = gμν

h(τ)
μν = gμν −

2τ
d (−T(0)

μν + rT(0)α
αgμν) + O(τ2) .

This nonlinear equation can be again exactly-solved using the method of characteristics:
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- For the d=2    perturbation, this expansion truncates at second order in , reproducing the known result previously quoted.TT̄ τ

- In d=4, iff the matrix   has only two independent  eigenvalues each of multiplicity 2, the series truncates at first order. Tμ
ν

Under the change of metric we have:

Sτ[hμν, ϕ] = {S[gμν, ϕ] − τ∫ ddx |g | 𝒪(τ=0)(d, r)}
g=g(h)

,

which generalises to arbitrary dimensions  the results obtained from the geometrical interpretations in d=2.  



Thank you for your 
attention!
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