TT-like flows and links to string theory
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Integrability and the early emergence of the 77 operator

Massive and Massless integrable CF'T perturbations:

/ Exact S-matrix

massive

Finite-Size spectrum
massless (Thermodynamic Bethe Ansatz)

Correlation Functions
(Form-Factors)

(Zamolodchikov/2-Lukyanov-Bazhanov, Martins, Ravanini, Dorey, Martins, Mussardo, Delfino, Takacs, Watts, Fendley, Saleur)
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Massless integrable CFT perturbations:
‘irst order p.t
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Sometimes 77T is the leading attracting operators in the IR
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Recent interest one massless flows related to

Ising CFT non-invertible symmetries:

M(kq+1,q) — M(kq — 1, q)

(Katsevich-Klebanov-Sun '23, Tanaka-Nakayama ’24)



Can we reverse the renormalisation group trajectory?
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Let us try with the 7T perturbation ...



We need the correct definition of 77 outside a CFT fixed point:

: (T+T-208), T —L(T+T+2(~)) T —i(T—T)
e g ’ 21 §

Sasha Zamolodchikov ’04:

TT(z,2):= lim T(z,2)T(Z,Z)—06(z,2)0(7,7z) + total derivatives

(2,2)—(2/,2')

Therefore, up to total derivatives and a classical level:
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The 77 Lagrangian flow equation
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Infrared
(Tt + 61)

Ultraviolet

(Smirnov-Zamolodchikov ’16)

(In the following, we will initially focus on 77 deformation in flat spacetime.)
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Simple example: bosons with generic potential

ZV0) = L0)-V with Z(0) = %gﬂvaﬁ- od, V=WVep)
%4 S V L . . = S 1
i (1 \/1 47 2(0) — 47 9?)

with 7=7(1-7V)  and B =00 x0 |

(Cavaglia-Negro-Szécséenyi-RT 16 , Bonelli-Doround-Zue ’18)

[See also earlier results earlier hints: Dubovsky-F laugger-Gorbenko ’12, Caselle-Fioravanti-Gliozzi-RT 13 |



The deformed Lagrangian can be obtained by solving the following PDE

= DgHPglo

0L 0 0Z 0L
e 9) g Uv
ot 0gHv dgre

The latter equation can be solved either perturbatively or by using the method of characteristics.

- Free bosons — Nambu-Goto theory in the static gauge.
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However, performing a Legendre transformation:

%YMz(O)

o) = .
1 — 7 Z"™2(0)

Formally identical equations also hold in the case of perturbations of quantum mechanical models.
(Gross-Kruthoff-Rolph-Shaghoulian).

- Fermions can be included (Bonelli-Doround-Zue, Frolov, Lee-Yi-Yoon).

- The perturbation is compatible with supersymmetry (Baggio-Sfondrini-Tartaglino Mazzucchelli-Walsh).



Geometric interpretations

1) There exists a random geometry interpretation of the TT deformation (Cardy ’18)

The infinitesimally deformed action near a point r = — 7 is

5t
S(t + 8t) = S(r) - J e e T g
2 M

where .7/ is the domain on which the theory is defined.

Since det[7"'] is quadratic in components of the stress energy tensor, we can rewrite the infinitesimal
deformation of the partition function by performing a Hubbard-Stratonovich transformation.



The relevant identity is

o 2 o | o 2 7
e%fﬂ d xeﬂyepgTﬂpTU x J@h e—T&jﬂeﬂ”ep hﬂphwd x+f% d thT”” .

By the definition of stress energy tensor 1

s the second term is equivalent to an infinitesimal change in the metric:

8 = 5/41/ hﬂy.

The infinitesimal parameter or appears in the action as 1/or.
Since or — 0, the “gravity”’ sector is dominated by the saddle-point.
n principle, the functional integral should be taken over all possible geometries, including those with non-zero curvature.

However, by computing the variation of the Ricci curvature and imposing the conservation of the stress-energy tensor,
one can show that it is sufficient to restrict to diffeomorphisms.



2) The TT- deformation of a generic field theory is equivalent to coupling the undeformed
field theory to d=2 ghost-free massive gravity (Tolley ’19).

- Sol @, e/j‘] is an arbitrary undeformed action, where ¢ indicates a generic collection of matter fields.
- ¢, denotes an auxiliary dynamical zweibein, with associated metric g, = nabe/fef :

- ¢, is coupled to a second zweibein f, , associated to the metric tensor /,, = 1,,f, fyb :

. f;f will eventually emerge as the metric of the manifold on which the TT deformed theory lives.

Then, the 7T deformation can be generated from the action:

S, [, €2, 21 = Solh, €] + Sl 71,



Where the topological gravity action is:

T

q a faj - 1 d2 UL a ax( ,b D
grav[e 9.][”] = 2_ X€ eab(e'u _f/,t)(ey _fy)a

The deformed action is obtained by extremising the total action S®[¢, ¢

, €, f,,] with respect to the auxiliary zweibein e,,.

U

Denoting the solution of the equation of motion by e*fj, then:

8107 =510, 0% 0



3) Field-dependent coordinate transformation.
(Conti et al. ’18, Coleman-Aguilera Damia-Freedman-Son, ’19)

The deformed theory is related to the original theory by a field-dependent coordinate transformation.

The deformed theory can be reformulated as

d2

L (Lo W) — 1070, (J;=awi, )

S = JdQWET = J
det J

where x and w are coordinates for the original and the deformed theory, respectively.
They are related by a field-dependent coordinate transformation involving the stress—energy tensor:

dw* = dx* — TG’M’Bé’OwTOdeXU :

This also implies that the 77-deformed solutions of the equations of motion may be constructed directly from
the undeformed solutions through the corresponding transformation:

P(x.7) = PW().0). / \ / \




Deformed solutions (NLS - Peregrine’s solutions)
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4) Any TT-deformed field theory is dynamically equivalent to the corresponding undeformed theory coupled
to flat Jackiw—Teitelboim gravity. (Dubovsky-Gorbenko-Mirbabayi °17)

SM,T it SM -+ /d2X\/ = (QOR — A2) T X A2_1

5) TT-deformed and the light-cone gauge (Frolov ’19)

- It gives a direct relation between the condition of the gauge invariance of the target space-time energy and
momentum of a (non-critical) string theory quantised in a generalised uniform light-cone gauge which depends on the
deformation parameter and homogeneous inviscid Burgers equation associated to the evolution of the finite-size

spectrum under the 77 perturbation.



The root-77 deformation

A novel classically marginal deformation in d=2, was recently introduced, and denoted root-77,

1 1
d},ff(}/) = \/ETM T//w = ZTMﬂT o

It commutes with the 77 deformation

Z(0,0) — Z(0,7)

0,02 (y,7) = 0.0,L(7,7). g(} )+ 7 (}’lf)

It corresponds to a change of the metric, but not to a global change of coordinates.

(Conti et al., Ferko-Sfondrini-Smith-Tartaglino Mazzucchelli, Babaei Aghbolagh-Babaei Velni-Mahdavian Yekta

-Mohammadzadeh)
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Exact Quantum Integrability: S-matrix and CDD ambiguity

Consider a relativistic integrable field theory with factorised scattering:

02) A (61)

S%l(ﬁl =0 — v\

A0 A(62)

Castillejo-Dalitz-Dyson ambiguity: Sf_”jl(()) — S,ffjl(()) i0i; " (0)

The simplest possibility, consistent with the crossing and unitarity relations is:

51(7)(9) = 60 (m, m;j,0) = 7 m;m; sinh(6)

(Aliosha Zamolodchikov, Mussardo-Simon, Dubovsky-Flauger-Gorbenko, Caselle et al.)
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CDD-deformed Conformal Field Theories

The deformed energy, obtained introducing the CDD factor in the Thermodynamic Bethe Ansatz equations, is:

E(R,7) = EY)(R,7) + EC)(R, T)

L B o _ cer\ | [2m(no — 7o)\
o Vi g (n0+n0 12)+(

Coig = C — 24 A (primary)

which matches the form of the (D=26, c, = 24) Nambu-Goto spectrum. However, this result
holds for a generic CFT!

(Dubovsky-Flauger-Gorbenko ‘12, Caselle-Gliozzi-Fioravanti-RT ’13)
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Quantum 7'7-deformations on infinite cylinder of circumference R

0. (v) =det(T,(v)) — 0n|H(7)|n) = (n|det(T,,(7))]|n).

Assuming the validity of Zamolodchikov’s factorisation property also for the fully deformed theory, one can derive closed
flow equations for the finite-volume spectrum.

(n| det(T,w(T)) |n) = (n| Ty |n)(n|Ty|n) —(n|T|n)(n|T,|n),

with

E,(R,7) = —R{n|Tas |n) , OrEx(R,7) = — (n|T11|n) , Po(R) = —1R (n|Ti2 |n)

and

2|



The inviscid Burgers equation for the quantum spectrum

P(R)

0.E (R,7) = E (R,7) 0pE (R, 7)

0 5 E(R91) = E[R+7E(R,1),0)

(The same result was obtained using the TBA/NLIE together with a set of relations that can essentially be

regarded as the quantum version of the ‘uniform light-cone’ approach to the TT-deformation introduced by
Frolov.)
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E(R)

(Typical 7 = O finite-volume spectrum)
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A possible quantum interpretation:

Point particles =====p Finite size particles k/
Cardy-Doyon )

82

e R

deformation
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(Jiang)
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TT and AdS/CFT

TT deformations provide an exactly solvable example of irrelevant flows in 2D QFT.
In AdS/CFT, for 7 < 0O, they correspond to introducing a finite radial cutoff with Dirichlet boundary conditions.

In black hole backgrounds, as the cutoff approaches the outer horizon, the spectrum becomes complex — signaling
instabilities and loss of unitarity.

— the complex energy levels are not part of the spectrum.

T
%ﬁﬂﬂ;i; >

(McGough-Mezei-Verlinde ‘16, Guica-Monten ’19)



YM, on the sphere TT - perturbed

In YM,, for a theory on the sphere, it has been shown that the energy levels which develop singularities
(in this case, pole singularities) disappear from the spectrum for z > 0 .

The correct regularisation of the partition function for 7 < 0O, involving instanton-like subtractions, was

also identified.
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TT in d>2
(Stress-energy tensor deformations)

- They can be always interpreted as metric deformations.
- Connections with modified gravity models emerge, in particular with massive gravity.
. TT-deformed theory can be coupled to Einstein gravity.

- There are connections with nonlinear electrodynamics and the so-called Modified Maxwell theory (ModMax).

(Taylor, Cardy, Conti, Romano, Morone, Negro, Ferko, Sethi, Bielli, Smith, Sorokin, Tartaglino-Mazzucchelli, Kuzenko, L.echner,
Tsolakidis, Blair, Lahnsteiner, Obers, Yan, Babaei-Aghbolagh, He, Ouyang, Hou.,... )



The Born-Infeld lagrangian is:

72 = -
o s \/1 g T <F””FW)

Aol 2T

9

this Lagrangian describes the effective dynamics of the gauge field on the worldvolume of a D3-brane in string theory,
and the parameter 7 &< 1/7, where T is the tension of the brane.

We have 07 p/(7) ol <T(T>WT<T> : l(TW )2> .
aT 8 122% 2 K

Another interesting and recently discovered model of non-linear electrodynamics is the Modified Maxwell (ModMax)
theory, described by the Lagrangian

1 : 2 S
) = - (—cosh(y)F””F o smh(y)\/ (F””F W) 4 <F i g W) ) . (Bandos, Lechner, Sorokin, Townsend ’20)

Unique, nonlinear duality-invariant conformal extension of Maxwell’s theory!



Similarly, the ModMax Lagrangian satisfies the d=4 version of the so-called root-77T flow equation

e
: = 5\/ TWw Tg;) : (Babaei-Aghbolagh, Velni, Yekta, Mohammadzadeh)
¢
where
A 1 .
. = — — g,pr .

Like ordinary Maxwell theory, both the Born—Infeld and ModMax theories also possess invariance under electric—
magnetic duality rotations.



Quadratic stress-energy tensor deformations

Consider the family of deformations defined by the flow equation

1
0.2() = 69d, 1) = > (T(T)””T/f;) i (T(T)”ﬂ)2> ]

Then, denoting the deformed metric by h/ftz), such that h/g‘) = &,,» one has

(7)
A - 2 <T<r> _ 7@a h(r)) .
dt d 5 "

This nonlinear equation can be again exactly-solved using the method of characteristics:

2T
d

o (—T/g(;) + rT(‘))“agW) + O(7?).
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- For the d=2 TT perturbation, this expansion truncates at second order in 7, reproducing the known result previously quoted.

- In d=4, iff the matrix 77 has only two independent eigenvalues each of multiplicity 2, the series truncates at first order.

Under the change of metric we have:

Sihus ) = {Slge#) - ¢ | dley/TeT 0700 }|

g=g(h)

which generalises to arbitrary dimensions the results obtained from the geometrical interpretations in d=2.

- |



Thank you for your
attention!



