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String amplitudes, Effective Field Theory and gravity

1. select relevant degrees of freedom (gij ,Bij , ϕ)

2. identify their symmetries

▶ diffeomorphisms, and

▶ Abelian gauge transformations

3. expand action by writing all terms allowed by symmetries (α′)

Rijk
l , Hijk = 3∂[iBjk ], ϕ, ∇i building blocks

4. fix their coefficients my matching the amplitudes
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1. select relevant degrees of freedom (gij ,Bij , ϕ)

2. identify their symmetries

▶ diffeomorphisms, and

▶ Abelian gauge transformations

3. expand action by writing all terms allowed by symmetries (α′)

Rijk
l , Hijk = 3∂[iBjk ], ϕ, ∇i building blocks

4. fix their coefficients my matching the amplitudes

S =
2π

(4π2α′)4

∫
dxd √−ge−2ϕ

[
R + 4∇iϕ∇

iϕ+ 1
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α′2 60 bos., het.
α′3 872 all

▶ string loop corrections (gs = eϕ)

∼ g2g−2+n
s

∼ g3
s=

α
′

gs0 ∞

∞

Expansion in α′ and gs! We know only

▶ leading orders in supergravity

▶ thanks to holography a bit more

How to go beyond?
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Idea: spontaneously broken symmetries

1. select relevant degrees of freedom

2. identify their symmetries*)

3. ...

▶ fermionic
▶ hidden
▶ spontaneously broken

additional symmetries

Coset construction (non-linear realization)

▶ G = the full symmetry group

▶ H = residual symmetries after spontaneous breaking

▶ introduce Mauer-Cartan form Ω = g−1dg for g ∈ G/H

▶ expand it in broken generators ta as Ω = Ωa ta + . . .

Lagrangian

L = L(Ωa ,Da)
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Hypothesis

α′-corrections in supergravity might be governed
by the infinite dimensional G=Poincaré∞ group.

▶ What is this group?

Avoid new, unphysical degrees of freedom!

▶ HOW?

By having some kind of a coset construction!
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Degrees of freedom in linearized gravity. Part I: the complex useful relations

gij = ηabea
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εa = εai dx i

▶ frame field ea
i = δai + εai

▶ symmetries δεa = dξa + Λa
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Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]
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▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for the exact sequence

0 Λab εai 0τ

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for the exact sequence

∅
Λab εai

×
0τ

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for the exact sequence

∅
Λab εai

+
0τ

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for the exact sequence

∅
Λab εai

+
0τ

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi



7/13

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]

ξa εa Ta BI(Ta) · · ·

Λa
b ωa

b Ra
b BI(Ra

b) · · ·

Ca
b BI(Ca

b) · · ·

d

τ

▶ compute cohomology for all diagonal exact sequences

▶ only with Weyl tensor cohomology classes of εa and Ra
b match

▶ after imposing torsion constraint (Ta = 0), we get

gauge dof eom Bianchi
=

0



8/13

The background independent version and Cartan geometry
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▶ only input is model space G/H
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Poincaré algebra

Pa translations
Mab Lorentz transformations
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ê = ea
i Padx i + ωabMab Cartan connection

▶ substituting ε̂→ ê in the chain
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ê = ea
i Padx i + ωabMab Cartan connection

▶ substituting ε̂→ ê in the chain
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three-form field strength
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▶ gauge transformation
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▶ gauge transformation for the gauge transformation

δφ = dχ
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χ ξA
D

▶ gauge transformation

δB = dφ+ LξB , with combined parameter ξA =
(
ξa φa

)
▶ gauge transformation for the gauge transformation

δφ = dχ

• +
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Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulik, Osten 24]

χ̂ ξ̂ Ê T̂ BI(T̂) · · ·
D̂

ξ Λ E ω ρ

▶ new connection ρ with corresponding curvature

▶ model space is double coset H̃\G/H generated by

. . . t̃ABC t̃AB PA tAB tABC . . .

▶ specified by a symmetric, invariant bilinear form κ on Lie(H)



10/13
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A skyline and an evaded no-go theorem

▶ admissible κ’s are parameterized by κ = κ(a, b , c, d, e, f , . . .)

▶ each parameter creates a tower of α′-corrections

▶ no-go for α′3-tower from deformed O(d)×O(d) symmetry [Hsia, Kamal, Wulff 24]

No problem, we don’t need this symmetry!

have to be there [Achilleas Gitsis, FH 24]
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[Achilleas Gitsis, FH 24]
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