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String amplitudes, Effective Field Theory and gravity
1. select relevant degrees of freedom (9i» Bjj» ¢)

2. identify their symmetries

» diffeomorphisms, and

> Abelian gauge transformations
3. expand action by writing all terms allowed by symmetries (@)
Rix', Hik = 30|iBjy. ®, \/ building blocks
4. fix their coefficients my matching the amplitudes
2n

S = m ded \/—ge_2¢ [R + 4V,¢V’¢ + .I‘I—ZH,IKHUK + Cl/(. . ) +.. ]
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Challenges

» explosion of terms > string loop corrections (gs = €?)

| coeff. | theories
013 all

(04

o] 8 bos., het.
a? | 60 bos., het.
a® | 872 all

Expansion in o’ and g;! We know only

> leading orders in supergravity

> thanks to holography a bit more

How to go beyond?
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Idea: spontaneously broken symmetries

1. select relevant degrees of freeq

2 . . . . *) Ie”“Iellle

Yoichiro Nambu, 1965



Idea: spontaneously broken symmetries

1. select relevant degrees of free
. > fermionic
2. identify their symmetries’
y y \ > hidd
3. ... > spontaneously broken

Coset construction (non-linear realization)

> @G = the full symmetry group

» H = residual symmetries after spontaneous breaking Lagrangian

» introduce Mauer-Cartan form Q = g~'dg for g € G/H L =L(Q2D,)

> expand it in broken generators t, as Q = Q%t, + ...
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Avoid new, unphysical degrees of freedom'é[ Batalin-Vilkovisky (BV) formalism ]
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Degrees of freedom in linearized gravity. Part I: the complex

> frame field
> symmetries
> spin-connection

> torsion

e?d =42 a
T d(ae)
06 = dé? + N?pdx®

6wl = dN3y

T2 = ds? 4+ w?p A dxP
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Degrees of freedom in linearized gravity. Part I: the complex

» frame field e? =62 + &2
TS ()
> symmetries 66 = dé? + N3pdxP
> spin-connection ow?p = dN%p
T(w?)

> torsion T2 = d&? 4+ 0 A dxP
> curvature R?p = dw?y
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» frame field e? =62 + &2
TS ()
> symmetries 66 = dé? + N3pdxP
> spin-connection ow?p = dN%p
T(w?)
> torsion T2 = d&? 4+ 0 A dxP
> curvature R2p, = dw?
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Aab > >
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s
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Degrees of freedom in linearized gravity. Part I: the complex useful relations

. b
» frame field e? = 67 + &2 t(A%) gij = Nab€;'€;
> symmetries 5e? = de? + NpdxP &% = £2dx’
. . a _ a Al
> spin-connection owp = dA\%p () Vief =0
> torsion T2 = d&? 4+ 0 A dxP
> curvature R2p, = dw?
£ BI(T®) ——
/ / / / 2 -0
Aab N N ab S BI ) _ »
/ T

d d=0
b%BICab)—) oT+ToO
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g s .

» compute cohomology for the exact sequence

N Aab i Eaj N 0
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Degrees of freedom in linearized gravity. Part Il: cohomology isee i.e. vasitiev 05]

O (1]
£ 5

/\ab } wab

» compute cohomology for all diagonal exact sequences

» only with Weyl tensor cohomology classes of €2 and R4, match



Degrees of freedom in linearized gravity. Part Il: cohomology isee i.e. vasitiev 05]

H [T T

£ d y ga y _Ta s BI(T3) —>
/: //Dj /: - /:

A2y S Wi —R?, —BI(R%,) ——>

» compute cohomology for all diagonal exact sequences
» only with Weyl tensor cohomology classes of €2 and R4, match
> after imposing torsion constraint (T2 = 0), we get

gauge —— dof — eom —— Bianchi
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The background independent version and Cartan geometry

> idea: compress complex into a chain Poincaré algebra
N a ab P, translations
§=&Pa+ N Map Mg  Lorentz transformations
3
£ g2 —— T8 — BI(T?)

////

Np —— w?y ——> R3% —— BI(R%)

S

Cq, —— BI(C?%,)




The background independent version and Cartan geometry

> idea: compress complex into a chain

&= ¢Pa+ NMas ,

e

é_-a

Nap

l

N~

e

\/

& =8Py + w*Mgp

>

g4 T8 —— BI(T9)
w?, — R%, —— BI(R%,) ——

//

Cq, —— BI(C?%,)



The background independent version and Cartan geometry

> idea: compress complex into a chain

E=8P+ NMy,,  £=6Py+ w®My,
¢ —— &

ga J) 8

Nap

C% — BI(C%) — >
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> idea: compress complex into a chain
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> and use exterior derivative
d=d+eén with

é = ePadx' + w® My Cartan connection

e
\|/O->
>
e I
ov]

=
14



The background independent version and Cartan geometry

> idea: compress complex into a chain
E=EP,+ NPMy,  &=6%Py+ w®My,
> and use exterior derivative
d=d+eén with

é = ePadx' + w® My Cartan connection

> substituting & — & in the chain

e
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The background independent version and Cartan geometry

> idea: compress complex into a chain
E=EPy + NPMyy,  &=6Pa+ 0P My,
» and use exterior derivative
d=d+eén with

é = ePadx' + w® My Cartan connection

> substituting & — & in the chain

» only input is model space G/

¢ —4 5 & — » T — s BI(T) ——
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Where is the Poincaré.,?

) o minimal coupling

—fB, B = 1Bapdx? A dxP

Xé(1,0)
three-form field strength
H=dB
> gauge transformatio/ diffeomorphism

0B =dp+ LB
> gauge transformation for the gauge transformation

op =dy



Where is the Poincaré.,?

. O0+0
X —2— éa

> gauge transformation
6B =dgp + LB, with combined parameter ¢4
> gauge transformation for the gauge transformation

op =dy

(&2 ¢a)



Where is the Poincaré.,?

. D+i

X > & > EAB > TaBc ———— ...

o T

Aap —— wapc —— Rapecp — ...

> gauge transformation
6B =dp+ LB,  withcombined parameter &4 =(£2 ¢a)
> gauge transformation for the gauge transformation

op =dy
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Where is the Poincaré.,?

. D+D COxT+ e
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X 0 > En > EAB > Tapgg ———— ...
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e

WABCD
AaBc 1 S .
PABCD

1]
_l’_
awes|

~

swes|

- J
fixed by generalized Cartan geometry




Where is the Poincaré.,?

. HESE COxT+ e
e N
X 0 > &n > EAB > TaABc ———— ..,
T —
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D /
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1+§ Assc | >
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- J
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Where is the Poincaré.,?

. HESE CxC+e
'
X D > En > EAB > TaABc —— ...
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o /
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H% Aagc ——
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fixed by generalized Cartan geometry
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Relevant features of generalized Cartan geometry (poiacek, siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulik, Osten 24]

y & ° . E
/NN
& N E w p

s T s BI(T) ———

X

> new connection p with corresponding curvature
» model space is double coset H\G/H generated by

e B Pa taB taBc

fixed by 72 = 0 & cohomology

> specified by a symmetric, invariant bilinear form « on Lie(H)
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A tower of corrections
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A tower of corrections
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A tower of corrections
D
X — éa
RYg = dw)+ tp > A°

Z[wfq,a/é]lto + ...
ij t; A

non-linear terms from gen. Cartan
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A tower of corrections

X — £a

RYg = dw)+ tp > A°
Z[w%,ij]ho + ...
ij t; A

H is graded (x vanishes)
b > N2

[ti, ] C tiyj

no a’-corrections

INININTN
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A tower of corrections
D
X — éa

R = dw)+ fo 5 A\

Z[wk,w’é]lm + ...
ij t; A

H is a filtration (x non-zero)

61 | t

k<i+j

b 5 N2

a tower of o’-corrections arises
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A skyline and an evaded no-go theorem

> admissible «’s are parameterized by k = «(a,b.c,d.e.f,...)

very likely (WIP)

have to be there [Achileas Gitsis, FH 24]



A skyline and an evaded no-go theorem
> admissible «’s are parameterized by k = «(a,b.c,d. e.f,...)

> each parameter creates a tower of a’-corrections

known from generalized Bergshoeff-de Roo identification

[Bergshoeff, de Roo 89; Marques, Nunez 2015; Baron, Lescano, Marques 2018; Baron, Marques 2022]
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A skyline and an evaded no-go theorem
> admissible «’s are parameterized by « = «(a, b, c,d.e.f,...)
> each parameter creates a tower of a’-corrections
> no-go for ’3-tower from deformed O(d)xO(d) symmetry psia, kama, wu 24

No problem, we don’t need this symmetry!

__________________________________ - 1
a.b currently 5
——————————————————————— -3 _
cd | theories
- @0 | all
1
bos., het.
ef @ ’
@’? | bos., het.
£(3) £(5) e o | all
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generalized Cartan geometry:
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Where to go from here?

field theory
membranes symmetry

geometry

exceptional Cartan geometry: rH, vuno sakatani 23]

tensor hierarchy
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X > E >
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