

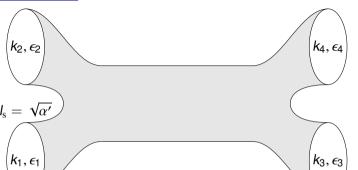
massless modes

 $\begin{array}{ll} \text{metric} & g_{ij} \\ \text{gauge potential} & B_{ij} \\ \text{dilaton} & \phi \end{array}$

:

$$\mathcal{A}^{\text{tree}}(s,t,u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1-\alpha's)\Gamma(1-\alpha't)\Gamma(1-\alpha'u)}{\Gamma(1+\alpha's)\Gamma(1+\alpha't)\Gamma(1+\alpha'u)} \mathcal{R}^4$$

$$= g_s^2(\alpha')^2 \left[\frac{1}{stu} + 2\zeta(3)(\alpha')^3 + \zeta(5)(\alpha')^5(s^2 + t^2 + u^2) + \dots \right] \mathcal{R}^4$$



massless modes

metric g_{ij} gauge potential g_{ij} dilaton ϕ

$$k_2, \epsilon_2$$
 k_4, ϵ_4
 k_1, ϵ_1
 k_3, ϵ_3

$$\mathcal{A}^{\text{tree}}(s,t,u) = g_s^2 \frac{(\alpha')^4}{stu} \frac{\Gamma(1-\alpha's)\Gamma(1-\alpha't)\Gamma(1-\alpha'u)}{\Gamma(1+\alpha's)\Gamma(1+\alpha't)\Gamma(1+\alpha'u)} \mathcal{R}^4$$

$$= g_s^2(\alpha')^2 \left[\frac{1}{stu} + 2\zeta(3)(\alpha')^3 + \zeta(5)(\alpha')^5(s^2 + t^2 + u^2) + \dots \right] \mathcal{R}^4$$

1. select relevant degrees of freedom

 (g_{ij}, B_{ij}, ϕ)

1. select relevant degrees of freedom

 (g_{ij},B_{ij},ϕ)

- 2. identify their symmetries
 - ▶ diffeomorphisms, and
 - Abelian gauge transformations

1. select relevant degrees of freedom

 (g_{ii}, B_{ii}, ϕ)

- 2. identify their symmetries
 - diffeomorphisms, and
 - Abelian gauge transformations
- 3. expand action by writing all terms allowed by symmetries

 (α')

$$R_{ijk}'$$
,

$$R_{ijk}^{\ \ \ \ \ }, \qquad H_{ijk} = 3\partial_{[i}B_{jk]}, \qquad \phi, \qquad \nabla_i$$

$$\nabla_i$$

building blocks

$$S = \frac{2\pi}{(4\pi^2\alpha')^4} \int \mathrm{d}x^d \sqrt{-g} e^{-2\phi} \left[\frac{\mathbf{c_1}}{R} + \frac{\mathbf{c_2}}{\nabla_i \phi} \nabla^i \phi + \frac{\mathbf{c_3}}{\partial_i H_{ijk}} H^{ijk} + \alpha'(\dots) + \dots \right]$$

1. select relevant degrees of freedom

 (g_{ii}, B_{ii}, ϕ)

- 2. identify their symmetries
 - diffeomorphisms, and
 - Abelian gauge transformations
- 3. expand action by writing all terms allowed by symmetries

 (α')

$$R_{ijk}'$$
,

$$R_{ijk}^{\ \ \ \ \ }, \qquad H_{ijk} = 3\partial_{[i}B_{jk]}, \qquad \phi, \qquad \nabla_i$$

$$\nabla_i$$

building blocks

4. fix their coefficients my matching the amplitudes

$$S = \frac{2\pi}{(4\pi^2\alpha')^4} \int \mathrm{d}x^d \sqrt{-g} e^{-2\phi} \left[R + 4\nabla_i \phi \nabla^i \phi + \frac{1}{12} H_{ijk} H^{ijk} + \alpha'(\dots) + \dots \right]$$

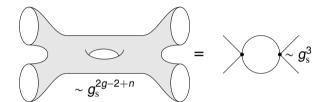
explosion of terms

	coeff.	theories
α'^0	3	all
α'^1	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

explosion of terms

	coeff.	theories
α'^0	3	all
$lpha'^1$	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

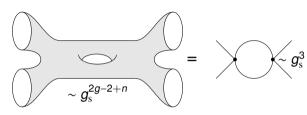
• string loop corrections ($g_{
m s}=e^{\phi}$)

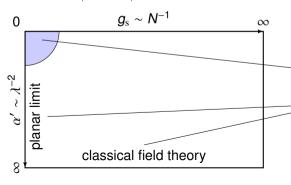


explosion of terms

	coeff.	theories
α'^0	3	all
$lpha'^1$	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all

• string loop corrections ($g_{\rm s}=e^{\phi}$)



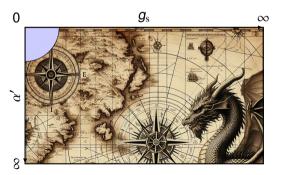


Expansion in α' and $g_s!$ We know only

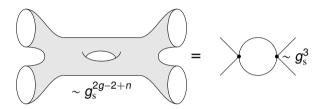
- leading orders in supergravity
- thanks to holography a bit more

explosion of terms

	coeff.	theories
α'^0	3	all
$lpha'^1$	8	bos., het.
α'^2	60	bos., het.
α'^3	872	all



• string loop corrections ($g_{\rm s}=e^{\phi}$)



Expansion in α' and $g_s!$ We know only

- leading orders in supergravity
- thanks to holography a bit more

How to go beyond?

Idea: new symmetries

- 1. select relevant degrees of free
- 2. identify their symmetries*)
- 3. ...

additional symmetries

- fermionic
- hidden
- spontaneously broken

Idea: spontaneously broken symmetries

- 1. select relevant degrees of free
- 2. identify their symmetries*)

3. ...

additional symmetries

- fermionic
- hidden
- spontaneously broken

Yoichiro Nambu, 1965

Idea: spontaneously broken symmetries

- 1. select relevant degrees of freed
- 2. identify their symmetries*)
- 3. ...

- additional symmetries
 - ► fermionic
 - hidden
 - spontaneously broken

Coset construction (non-linear realization)

- ► *G* = the full symmetry group
- ► *H* = residual symmetries after spontaneous breaking
- ▶ introduce Mauer-Cartan form $\Omega = g^{-1}dg$ for $g \in G/H$
- expand it in broken generators t_a as $\Omega = \Omega^a t_a + \dots$

Lagrangian

$$L = L(\Omega^a, D_a)$$

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_\infty$ group.

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_{\infty}$ group.

What is this group?

Avoid new, unphysical degrees of freedom!

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_{\infty}$ group.

What is this group?

Avoid new, unphysical degrees of freedom!

► HOW?

By having some kind of a coset construction!

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_{\infty}$ group.

What is this group?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

► HOW?

By having some kind of a coset construction!

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_{\infty}$ group.

► What is this group?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

► HOW?

By having some kind of a coset construction!

Cartan geometry

 α' -corrections in supergravity might be governed by the infinite dimensional G=Poincaré $_{\infty}$ group.

What is this group?

Avoid new, unphysical degrees of freedom!

Batalin-Vilkovisky (BV) formalism

► HOW?

By having some kind of a coset construction!

Cartan geometry

useful relations $g_{ij} = \eta_{ab} e^a_i e^b_i$

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

$$\delta \varepsilon^{a} = \mathrm{d} \xi^{a} + \Lambda^{a}{}_{b} \mathrm{d} x^{b}$$

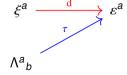
$$\varepsilon^a = \varepsilon^a_i \mathrm{d} x^i$$

► frame field

$$e_i^a = \delta_i^a + \varepsilon_i^a$$

symmetries

 $\delta \varepsilon^{a} = \mathrm{d} \xi^{a} + \Lambda^{a}{}_{b} \mathrm{d} x^{b}$



$$g_{ij}=\eta_{ab}e^a_ie^b_j$$

$$\varepsilon^a = \varepsilon^a_i \mathrm{d} x^i$$

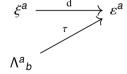
frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b \qquad \tau(\Lambda^a{}_b)$

symmetries

spin-connection

 $\delta \omega^{a}_{b} = d\Lambda^{a}_{b}$



$$g_{ij} = \eta_{ab} e^a_i e^b_j$$

$$\varepsilon^a = \varepsilon^a_i \mathrm{d} x^i$$

$$\nabla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b \qquad \tau(\Lambda^a{}_b)$

symmetries

spin-connection

 $\delta\omega^a{}_b = d\Lambda^a{}_b$

$$\xi^{a} \xrightarrow{\tau} \varepsilon^{a}$$

$$\Lambda^{a}{}_{b} \xrightarrow{\tau} \omega^{a}{}_{b}$$

$$g_{ij} = \eta_{ab} e_i^a e_j^b$$
 $\varepsilon^a = \varepsilon_i^a dx^i$

$$\nabla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b \qquad \tau(\Lambda^a{}_b)$

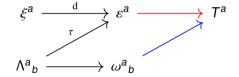
symmetries

torsion

 $\delta\omega^{a}{}_{b} = d\Lambda^{a}{}_{b}$

► spin-connection

 $T^{a} = \mathrm{d}\varepsilon^{a} + \omega^{a}{}_{b} \wedge \mathrm{d}x^{b}$



$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

 $\varepsilon^a = \varepsilon_i^a dx^i$

$$abla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^a = d\xi^a + \Lambda^a{}_b dx^b \qquad \tau(\Lambda^a{}_b)$

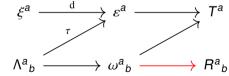
symmetries

spin-connection

 $\delta \omega^a{}_b = d\Lambda^a{}_b$

torsion

 $R^a{}_b = d\omega^a{}_b$



$$g_{ij} = \eta_{ab} e^a_i e^b_j$$
 $\varepsilon^a = \varepsilon^a_i \mathrm{d} x^i$

$$\nabla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^{a} = \mathrm{d} \xi^{a} + \Lambda^{a}{}_{b} \mathrm{d} x^{b} \qquad \tau(\Lambda^{a}{}_{b})$

symmetries

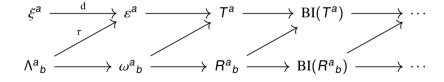
spin-connection

 $\delta \omega^a{}_b = d\Lambda^a{}_b$

torsion

curvature

 $R^a{}_b = d\omega^a{}_b$



$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

 $\varepsilon^a = \varepsilon_i^a dx^i$

$$abla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^{a} = \mathrm{d} \xi^{a} + \Lambda^{a}{}_{b} \mathrm{d} x^{b} \qquad \tau(\Lambda^{a}{}_{b})$

symmetries

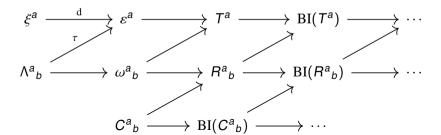
spin-connection

 $\delta \omega^a{}_b = d\Lambda^a{}_b$ $T^a = \mathrm{d}\varepsilon^a + \omega^a{}_b \wedge \mathrm{d}x^b$

torsion

 $R^a{}_b = d\omega^a{}_b$

curvature



$$g_{ij} = \eta_{ab} e_i^a e_j^b$$

 $\varepsilon^a = \varepsilon_i^a dx^i$

$$\nabla_i e^a_j = 0$$

frame field

 $e_i^a = \delta_i^a + \varepsilon_i^a$ $\delta \varepsilon^{a} = \mathrm{d} \xi^{a} + \Lambda^{a}{}_{b} \mathrm{d} x^{b} \qquad \tau(\Lambda^{a}{}_{b})$

symmetries

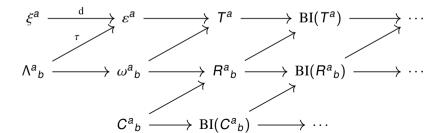
spin-connection

 $\delta \omega^a{}_b = d\Lambda^a{}_b$ $T^a = \mathrm{d}\varepsilon^a + \omega^a{}_b \wedge \mathrm{d}x^b$

torsion

curvature

 $R^a{}_b = d\omega^a{}_b$



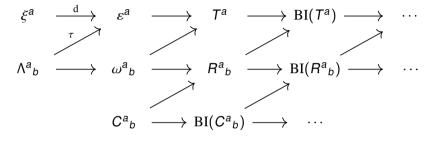
$$g_{ij} = \eta_{ab} e^a_i e^b_j$$
 $arepsilon^a = arepsilon^a_i \mathrm{d} x^i$

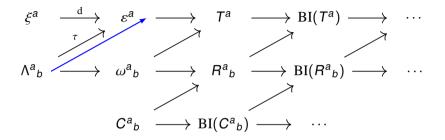
$$\nabla_i e_j^a = 0$$

$$d^2 = 0$$

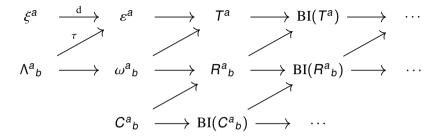
$$\tau^2 = 0$$

$$d \circ \tau + \tau \circ d = 0$$

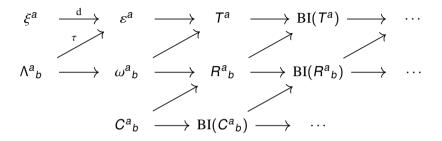


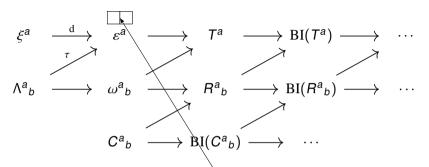


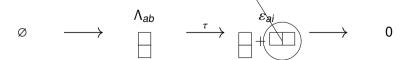
$$0 \longrightarrow \Lambda_{ab} \stackrel{\tau}{\longrightarrow} \varepsilon_{ai} \longrightarrow$$

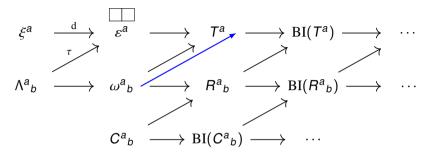


$$arnothing \hspace{0.5cm} \longrightarrow \hspace{0.5cm} egin{pmatrix} \Lambda_{ab} & & & arepsilon_{ai} \ & & & & \square imes \square \end{pmatrix} \hspace{0.5cm} \longrightarrow \hspace{0.5cm} 0$$

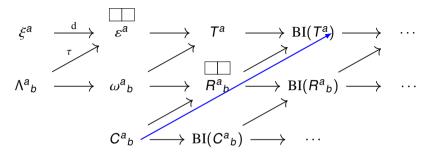






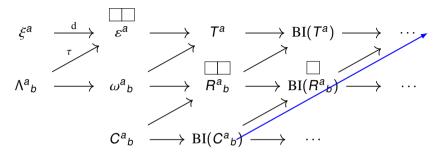


compute cohomology for all diagonal exact sequences



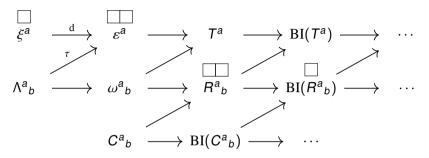
- compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and $R^a{}_b$ match

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



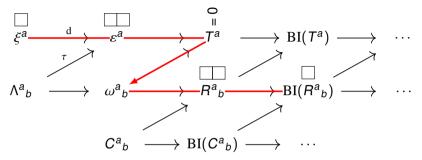
- compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and $R^a{}_b$ match

Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



- compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and $R^a{}_b$ match

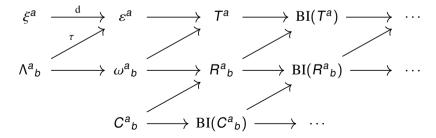
Degrees of freedom in linearized gravity. Part II: cohomology [see i.e. Vasiliev 05]



- compute cohomology for all diagonal exact sequences
- ▶ only with Weyl tensor cohomology classes of ε^a and $R^a{}_b$ match
- after imposing torsion constraint ($T^a = 0$), we get

gauge \longrightarrow dof \longrightarrow eom \longrightarrow Bianchi

idea: compress complex into a chain

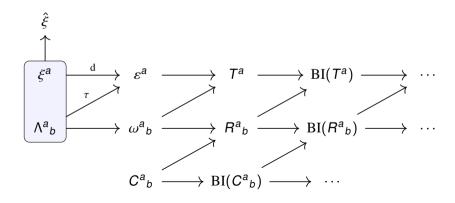


idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}$$

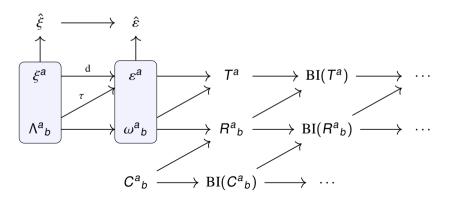
Poincaré algebra

Pa translationsMab Lorentz transformations



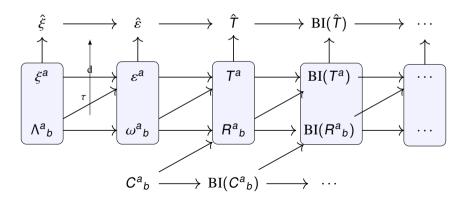
idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \qquad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}$$



▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \qquad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \qquad \dots$$



idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \qquad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \qquad \dots$$

and use exterior derivative

$$\hat{ ext{d}} = ext{d} + \hat{ ext{e}} \wedge \qquad \qquad ext{with} \ \hat{ ext{e}} = ext{e}_i^a P_a ext{d} ext{x}^i + \omega^{ab} ext{M}_{ab} \qquad \qquad ext{Cartan connection}$$

$$\hat{\xi} \xrightarrow{\hat{d}} \hat{\varepsilon} \longrightarrow \hat{\tau} \longrightarrow BI(\hat{\tau}) \longrightarrow \cdots$$

▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \qquad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \qquad \dots$$

and use exterior derivative

$$\hat{ ext{d}} = ext{d} + \hat{ ext{e}} \wedge$$
 with $\hat{ ext{e}} = e_i^a P_a ext{d} x^i + \omega^{ab} M_{ab}$ Cartan connection

• substituting $\hat{\varepsilon} \rightarrow \hat{e}$ in the chain

$$\hat{\xi} \xrightarrow{\hat{\mathbf{d}}} \hat{\mathbf{e}} \longrightarrow \hat{\mathbf{f}} \longrightarrow \mathrm{BI}(\hat{T}) \longrightarrow \cdots$$

▶ idea: compress complex into a chain

$$\hat{\xi} = \xi^a P_a + \Lambda^{ab} M_{ab}, \qquad \hat{\varepsilon} = \varepsilon^a P_a + \omega^{ab} M_{ab}, \qquad \dots$$

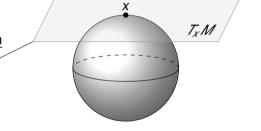
and use exterior derivative

$$\hat{\mathbf{d}} = \mathbf{d} + \hat{\mathbf{e}} \wedge \\ \hat{\mathbf{e}} = \mathbf{e}_{i}^{a} P_{a} \mathbf{d} \mathbf{x}^{i} + \omega^{ab} M_{ab}$$

with

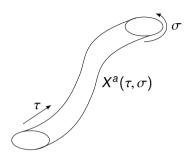
Cartan connection

- substituting $\hat{\varepsilon} \rightarrow \hat{e}$ in the chain
- only input is model space G/H



$$\hat{\xi} \stackrel{\hat{d}}{\longrightarrow} \hat{e} \longrightarrow \hat{T} \longrightarrow BI(\hat{T}) \longrightarrow \cdots$$

Where is the Poincaré_∞?



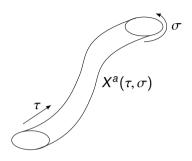
minimal coupling

$$-\int B\,,\qquad B=\tfrac{1}{2}B_{ab}\mathrm{d}x^a\wedge\mathrm{d}x^b$$

three-form field strength

$$H = dB$$

Where is the Poincaré_∞?



minimal coupling

$$-\int B\,,\qquad B={\textstyle\frac{1}{2}}B_{ab}\mathrm{d}x^a\wedge\mathrm{d}x^b$$

three-form field strength

$$H = dB$$

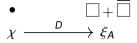
gauge transformation

diffeomorphism

$$\delta B = \mathrm{d}\varphi + L_{\xi}B$$

gauge transformation for the gauge transformation

$$\delta \varphi = \mathrm{d} \chi$$

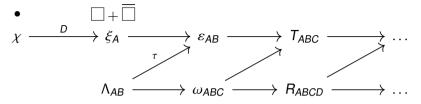


gauge transformation

$$\delta {\cal B} = {
m d} arphi + {\it L}_{\xi} {\it B} \, , \qquad ext{with combined parameter} \qquad \xi^{\it A} = \left(\xi^{\it a} \quad arphi_{\it a}
ight)$$

gauge transformation for the gauge transformation

$$\delta \varphi = \mathrm{d} \chi$$

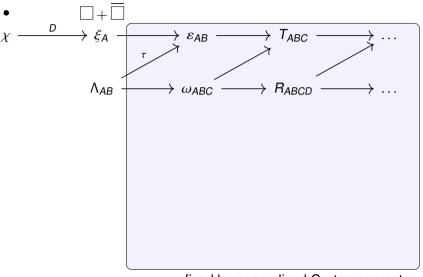


gauge transformation

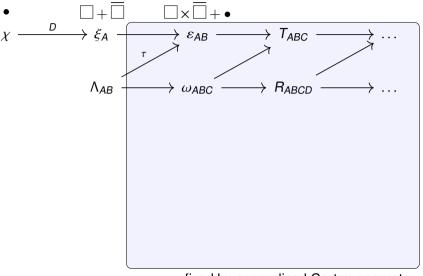
$$\delta {\cal B} = {
m d} arphi + {\it L}_{\! \xi} {\it B} \, , \qquad ext{with combined parameter} \qquad {\it \xi}^{\it A} = \left({\it \xi}^{\it a} \quad {\it arphi}_{\it a}
ight)$$

gauge transformation for the gauge transformation

$$\delta \varphi = \mathrm{d} \chi$$



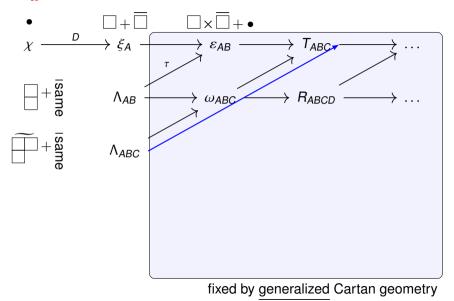
fixed by generalized Cartan geometry

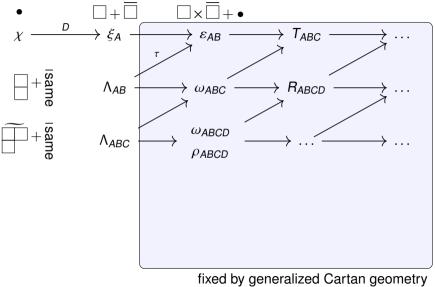


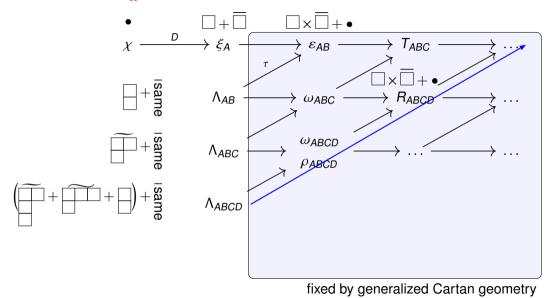
fixed by generalized Cartan geometry

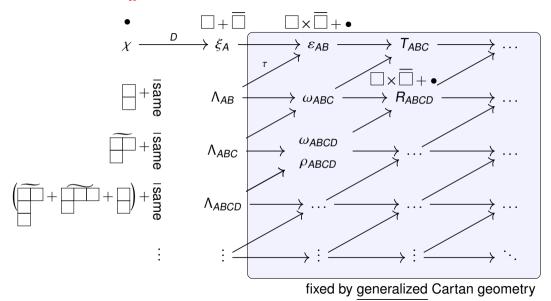
g_{ij}, B_{ij} Where is the Poincaré∞? $\rightarrow \xi_A$ T_{ABC} ε_{AB} R_{ABCD} Λ_{AB} ω_{ABC}

fixed by generalized Cartan geometry





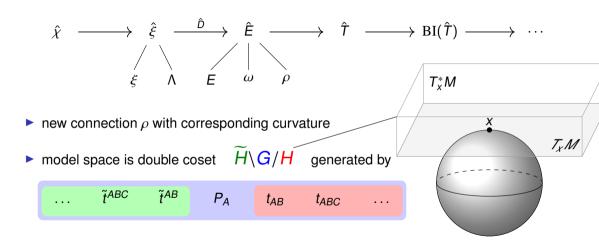




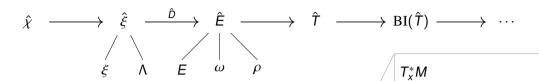
Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hullik, Osten 24]

ightharpoonup new connection ho with corresponding curvature

Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hulik, Osten 24]



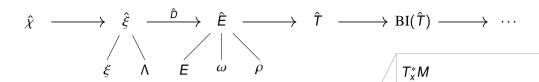
Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hullik, Osten 24]



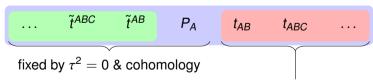
- ightharpoonup new connection ρ with corresponding curvature
- ▶ model space is double coset $\widetilde{H} \setminus G/H$ generated by

fixed by $au^2 = 0$ & cohomology

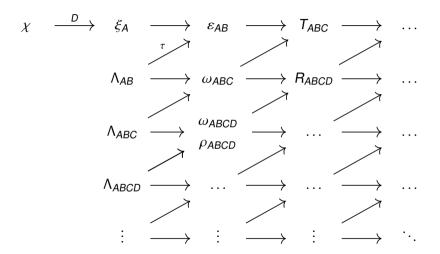
Relevant features of generalized Cartan geometry [Poláček, Siegel 13; Butter, FH, Pope, Zhang 23; FH, Hullik, Osten 24]



- ightharpoonup new connection ρ with corresponding curvature
- ▶ model space is double coset $\widehat{H} \setminus G/H$ generated by



ightharpoonup specified by a symmetric, invariant bilinear form κ on Lie(H)



$$\chi \xrightarrow{D} \xi_{A} \xrightarrow{\tau} \epsilon_{AB} \xrightarrow{T} T_{ABC} \xrightarrow{\cdots} \cdots$$

$$\Lambda_{AB} \xrightarrow{\tau} \omega_{ABC} \xrightarrow{T} R_{ABCD} \xrightarrow{\cdots} \cdots$$

$$\Lambda_{ABC} \xrightarrow{\tau} \omega_{ABCD} \xrightarrow{\rho} \cdots \xrightarrow{\sigma} \cdots$$

$$\omega_{ABCD} \xrightarrow{\rho} \cdots \xrightarrow{\sigma} \cdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \cdots$$

$$\rho^{i-2j-2} = \frac{1}{2} \rho^{A_1...A_iB_1...B_j} t_{A_1...A_i} \wedge t_{B_1...B_j}$$

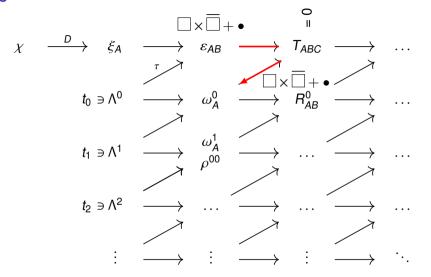
$$\chi \xrightarrow{D} \xi_{A} \xrightarrow{\tau} \varepsilon_{AB} \xrightarrow{T} T_{ABC} \xrightarrow{\cdots} \cdots$$

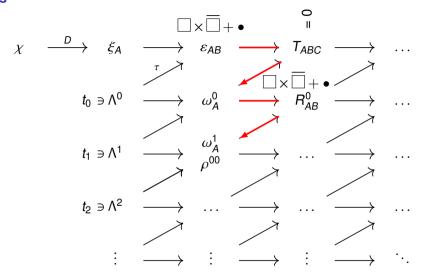
$$t_{0} \ni \Lambda^{0} \xrightarrow{\tau} \omega_{A}^{0} \xrightarrow{T} R_{AB}^{0} \xrightarrow{\cdots} \cdots$$

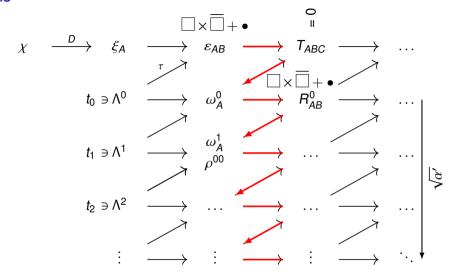
$$\Lambda^{i-2} = \Lambda^{A_{1}...A_{i}} t_{A_{1}...A_{i}} \qquad t_{1} \ni \Lambda^{1} \xrightarrow{\omega_{A}^{1}} \rho^{00} \xrightarrow{\tau} \cdots \xrightarrow{\tau} \cdots$$

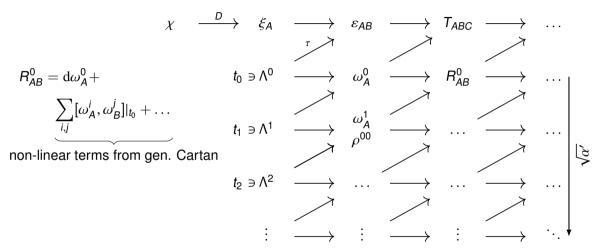
$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \cdots$$

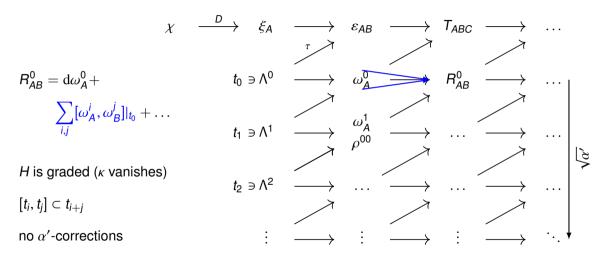
$$\rho^{i-2j-2} = \frac{1}{2} \rho^{A_1...A_iB_1...B_j} t_{A_1...A_i} \wedge t_{B_1...B_j}$$

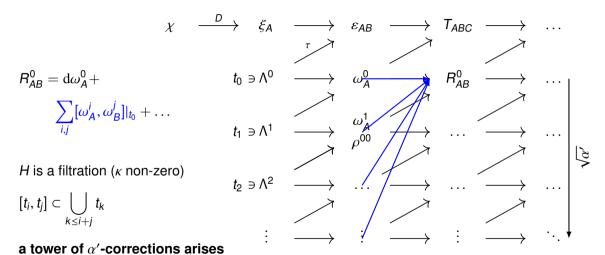












A skyline and an evaded no-go theorem

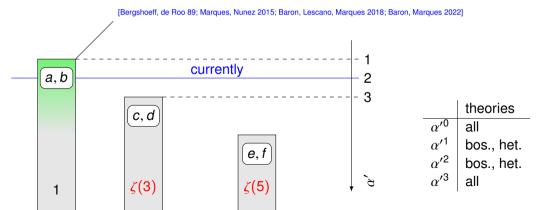
• admissible κ 's are parameterized by $\kappa = \kappa \big(\underline{a,b,c,d,e,f,\ldots} \big)$ very likely (WIP)

have to be there [Achilleas Gitsis, FH 24]

A skyline and an evaded no-go theorem

- admissible κ 's are parameterized by $\kappa = \kappa(a, b, c, d, e, f, ...)$
- \blacktriangleright each parameter creates a tower of α' -corrections

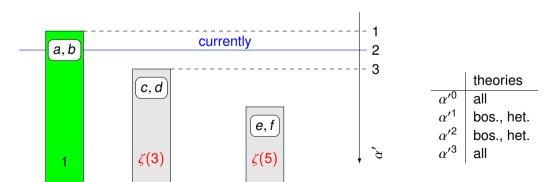




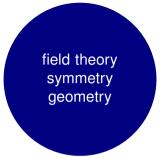
A skyline and an evaded no-go theorem

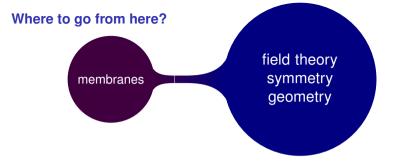
- admissible κ 's are parameterized by $\kappa = \kappa(\underline{a}, \underline{b}, \underline{c}, \underline{d}, \underline{e}, f, \ldots)$
- ightharpoonup each parameter creates a tower of α' -corrections
- ▶ no-go for α'^3 -tower from deformed O(d)×O(d) symmetry [Hsia, Kamal, Wulff 24]

No problem, we don't need this symmetry!

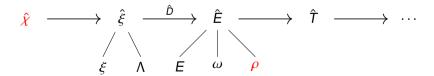


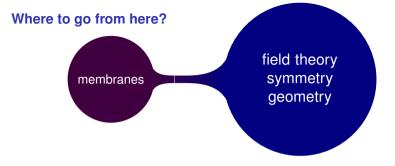
Where to go from here?





generalized Cartan geometry:





exceptional Cartan geometry: [FH, Yuho Sakatani 23]

