

Eurostrings 2025

Nordita, Stockholm

Integration on higher-genus Riemann surfaces and string amplitudes

Oliver Schlotterer (Uppsala University & Centre for Geometry and Physics)

based on joint work with E. D'Hoker, B. Enriquez, M. Hidding and F. Zerbini

August 28th 2025

Thanks a lot for a wonderful conference!

Let's give the organizers an enthusiastic applause!

Pawel Caputa,

Niels Obers,

Michele Del Zotto,

Alessandro Sfondrini,

Magdalena Larfors,

Watse Sybesma,

Pietro Longhi,

Maxim Zabzine,

Anton Nedelin,

Konstantin Zarembo.

... with special thanks to Magdalena Larfors

for her fantastic job as the main organizer!

Thanks a lot for a wonderful conference!

Let's give the organizers an enthusiastic applause!

Pawel Caputa, Niels Obers,

Michele Del Zotto, Alessandro Sfondrini,

Magdalena Larfors, Watse Sybesma,

Pietro Longhi, Maxim Zabzine,

Anton Nedelin, Konstantin Zarembo.

Many many thanks for all the great support of

Jimmie Evenholt, Olga Lekka, Anastasios Mentesidis,

Elvira Pedone, Hans von Zur-Mühlen.

Outline

I. Motivation for integration on Riemann surfaces

- * computational motivation
- * physics motivation

II. Higher-genus polylogarithms

- * from single-valued connection
- * from meromorphic connection
- * link to string amplitudes
- * closure under integration

I. Motivation

Old problem from high-school days: $\int dx$ is harder than $\frac{d}{dx}$

- for rational fct. R(x) of $x \in \mathbb{C}$, also $\frac{dR(x)}{dx}$ is rational, but $\int dx \, R(x)$ may be not: counterexample $\int_1^z \frac{dx}{x} = \log(z)$
- many more "new functions" by imposing closure under integration including $\int dx \left(-\frac{1}{x}\right) \log(1-x) = \text{Li}_2(x)$,

I. Motivation

Old problem from high-school days: $\int dx$ is harder than $\frac{d}{dx}$

- for rational fct. R(x) of $x \in \mathbb{C}$, also $\frac{dR(x)}{dx}$ is rational, but $\int dx \, R(x)$ may be not: counterexample $\int_1^z \frac{dx}{x} = \log(z)$
- many more "new functions" by imposing closure under integration

including $\int dx R(x) \log(1-x) \supset \text{Li}_2(x)$, successively build

function space of multiple polylogarithms (MPLs) via $G(\emptyset; z) = 1$ and

$$G(p_1, \dots, p_w; z) = \int_0^z \frac{\mathrm{d}x}{x - p_1} G(p_2, \dots, p_w; x), \quad p_i \in \mathbb{C}$$

[Poincaré, Lappo-Danilevsky, Goncharov, ...]

e.g.
$$G(p;z) = \log(1 - \frac{z}{p})$$
 and $G(\vec{0}^{n-1}, 1; z) = -\text{Li}_n(z)$ for $n \ge 1$

I. Motivation

Old problem from high-school days: $\int dx$ is harder than $\frac{d}{dx}$

- for rational fct. R(x) of $x \in \mathbb{C}$, also $\frac{dR(x)}{dx}$ is rational, but $\int dx \, R(x)$ may be not: counterexample $\int_1^z \frac{dx}{x} = \log(z)$
- many more "new functions" by imposing closure under integration

including $\int dx R(x) \log(1-x) \supset \text{Li}_2(x)$, successively build

function space of multiple polylogarithms (MPLs) via $G(\emptyset; z) = 1$ and

$$G(p_1, \dots, p_w; z) = \int_0^z \frac{\mathrm{d}x}{x - p_1} G(p_2, \dots, p_w; x), \qquad p_i \in \mathbb{C}$$
"integration kernel"

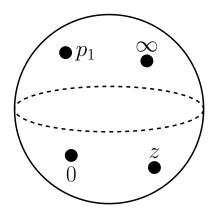
[Poincaré, Lappo-Danilevsky, Goncharov, ...]

e.g. $G(p; z) = \log(1 - \frac{z}{p})$ and $G(\vec{0}^{n-1}, 1; z) = -\text{Li}_n(z)$ for $n \ge 1$

I. 1 Integration on the sphere

• MPLs defined by $G(\emptyset; z) = 1$ and $(p_i \in \mathbb{C})$

$$G(p_1, \dots, p_w; z) = \int_0^z \frac{\mathrm{d}x}{x - p_1} G(p_2, \dots, p_w; x)$$



• MPLs \Longrightarrow smallest function space \supset {rational functions}

that closes under integration over z or over any of p_1, \dots, p_w

[Brown math/0606419]

• closure eventually relies on partial fraction relation

$$\frac{1}{(x-p_1)(x-p_2)} = \frac{1}{p_1-p_2} \left\{ \frac{1}{x-p_1} - \frac{1}{x-p_2} \right\}$$

• shuffle-regularization of divergent cases $\begin{pmatrix} p_w = 0 \\ p_1 = z \end{pmatrix}$, e.g. $\begin{pmatrix} G(0;z) = \log(z) \\ G(z;z) = -\log(z) \end{pmatrix}$

[for review, see e.g. Panzer 1506.07243; Abreu, Britto, Duhr 2203.13014]

• MPLs tame \int on Riemann sphere = arena of rational fct. R(x) of $x \in \mathbb{C}$

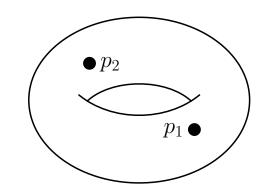
I. 2 Integration on the torus

Riemann sphere (\leftrightarrow MPLs) is Riemann surface of genus h=0.

How to integrate on torus = Riemann surface of genus h = 1??

• need closure under integration of rational fcts.

$$R(x,y)$$
 of $x,y\in\mathbb{C}$ subject to $y^2\,=\,x^3+b\,x+c$



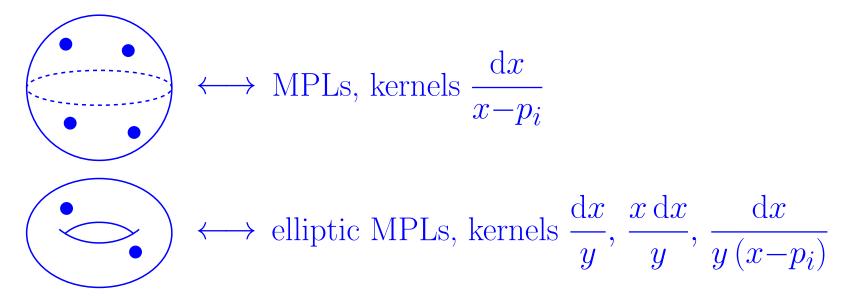
• accomplished by elliptic MPLs: roughly speaking, iterated integrals

of kernels
$$\frac{dx}{y}$$
, $\frac{x dx}{y}$ as well as $\frac{dx}{y(x-p_i)}$ for marked points p_1, p_2, \cdots

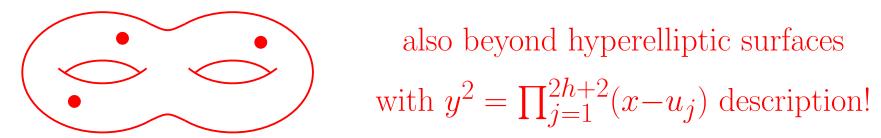
• ∃ a variety of equivalent ways to span function space of elliptic MPLs [e.g. Levin, Racinet 0703237; Brown, Levin 1110.6917; Broedel, Mafra, Matthes, OS 1412.5535; Broedel, Duhr, Dulat, Tancredi 1712.07089; Enriquez, Zerbini 2307.01833]

I. 3 Integration on more general geometries

Going beyond the well-explored cases of ...



... this talk is dedicated to MPLs on Riemann surfaces of arbitrary genus h

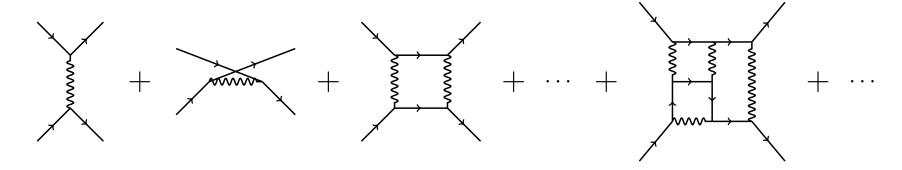


Important challenge beyond the scope of this talk: integration on higher-dimensional varieties (K3 surfaces, Calabi-Yau n-folds, etc.)

I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

• Feynman integrals in scattering amplitudes of particle physics / gravity



→ e.g. higher-genus Riemann surfaces in Standard Model interactions

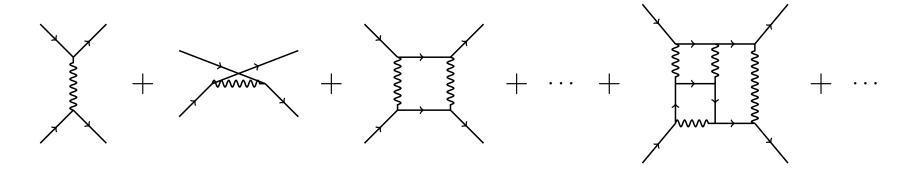
[e.g. Marzucca, McLeod, Page, Pögel, Weinzierl 2307.11497]

— e.g. Calabi-Yau geometries for gravitational precision computations [e.g. Driesse, Uhre Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch: Nature 641 (2025) no.8063, 603-607, 2411.11846]

I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

• Feynman integrals in scattering amplitudes of particle physics / gravity



• moduli-space integrals over Riemann surfaces in string amplitudes

$$\mathfrak{M}_{0;4} = \mathfrak{M}_{1;4} + \mathfrak{M}_{1;4} = \mathfrak{M}_{1;4} + \mathfrak{M}_{1;4} = \mathfrak{M}_{2;4} + \mathfrak{M}_{2;4} = \mathfrak{M}_{2;4} + \mathfrak{M}_{3;4} \dots$$

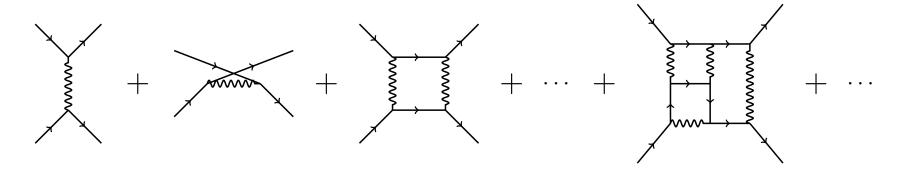
→ guiding the search for integration kernels on Riemann surfaces

[e.g. Broedel, Mafra, Matthes, OS 1412.5535; D'Hoker, Hidding, OS 2308.05044]

I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

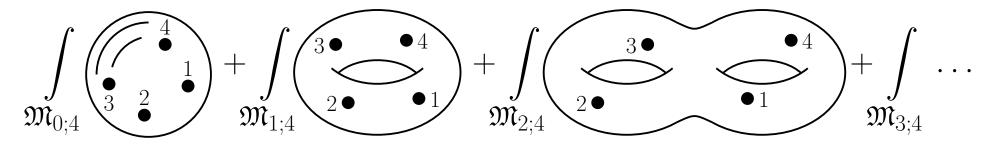
• Feynman integrals in scattering amplitudes of particle physics / gravity



• moduli-space integrals over Riemann surfaces in string amplitudes

• your favorite other research problem / field besides high-energy physics

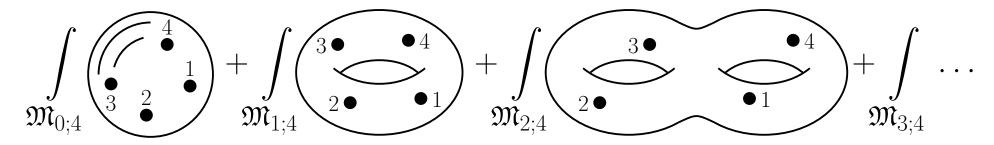
Perturbative string amplitudes \Longrightarrow Riemann sufaces Σ_h at all $h \ge 0$



Polylogarithms on Σ_h & their integration kernels are valuable to:

- integrate over points in low-energy expansion (1 modulus at a time)
 - * multiple zeta values (MZVs) in α' -expansion of open/closed-string trees

Perturbative string amplitudes \Longrightarrow Riemann sufaces Σ_h at all $h \ge 0$



Polylogarithms on Σ_h & their integration kernels are valuable to:

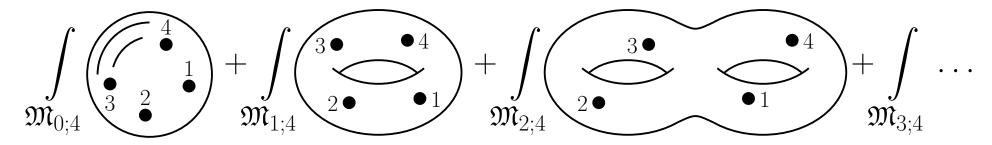
- integrate over points in low-energy expansion (1 modulus at a time)
 - * multiple zeta values (MZVs) in α' -expansion of open/closed-string trees

flat space: closed strings as "single-valued" open strings

[Baune, Broedel, Brown, Dupont, OS, Schnetz, Stieberger, Taylor, Vanhove, Zerbini]

recently extended to building blocks of string amplitudes in AdS [Alday, Fardelli, Giribet, Hansen, Silva; Alday, Nocchi, Strömholm 2504.19973, Baune 2505.23385, poster of Aurélie Strömholm-Sangaré]

Perturbative string amplitudes \Longrightarrow Riemann sufaces Σ_h at all $h \ge 0$



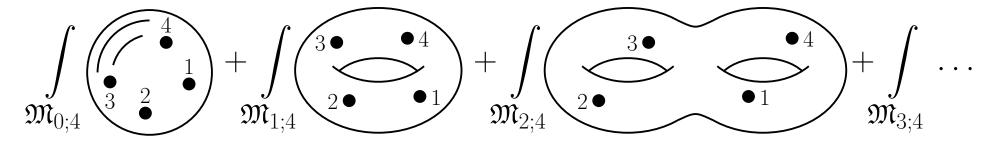
Polylogarithms on Σ_h & their integration kernels are valuable to:

- integrate over points in low-energy expansion (1 modulus at a time)
 - * multiple zeta values (MZVs) in α' -expansion of open/closed-string trees
 - * loop-level effective actions from elliptic MZVs/non-holo' modular graph

forms / (sv) iterated Eisenstein integrals & higher-genus analogues

[refs. in 2024 textbook of D'Hoker-Kaidi, Snowmass White Paper 2203.09099 and SaGeX Review 2203.13021; poster of Yoann Sohnle]

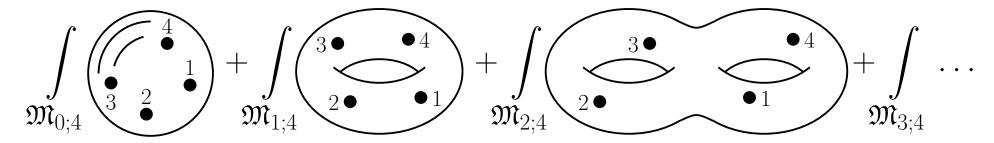
Perturbative string amplitudes \Longrightarrow Riemann sufaces Σ_h at all $h \ge 0$



Polylogarithms on Σ_h & their integration kernels are valuable to:

- integrate over points in low-energy expansion (1 modulus at a time)
- \bullet organize / bootstrap $\mathfrak{M}_{h:n}$ integrand, i.e. delimit function space
 - * int' kernels of elliptic MPLs universally capture 1-loop integrands
 - * expect kernels for higher-genus polylogs to unlock integral rep's of superstring amplitudes beyond today's reach (e.g. 2-loop \geq 6pt)

Perturbative string amplitudes \Longrightarrow Riemann sufaces Σ_h at all $h \ge 0$



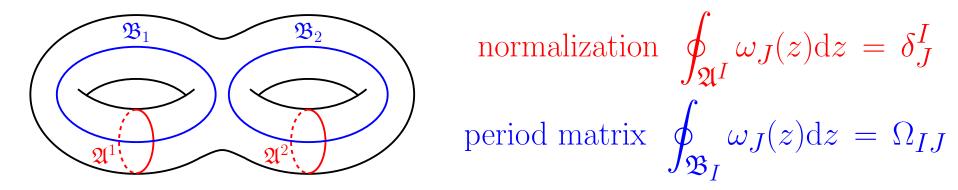
Polylogarithms on Σ_h & their integration kernels are valuable to:

- integrate over points in low-energy expansion (1 modulus at a time)
- \bullet organize / bootstrap $\mathfrak{M}_{h,n}$ integrand, i.e. delimit function space
- symbiosis string theory questions / info \leftrightarrow mathematical developments

... and concrete starting points to organize higher-genus polylogarithms!

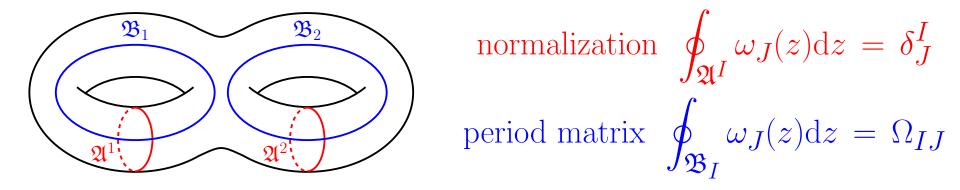
Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

• holomorphic Abelian differentials $\omega_{I=1,2,...,h}(z)$ on Σ_h



Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

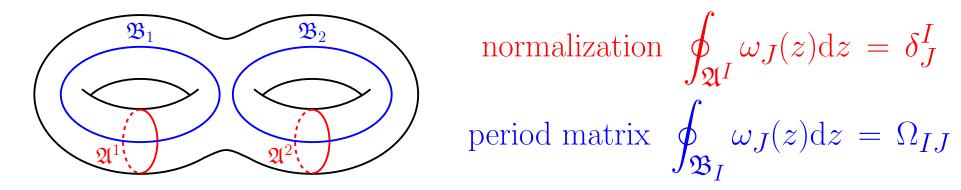
• holomorphic Abelian differentials $\omega_{I=1,2,...,h}(z)$ on Σ_h



- kernels with poles $\frac{\mathrm{d}z}{z-p_i}$ at points p_i by analogy with genus $h \leq 1$
- additional kernels: whatever it takes for closure under integration

Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

• holomorphic Abelian differentials $\omega_{I=1,2,...,h}(z)$ on Σ_h



- kernels with poles $\frac{\mathrm{d}z}{z-p_i}$ at points p_i by analogy with genus $h \leq 1$
- additional kernels: whatever it takes for closure under integration
- \longrightarrow gather entirety of higher-genus kernels in a flat connection $\mathcal{J}(z, p_i)$

$$d_z \mathcal{J}(z, p_i) = \mathcal{J}(z, p_i) \wedge \mathcal{J}(z, p_i) \Rightarrow \text{homotopy invariant iterated integrals}$$

Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

 \exists several alternatives for their flat connection having 2 out of 3 properties:

- (i) meromorphicity
- (ii) single-valuedness
- (iii) at most simple poles in points

image from SleepingAngel.com

Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

 \exists several alternatives for their flat connection having 2 out of 3 properties:

- (i) meromorphicity
- (ii) single-valuedness
- (iii) at most simple poles in points

Intuitive reason why all 3 don't work: already on torus $\Sigma_{h=1}$, cannot have elliptic (meromorphic + single-valued)

image from SleepingAngel.com

functions with only simple pole (but \exists elliptic Weierstraß $\wp(z) = \frac{1}{z^2} + \ldots$)

Integration kernels on Riemann surfaces Σ_h of arbitrary genus $h \geq 1$:

∃ several alternatives for their flat connection having 2 out of 3 properties:

- (i) meromorphicity
- (ii) single-valuedness
- (iii) at most simple poles in points

This talk: 2 connections subject to (iii):

- single-valued / non-holo' $\mathcal{J}_{\mathrm{DHS}}(x,p)$
- ullet meromorphic / multivalued $\mathcal{K}_{\mathrm{E}}(x,p)$

 $image\ from\ Sleeping Angel.com$

... which span same space of polylogs [D'Hoker, Enriquez, OS, Zerbini 2501.07640]

Singular kernels $\sim \frac{dx}{x-y}$ from (Arakelov) Green function $\mathcal{G}(x,y)$ on $\Sigma_h \times \Sigma_h$

$$\mathcal{G}(x,y) = -\ln|x-y|^2 + \text{sv completion}$$

Uniquely defined by (with canonical volume form $\kappa(x) = \frac{1}{\hbar}\omega_I(x)\bar{\omega}^I(x)$)

• symmetry
$$\mathcal{G}(x,y) = \mathcal{G}(y,x)$$

$$\bar{\omega}^I = [(\operatorname{Im}\Omega)^{-1}]^{IJ}\bar{\omega}_J$$

- Laplace equation $\partial_x \partial_{\bar{x}} \mathcal{G}(x,y) = \pi \kappa(x) \pi \delta^2(x,y)$
- "integrates to zero", i.e. normalization $\int_{\Sigma_h} \kappa(x) \mathcal{G}(x,y) = 0$

Explicit realization in terms of "prime form" $E(x,y) = x - y + \mathcal{O}((x-y)^3)$

 \longrightarrow combination of odd Riemann $\theta[\nu](\int_y^x \omega|\Omega)$, see appendix

[Fay '73; Faltings '84; D'Hoker, Green, Pioline 1712.06135]

Embed simplest singular kernel $\partial_x \mathcal{G}(x,y) = \frac{\mathrm{d}x}{y-x} + \cdots$ into rk 2 tensor:

$$f^{I}_{J}(x,y) = \int_{\Sigma_{h}} d^{2}z \,\partial_{x} \mathcal{G}(x,z) \bar{\omega}^{J}(z) \omega_{I}(z) - \delta^{I}_{J} \,\partial_{x} \mathcal{G}(x,y)$$

 \longrightarrow need the $h \times h$ components for closure under integration, see later

Embed simplest singular kernel $\partial_x \mathcal{G}(x,y) = \frac{\mathrm{d}x}{y-x} + \cdots$ into rk 2 tensor:

$$f^{I}_{J}(x,y) = \underbrace{\int_{\Sigma_{h}} d^{2}z \, \partial_{x} \mathcal{G}(x,z) \bar{\omega}^{J}(z) \omega_{I}(z)}_{\Sigma_{h}} - \delta^{I}_{J} \, \partial_{x} \mathcal{G}(x,y)$$

 $\not\exists$ at genus 1 since $\mathcal{G}(x,z)$ integrates to zero against $\bar{\omega}^K(z)\omega_K(z)$

Higher-rank kernels $f^{I_1...I_n}J$ with n+1 free indices from recursion

$$f^{I_1...I_n}{}_J(x,y) = \int_{\Sigma_h} d^2z \,\partial_x \mathcal{G}(x,z) \,\bar{\omega}^{I_1}(z) f^{I_2...I_n}{}_J(z,y)$$

Embed simplest singular kernel $\partial_x \mathcal{G}(x,y) = \frac{\mathrm{d}x}{y-x} + \cdots$ into rk 2 tensor:

$$f^{I}_{J}(x,y) = \int_{\Sigma_{h}} d^{2}z \, \partial_{x} \mathcal{G}(x,z) \bar{\omega}^{J}(z) \omega_{I}(z) - \delta^{I}_{J} \, \partial_{x} \mathcal{G}(x,y)$$

 $\not\exists$ at genus 1 since $\mathcal{G}(x,z)$ integrates to zero against $\bar{\omega}^K(z)\omega_K(z)$

Higher-rank kernels $f^{I_1...I_n}J$ with n+1 free indices from recursion

$$f^{I_1...I_n}{}_J(x,y) = \int_{\Sigma_h} d^2z \,\partial_x \mathcal{G}(x,z) \,\bar{\omega}^{I_1}(z) f^{I_2...I_n}{}_J(z,y)$$

• kernels $f^{I_1...I_n}J(x,y)$ at $n \geq 2$ are regular throughout $\Sigma_h \times \Sigma_h$,

only
$$n = 1$$
 case has simple pole $f^{I}_{J}(x, y) = \frac{\delta^{I}_{J}}{x - y} + \mathcal{O}((x - y)^{0})$

• non-meromorphic: $\partial_{\bar{x}} f^{I_1 \cdots I_n} J(x,y) = -\pi \bar{\omega}^{I_1}(x) f^{I_2 \cdots I_n} J(x,y)$

 $[\mathrm{D'Hoker},\,\mathrm{Hidding},\,\mathrm{OS}\,\,2306.08644]$

Assembly line for higher-genus polylogarithms [D'Hoker, Hidding, OS 2306.08644]

• combine f-tensors to flat connection

$$\mathcal{J}_{\mathrm{DHS}}(z,p) = -\pi \mathrm{d}\bar{z}\,\bar{\omega}^I(z)\,\boldsymbol{b_I} + \mathrm{d}z\left(\omega_J(z) + \sum_{n=1}^{\infty} \mathrm{ad}_{\boldsymbol{b_{I_1}}} \cdots \mathrm{ad}_{\boldsymbol{b_{I_n}}} f^{I_1\cdots I_n}{}_J(z,p)\right)\boldsymbol{a^J}$$

- $*(1,0) \oplus (0,1)$ form in $z \in \Sigma_h$, scalar in $p \in \Sigma_h$
- * valued in free Lie algebra with 2h generators $b_1, \dots, b_h \& a^1, \dots, a^h$

*
$$d_z \mathcal{J}_{DHS} = \mathcal{J}_{DHS} \wedge \mathcal{J}_{DHS}$$
 by $\partial_{\bar{z}} f^{I_1 \cdots I_n} J(z, p) = -\pi \bar{\omega}^{I_1}(z) f^{I_2 \cdots I_n} J(z, p)$

Assembly line for higher-genus polylogarithms [D'Hoker, Hidding, OS 2306.08644]

• combine f-tensors to flat connection

$$\mathcal{J}_{\mathrm{DHS}}(z,p) = -\pi \mathrm{d}\bar{z}\,\bar{\omega}^I(z)\,\boldsymbol{b_I} + \mathrm{d}z\left(\omega_J(z) + \sum_{n=1}^{\infty} \mathrm{ad}_{\boldsymbol{b_{I_1}}} \cdots \mathrm{ad}_{\boldsymbol{b_{I_n}}} f^{I_1 \cdots I_n}{}_J(z,p)\right)\boldsymbol{a^J}$$

• expand homotopy-inv. path-ordered exp. in non-commutative var's a^J, b_I

$$\operatorname{Pexp}\left(\int_{y}^{x} \mathcal{J}_{DHS}(z, p)\right) = 1 + \int_{y}^{x} \mathcal{J}_{DHS}(z, p) + \int_{y}^{x} \mathcal{J}_{DHS}(z_{1}, p) \int_{y}^{z_{1}} \mathcal{J}_{DHS}(z_{2}, p) + \dots$$

$$= 1 + a^{J} \Gamma_{J}(x, y) + b_{I} \Gamma^{I}(x, y) + a^{J} a^{K} \Gamma_{JK}(x, y) + b_{I} a^{J} \Gamma^{I}_{J}(x, y; p)$$

$$+ a^{J} b_{K} \Gamma_{J}^{K}(x, y; p) + b_{I} b_{K} \Gamma^{IK}(x, y; p) + \text{``} \geq 3 \text{ letters''}$$

Assembly line for higher-genus polylogarithms [D'Hoker, Hidding, OS 2306.08644]

• combine f-tensors to flat connection

$$\mathcal{J}_{\mathrm{DHS}}(z,p) = -\pi \mathrm{d}\bar{z}\,\bar{\omega}^I(z)\,\boldsymbol{b_I} + \mathrm{d}z\left(\omega_J(z) + \sum_{n=1}^{\infty} \mathrm{ad}_{\boldsymbol{b_{I_1}}} \cdots \mathrm{ad}_{\boldsymbol{b_{I_n}}} f^{I_1 \cdots I_n}{}_J(z,p)\right)\boldsymbol{a^J}$$

 \bullet expand homotopy-inv. path-ordered exp. in non-commutative var's a^J, b_I

$$\operatorname{Pexp}\left(\int_{y}^{x} \mathcal{J}_{\text{DHS}}(z, p)\right) = 1 + \int_{y}^{x} \mathcal{J}_{\text{DHS}}(z, p) + \int_{y}^{x} \mathcal{J}_{\text{DHS}}(z_{1}, p) \int_{y}^{z_{1}} \mathcal{J}_{\text{DHS}}(z_{2}, p) + \dots$$

$$= 1 + a^{J} \Gamma_{J}(x, y) + b_{I} \Gamma^{I}(x, y) + a^{J} a^{K} \Gamma_{JK}(x, y) + b_{I} a^{J} \Gamma^{I}_{J}(x, y; p) + \dots$$

• polylogarithm $\Gamma_{...J...}^{...I...}(x,y;p) := \text{coeff. of word } ...a^J...b_I..., \text{ e.g.}$

$$\Gamma^{I}_{J}(x, y; p) = \int_{y}^{x} dz \, f^{I}_{J}(z, p) - \pi \int_{y}^{x} d\bar{z}_{1} \, \bar{\omega}^{I}(z_{1}) \int_{y}^{z_{1}} dz_{2} \, \omega_{J}(z_{2})$$

At genus h = 1 reproduces elliptic polylogs of

[Brown, Levin 1110.6917]

Assembly line for higher-genus polylogarithms [D'Hoker, Hidding, OS 2306.08644]

• combine f-tensors to flat connection

$$\mathcal{J}_{\mathrm{DHS}}(z,p) = -\pi \mathrm{d}\bar{z}\,\bar{\omega}^I(z)\,b_I + \mathrm{d}z\left(\omega_J(z) + \sum_{n=1}^{\infty} \mathrm{ad}_{b_{I_1}} \cdots \mathrm{ad}_{b_{I_n}} f^{I_1 \cdots I_n}{}_J(z,p)\right) a^J$$

 \bullet expand homotopy-inv. path-ordered exp. in non-commutative var's a^J, b_I

$$\operatorname{Pexp}\left(\int_{y}^{x} \mathcal{J}_{\text{DHS}}(z, p)\right) = 1 + \int_{y}^{x} \mathcal{J}_{\text{DHS}}(z, p) + \int_{y}^{x} \mathcal{J}_{\text{DHS}}(z_{1}, p) \int_{y}^{z_{1}} \mathcal{J}_{\text{DHS}}(z_{2}, p) + \dots$$

$$= 1 + a^{J} \Gamma_{J}(x, y) + b_{I} \Gamma^{I}(x, y) + a^{J} a^{K} \Gamma_{JK}(x, y) + b_{I} a^{J} \Gamma^{I}_{J}(x, y; p) + \dots$$

• polylogarithm $\Gamma_{...J...}^{...I...}(x,y;p) := \text{coeff. of word } \ldots a^J \ldots b_I \ldots$

Both $f^{I_1\cdots I_n}{}_J(x,y)$ & $\Gamma_{\ldots J\ldots}\cdots I\cdots (x,y;p)$ transform as modular tensors under $\operatorname{Sp}(2h,\mathbb{Z})\ni \begin{pmatrix}A&B\\C&D\end{pmatrix}$ taking $\Omega\to (A\Omega+B)(C\Omega+D)^{-1}$, e.g. $f^{I_1\cdots I_n}{}_J(x,y)\to (C\Omega+D)^{I_1}{}_{K_1}\cdots (C\Omega+D)^{I_n}{}_{K_n}f^{K_1\cdots K_n}{}_L(x,y)\left((C\Omega+D)^{-1}\right)^L{}_J$

Alternative to single-valued/non-holo connection $\mathcal{J}_{\mathrm{DHS}}$ with coeff's $f^{I_1\cdots I_n}{}_J$

 \longrightarrow meromorphic/multivalued Enriquez connection \mathcal{K}_{E} with coeff's $g^{I_1\cdots I_n}{}_J$

$$\mathcal{K}_{\mathbf{E}}(x,y) = \mathrm{d}x \left(\omega_J(x) + \sum_{n=1}^{\infty} \mathrm{ad}_{b_{I_1}} \cdots \mathrm{ad}_{b_{I_n}} g^{I_1 \cdots I_n} {}_J(x,y) \right) a^J$$

defined through its functional properties in

[Enriquez 1112.0864]

Alternative to single-valued/non-holo connection $\mathcal{J}_{\mathrm{DHS}}$ with coeff's $f^{I_1\cdots I_n}{}_J$

 \longrightarrow meromorphic/multivalued Enriquez connection \mathcal{K}_{E} with coeff's $g^{I_1\cdots I_n}{}_J$

$$\mathcal{K}_{\mathbf{E}}(x,y) = \mathrm{d}x \left(\omega_J(x) + \sum_{n=1}^{\infty} \mathrm{ad}_{b_{I_1}} \cdots \mathrm{ad}_{b_{I_n}} g^{I_1 \cdots I_n} J(x,y) \right) a^J$$

defined through its functional properties in

[Enriquez 1112.0864]

 \bullet no $\mathfrak{A}\text{-cycle}$ monodromies $g^{I_1...I_n}{}_J(\mathfrak{A}^K{\cdot}x,y)\,=\,g^{I_1...I_n}{}_J(x,y)$

but non-trivial \mathfrak{B} -cycle monodromies (familiar from genus h=1)

$$g^{I_1...I_n}_{J}(\mathfrak{B}_L \cdot x, y) = \sum_{\ell=0}^n \frac{(-2\pi i)^{\ell}}{\ell!} \delta_L^{I_1} \dots \delta_L^{I_{\ell}} g^{I_{\ell+1}\cdots I_n}_{J}(x, y)$$

- only n=1 case has simple pole $g^I{}_J(x,y)=\frac{\delta^I_J}{x-y}+\mathcal{O}\big((x-y)^0\big)$
 - \longrightarrow same poles as single-valued, but non-meromorphic $f^{I_1\cdots I_n}{}_J(x,y)$

Alternative to single-valued/non-holo connection $\mathcal{J}_{\mathrm{DHS}}$ with coeff's $f^{I_1\cdots I_n}{}_J$

 \longrightarrow meromorphic/multivalued Enriquez connection \mathcal{K}_{E} with coeff's $g^{I_1\cdots I_n}{}_J$

$$\mathcal{K}_{\mathbf{E}}(x,y) = \mathrm{d}x \left(\omega_J(x) + \sum_{n=1}^{\infty} \mathrm{ad}_{b_{I_1}} \cdots \mathrm{ad}_{b_{I_n}} g^{I_1 \cdots I_n} {}_J(x,y) \right) a^J$$

defined through its functional properties in

[Enriquez 1112.0864]

- ∃ Poincaré-series representations via Schottky uniformization

 [Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051]
- expressing $g^{I_1...I_n}_{J}(x,y)$ in terms of $f^{I_1...I_n}_{J}(x,y)$ & \mathcal{J}_{DHS} polylogs: gauge transformation & Lie-algebra automorphism of flat connections $\left(d \mathcal{K}_{E}(x,y;a,b)\right) = \mathcal{U}(x,y;b)^{-1} \left(d \mathcal{J}_{DHS}(x,y;\hat{a},\hat{b})\right) \mathcal{U}(x,y;b)$

Alternative to single-valued/non-holo connection $\mathcal{J}_{\mathrm{DHS}}$ with coeff's $f^{I_1\cdots I_n}{}_J$

 \longrightarrow meromorphic/multivalued Enriquez connection \mathcal{K}_{E} with coeff's $g^{I_1\cdots I_n}{}_J$

$$\mathcal{K}_{\mathbf{E}}(x,y) = \mathrm{d}x \left(\omega_J(x) + \sum_{n=1}^{\infty} \mathrm{ad}_{b_{I_1}} \cdots \mathrm{ad}_{b_{I_n}} g^{I_1 \cdots I_n} {}_J(x,y) \right) a^J$$

defined through its functional properties in

[Enriquez 1112.0864]

- ∃ Poincaré-series representations via Schottky uniformization

 [Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051]
- expressing $g^{I_1...I_n}J(x,y)$ in terms of $f^{I_1...I_n}J(x,y)$ & \mathcal{J}_{DHS} polylogs: gauge transformation & Lie-algebra automorphism of flat connections $(d-\mathcal{K}_D(x,y), g(x,y), g($

$$(d - \mathcal{K}_{E}(x, y; a, b)) = \underbrace{\mathcal{U}(x, y; b)^{-1}}_{\text{Series in } \mathcal{J}_{DHS}} (d - \underbrace{\mathcal{J}_{DHS}(x, y; \hat{a}, \hat{b})}_{\text{Series in } \mathcal{J}_{DHS}}) \mathcal{U}(x, y; b)$$
series in \mathcal{J}_{DHS}
polylogs and b_{I}
series in \mathcal{J}_{DHS} polylogs
$$\& \operatorname{ad}_{b_{K}} \operatorname{acting on } a^{J}, b_{I}$$

[D'Hoker, Enriquez, OS, Zerbini 2501.07640]

Direct construction of $g^{I_1\cdots I_n}_J(x,y)$ via \mathfrak{A} -cycle convolutions: adapt surface integrals defining $f^{I_1\cdots I_n}_J(x,y)$ according to

$$\int_{\Sigma_h} d^2 z \, \bar{\omega}^I(z) \, \to \, \oint_{\mathfrak{A}^I} dz \,, \qquad \partial_x \mathcal{G}(x, y) \, \to \, -\partial_x \ln E(x, y)$$

However, \exists tail of additive lower-rank corrections with $\mathbb{Q}[2\pi i]$ coefficients

$$g^{I}_{J}(x,y) = -\oint_{\mathfrak{A}^{I}} dz \,\omega_{J}(z) \,\partial_{x} \ln E(x,z) + \delta^{I}_{J} \,\partial_{x} \ln E(x,y) + i\pi \delta^{I}_{J} \,\omega_{J}(x)$$

$$f^{I}_{J}(x,y) = \int_{\Sigma_{h}} d^{2}z \,\bar{\omega}^{I}(z) \,\omega_{J}(z) \,\partial_{x} \mathcal{G}(x,z) - \delta^{I}_{J} \,\partial_{x} \mathcal{G}(x,y)$$
[D'Hoker, OS 2502.14769]

Valid for x, y inside fundamental domain within universal cover $\tilde{\Sigma}_h$ of Σ_h

→ see appendix for details

Direct construction of $g^{I_1\cdots I_n}J(x,y)$ via \mathfrak{A} -cycle convolutions:

adapt surface integrals defining $f^{I_1\cdots I_n}J(x,y)$ according to

$$\int_{\Sigma_h} d^2 z \, \bar{\omega}^I(z) \, \to \, \oint_{\mathfrak{A}^I} dz \,, \qquad \partial_x \mathcal{G}(x, y) \, \to \, -\partial_x \ln E(x, y)$$

However, \exists tail of additive lower-rank corrections with $\mathbb{Q}[2\pi i]$ coefficients

$$g^{I}_{J}(x,y) = -\oint_{\mathfrak{A}^{I}} dz \,\omega_{J}(z) \,\partial_{x} \ln E(x,z) + \delta^{I}_{J} \,\partial_{x} \ln E(x,y) + i\pi \delta^{I}_{J} \,\omega_{J}(x)$$

Recursion for $n \geq 2$ in parallel to surface- \int representation of $f^{I_1...I_n}J(x,y)$:

$$g^{I_1 \cdots I_n} J(x, y) = - \oint_{\mathfrak{A}^{I_1}} dz \, \partial_x \ln E(x, z) g^{I_2 \cdots I_n} J(z, y) + \sum_{r=0}^{n-1} (2\pi i)^{n-r} \, (\text{rank } r)$$

$$f^{I_1...I_n}{}_J(x,y) = \int_{\Sigma_h} d^2z \,\bar{\omega}^{I_1}(z) \,\partial_x \mathcal{G}(x,z) \,f^{I_2...I_n}{}_J(z,y)$$
[D'Hoker, OS 2502.14769]

Meromorphic polylogarithms constructed from Enriquez kernels

$$\widetilde{\Gamma}\left(\begin{array}{ccc} \overrightarrow{I_1} & \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_1 & J_2 & \ldots & J_r \\ p_1 & p_2 & \cdots & p_r \end{array}; x, y\right) = \int_y^x dz \, g^{\overrightarrow{I_1}} J_1(z, p_1) \, \widetilde{\Gamma}\left(\begin{array}{ccc} \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_2 & \ldots & J_r \\ p_2 & \cdots & p_r \end{array}; z, y\right)$$

with $\widetilde{\Gamma}(\emptyset; x, y) = 1 \& g^{\emptyset}_{J}(z, p) = \omega_{J}(z)$ and multi-indices $\overrightarrow{I}_{k} = I_{k}^{1} \cdots I_{k}^{s}$. [Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051; D'Hoker, OS 2407.11476;

Baune, Broedel, Im, Lisitsyn, Möckli 2409.08208; Enriquez, Zerbini: work in progress]

- term-by-term homotopy invariant but non-tensorial under $Sp(2h, \mathbb{Z})$
- first explorations of numerical evaluations in [above 2406.10051], and of functional identities in [above 2407.11476, 2409.08208]

Meromorphic polylogarithms constructed from Enriquez kernels

$$\widetilde{\Gamma}\left(\begin{array}{ccc} \overrightarrow{I_1} & \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_1 & J_2 & \cdots & J_r \\ p_1 & p_2 & \cdots & p_r \end{array}; x, y\right) = \int_y^x dz \, g^{\overrightarrow{I_1}} J_1(z, p_1) \, \widetilde{\Gamma}\left(\begin{array}{ccc} \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_2 & \cdots & J_r \\ p_2 & \cdots & p_r \end{array}; z, y\right)$$

with $\tilde{\Gamma}(\emptyset; x, y) = 1 \& g^{\emptyset}_{J}(z, p) = \omega_{J}(z)$ and multi-indices $\overrightarrow{I}_{k} = I_{k}^{1} \cdots I_{k}^{s}$. [Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051; D'Hoker, OS 2407.11476; Baune, Broedel, Im, Lisitsyn, Möckli 2409.08208; Enriquez, Zerbini: work in progress]

- term-by-term homotopy invariant but non-tensorial under $Sp(2h, \mathbb{Z})$
- first explorations of numerical evaluations in [above 2406.10051], and of functional identities in [above 2407.11476, 2409.08208]
- $\mathcal{J}_{\mathrm{DHS}}$ polylogarithms expressible via $\tilde{\Gamma}$ multiplied by iterated int's of $\bar{\omega}^I$ [D'Hoker, Enriquez, OS, Zerbini 2501.07640]
- reduce to elliptic polylogs $\tilde{\Gamma}(n_1 \dots n_r ; x)$ at genus h = 1 and y = 0

II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels $f^{I_1\cdots I_n}J(x,y)$ from convolutions of

Green function
$$\mathcal{G}(z,y) \leftrightarrow \langle X(z)X(y)\rangle_{\Sigma_h}$$
 of free boson on Σ_h

central ingredient for moduli-space integrands of string amplitudes, e.g.

$$\mathcal{A}_{g;n} = \int_{\mathfrak{M}_{g;n}} \exp\left(\alpha' \sum_{1 \leq i \leq j}^{n} k_i \cdot k_j \, \mathcal{G}(z_i, z_j)\right) \cdot \begin{pmatrix} \text{rest of CFT correlator} \\ \text{of vertex operators} \end{pmatrix}$$

Contributions to "rest of CFT correlators" from polynomials in \mathcal{G}, f :

• $\partial_z \mathcal{G}(z,y)$ and $\partial_z \partial_y \mathcal{G}(z,y)$ and cc's from bosons $X(z) \in \text{vertex operator}$

II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels $f^{I_1\cdots I_n}J(x,y)$ from convolutions of

Green function
$$\mathcal{G}(z,y) \leftrightarrow \langle X(z)X(y)\rangle_{\Sigma_h}$$
 of free boson on Σ_h

central ingredient for moduli-space integrands of string amplitudes, e.g.

$$\mathcal{A}_{g;n} = \int_{\mathfrak{M}_{g;n}} \exp\left(\alpha' \sum_{1 \leq i \leq j}^{n} k_i \cdot k_j \, \mathcal{G}(z_i, z_j)\right) \cdot \begin{pmatrix} \text{rest of CFT correlator} \\ \text{of vertex operators} \end{pmatrix}$$

Contributions to "rest of CFT correlators" from polynomials in \mathcal{G}, f :

- $\partial_z \mathcal{G}(z,y)$ and $\partial_z \partial_y \mathcal{G}(z,y)$ and cc's from bosons $X(z) \in \text{vertex operator}$
- worldsheet fermions $\psi^{\mu}(z)$ of RNS superstrings: all z_i -dependence of current correlators $\langle :\psi^{\mu_1}(z_1)\psi^{\lambda_1}(z_1):\ldots:\psi^{\mu_n}(z_n)\psi^{\lambda_n}(z_n):\rangle_{\Sigma_h}$ expressible via modular tensors $f^{I_1\cdots I_r}{}_J(x,y)$ or Enriquez kernels $g^{I_1\cdots I_r}{}_J(x,y)$ [D'Hoker, Hidding, OS 2308.05044; D'Hoker, OS 2505.07947]

II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels $f^{I_1\cdots I_n}J(x,y)$ from convolutions of

Green function
$$\mathcal{G}(z,y) \leftrightarrow \langle X(z)X(y)\rangle_{\Sigma_h}$$
 of free boson on Σ_h

central ingredient for moduli-space integrands of string amplitudes, e.g.

$$\mathcal{A}_{g;n} = \int_{\mathfrak{M}_{g;n}} \exp\left(\alpha' \sum_{1 \le i \le j}^{n} k_i \cdot k_j \, \mathcal{G}(z_i, z_j)\right) \cdot \left(\prod_{i \text{ their } \partial_{z_j} \text{'s and cc's}}^{\prod_{i \le j} I_i \dots I_r} \int_{\mathbb{R}^n} k_i \cdot k_j \, \mathcal{G}(z_i, z_j)\right)$$

- plan to bootstrap $\mathfrak{M}_{g;n}$ integrand of $g \geq 2$ amplitudes using ansaetze built from $f^{I_1 \cdots I_r} J(z_i, z_j)$ and imposing consistency conditions
- \bullet z_i integrals in low-energy expansion will become algorithmic using higher-genus polylogarithms and their single-valued versions
- to do: connect with \int over modular parameters [talk of Lorenz Eberhardt, [Baccianti, Chandra, Eberhardt, Hartmann, Manschot, Mizera, Wang 2022 2025]

Products of $\widetilde{\Gamma}\left(\begin{array}{ccc}\overrightarrow{I_1}&\cdots&\overrightarrow{I_r}\\J_1&\cdots&J_r\\p_1&\cdots&p_r\end{array};z,y\right)$ with $g^{\overrightarrow{K}}{}_L(z,p_i)~\&~g^{\overrightarrow{M}}{}_N(p_i,z)$ close under

integration over z and p_i by algebraic identities of integration kernels:

$$\widetilde{\Gamma}\Big(\begin{array}{ccc} \overrightarrow{I_1} & \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_1 & J_2 & \cdots & J_r \\ p_1 & p_2 & \cdots & p_r \end{array}; x, y \Big) = \int_y^x \mathrm{d}z \, g^{\overrightarrow{I_1}} J_1(z, p_1) \, \widetilde{\Gamma}\Big(\begin{array}{ccc} \overrightarrow{I_2} & \cdots & \overrightarrow{I_r} \\ J_2 & \cdots & J_r \\ p_2 & \cdots & p_r \end{array}; z, y \Big)$$

Products of $\widetilde{\Gamma}\left(\overrightarrow{J_1} \dots \overrightarrow{J_r}; z, y\right)$ with $g^{\overrightarrow{K}}_L(z, p_i) \& g^{\overrightarrow{M}}_N(p_i, z)$ close under integration over z and p_i by algebraic identities of integration kernels:

- warmup: how to integrate $\omega_K(z)g^K{}_J(p,z)\tilde{\Gamma}(\cdots;z,y)$ over z?
 - "interchange lemma" $\omega_K(z)g^K_J(p,z) = \underbrace{-\omega_K(p)g^K_J(z,p)}_{\text{fewer }z\text{'s than on LHS}}$
- similarly, need to convert $\partial_p \to \partial_z$

"swapping identities"
$$\partial_p g^{I_1 I_2 \cdots I_s K} J(z, p) = (-1)^s \partial_z g^{I_s \cdots I_2 I_1 K} J(p, z)$$
[D'Hoker, OS 2407.11476]

Products of $\widetilde{\Gamma}\left(\overrightarrow{J_1} \buildrel \overrightarrow{J_1} \buildrel \overrightarrow{J_r}; z, y\right)$ with $g^{\overrightarrow{K}}_L(z, p_i) \& g^{\overrightarrow{M}}_N(p_i, z)$ close under integration over z and p_i by algebraic identities of integration kernels:

- "interchange lemma" $\omega_K(z)g^K{}_J(p,z) = -\omega_K(p)g^K{}_J(z,p)$
- "swapping identities" $\partial_p g^{I_1 I_2 \cdots I_s K} J(z,p) = (-1)^s \partial_z g^{I_s \cdots I_2 I_1 K} J(p,z)$
- \bullet more generally, Fay identities eliminate repeated appearance of z, e.g.

$$g^{I}_{J}(y,z)g^{J}_{K}(z,x) = g^{I}_{J}(y,x)g^{J}_{K}(z,x) - g^{I}_{J}(z,y)g^{J}_{K}(y,x)$$

$$-\omega_{J}(y)g^{IJ}_{K}(z,y) - \omega_{J}(y)g^{JI}_{K}(z,x) - \omega_{J}(z)g^{JI}_{K}(y,x)$$

$$\boxed{\text{no repeated z on RHS!}}$$

$$\boxed{\text{D'Hoker, OS 2407.11476]}}$$

Products of modular $\Gamma_{...J...}I...(x, y; p)$ with kernels from \mathcal{J}_{DHS} close under integration over z and p by algebraic identities of integration kernels:

- "interchange lemma" $\omega_K(z)f^K{}_J(p,z) = -\omega_K(p)f^K{}_J(z,p)$
- "swapping identities" $\partial_p f^{I_1 I_2 \cdots I_s K} J(z,p) = (-1)^s \partial_z f^{I_s \cdots I_2 I_1 K} J(p,z)$
- \bullet more generally, Fay identities eliminate repeated appearance of z, e.g.

$$f^{I}_{J}(y,z)f^{J}_{K}(z,x) = f^{I}_{J}(y,x)f^{J}_{K}(z,x) - f^{I}_{J}(z,y)f^{J}_{K}(y,x)$$
$$-\omega_{J}(y)f^{IJ}_{K}(z,y) - \omega_{J}(y)f^{JI}_{K}(z,x) - \omega_{J}(z)f^{JI}_{K}(y,x)$$

- \bullet identical interchange/swapping/Fay identities for $g^{\overrightarrow{I}}{}_J(x,y) \leftrightarrow f^{\overrightarrow{I}}{}_J(x,y)$
 - \implies closely related integration algorithms for combinations of f's & g's [D'Hoker, OS 2407.11476]

Tensorial Fay identities of bilinears in $f^{\overrightarrow{I}}_{J}(x,y)$ at arbitrary rank

- proven by (inductively) showing LHS RHS is holomorphic in x,y,z and integrates to zero against $\bar{\omega}^L(z)\bar{\omega}^M(y)$ [D'Hoker, OS 2407.11476]
- analogous proof for $f^{\overrightarrow{I}}_{J}(x,y) \to g^{\overrightarrow{I}}_{J}(x,y)$ based on monodromy, reformulation via generating series and proof of completeness in

[Baune, Broedel, Im, Lisitsyn, Möckli 2409.08208]

Summary

- 2 equivalent constructions of polylogs on higher-genus Riemann surfaces
 - via single-valued *or* meromorphic kernels with at most simple poles
 - → by closure under integration, expect wide range of applications
- single-valued $f^{I_1\cdots I_n}_J$ from surface integrals of Arakelov Green function,
 - → arise naturally in worldsheet CFT for string amplitudes
 - \longrightarrow bootstrap approaches and algorithms for $\int dz_i$ at small α'

Thank you for your attention!

Appendix: Arakelov Green function \mathcal{G} from theta functions

• genus-h theta fct. with $\zeta \in \mathbb{C}^h$, odd characteristics $\kappa = [\kappa', \kappa''] \in \{0, \frac{1}{2}\}^{2h}$

$$\theta[\kappa](\zeta|\Omega) = \sum_{n \in \mathbb{Z}^h} e^{\pi i(n+\kappa')^t \Omega(n+\kappa') + 2\pi i(n+\kappa')^t (\zeta+\kappa'')}$$

• prime form: $E(x,y) = (x-y) + \mathcal{O}((x-y)^3)$ without extra zeros

$$E(x,y) = \frac{\theta[\kappa] \left(\int_{y}^{x} \omega_{I} \right)}{h_{\kappa}(x) h_{\kappa}(y)},$$

with half-differentials $h_{\kappa}(x)^2 = \sum_{I=1}^h \omega_I(x) \frac{\partial}{\partial \zeta_I} \theta[\kappa](0)$

- \longrightarrow independent on odd characteristics κ with $\theta[\kappa](-\zeta) = -\theta[\kappa](\zeta)$
- string Green function: compensate $x \to \mathfrak{B}_I \cdot x$ monodromy of $\ln |E(x,y)|^2$

$$G(x,y) = -\log |E(x,y)|^2 + 2\pi \operatorname{Im} \int_y^x \omega_I [(\operatorname{Im} \Omega)^{-1}]^{IJ} \operatorname{Im} \int_y^x \omega_J$$

Appendix: Arakelov Green function \mathcal{G} from theta functions

• string Green function: compensate $x \to \mathfrak{B}_I \cdot x$ monodromy of $\ln |E(x,y)|^2$

$$G(x,y) = -\log |E(x,y)|^2 + 2\pi \operatorname{Im} \int_y^x \omega_I [(\operatorname{Im} \Omega)^{-1}]^{IJ} \operatorname{Im} \int_y^x \omega_J$$

• can find straightforward shifts $\mathcal{G}(x,y) = G(x,y) + \dots$ such that Arakelov Green function integrates to zero against $\kappa(x) = \frac{1}{h}\bar{\omega}^I(x)\omega_I(x)$:

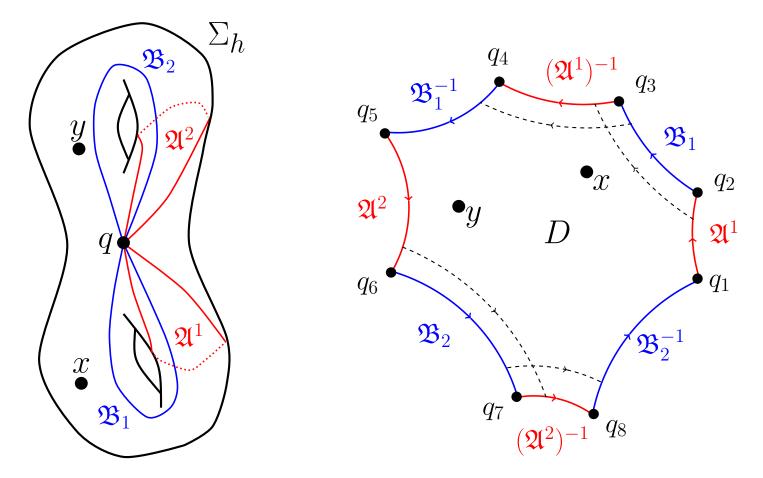
$$\mathcal{G}(x,y) = G(x,y) - \int_{\Sigma_h} \kappa(z) G(z,y) - \int_{\Sigma} \kappa(z) G(z,x) + \int_{(\Sigma_h)^2} \kappa(z) \kappa(w) G(z,w)$$

- By the construction of G(x,y) from E(x,y) and hence $\theta[\kappa](\zeta|\Omega)$,

 Arakelov Green function \longrightarrow theta functions **and** their integrals over Σ .
- Work in progress: expansion around degenerations suitable for numerics

Appendix: Fundamental domain D for Enriquez kernels

 \mathfrak{A} -integral representation of Enriquez kernels $g^{I_1\cdots I_n}{}_J(x,y)$ applies to $x,y\in (\text{fundamental domain }D)$ inside universal cover $\tilde{\Sigma}_h$ of surface Σ_h



Reduce x, y outside D to $x, y \in D$ via known monodromies of $g^{I_1 \cdots I_n} {}_J(x, y)$