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I. Motivation

Old problem from high-school days: [ dz is harder than %

o for rational fct. R(z) of x € C, also dg—;@ is rational,

but [ dz R(x) may be not: counterexample [} d% = log(z)

e many more ‘new functions” by imposing closure under integration

including [ dx (—%) log(1—z) = Lig(x),



I. Motivation

Old problem from high-school days: [ dx is harder than %

e for rational fct. R(x) of x € C, also d}d%;x) is rational,

but [ dz R(z) may be not: counterexample [} %’3 = log(2)
e many more ‘new functions” by imposing closure under integration
including [ dz R(x)log(1—x) D Lis(x), successively build

function space of multiple polylogarithms (MPLs) via G(0; z) = 1 and

“ dax
G(plv'“va;Z) — G(pg,...,pw;a:), pZ‘E(C
0 L—P1

[Poincaré, Lappo-Danilevsky, Goncharov, ...]

e.g. G(p; z) =log (1 — Z%) and G(0" 1, 1; 2) = —Lin(z) for n > 1



I. Motivation

Old problem from high-school days: f dz 1s harder than %
R(z)

e for rational fct. R(x) of x € C, also dw is rational,
: z d
but | dz R(z) may be not: counterexample [ <E = log(z)
e many more ‘new functions” by imposing closure under integration

including [ dz R(x)log(1—x) D Lis(x), successively build

function space of multiple polylogarithms (MPLs) via G(0; z) = 1 and

~ dx

G<p17apw7z) — G(pQ,...,pw;I>, pZEC
0 L—P1

v

“Integration kernel” —

[Poincaré, Lappo-Danilevsky, Goncharov, ...]

e.g. G(p; z) = log (1 — ]%) and G(0" 1, 1; 2) = —Lin(z) for n > 1



I. 1 Integration on the sphere

e MPLs defined by G(0; z) =1 and (p; € C)

“ dx
G(p1,.. ., pwi2) = G(p2,...,pw: )
0 L—P1

e MPLs = smallest function space D {rational functions}

that closes under integration over z or over any of py,- -+ , puw
[Brown math/0606419]

e closure eventually relies on partial fraction relation

1 1 { 1 1 }
(z—p1) (x—p2)  p1—p2 lz—p1 =P
.. : pw =10 G(0;z)=log(z)
e shuffle-regularization of divergent cases ( — ) ,e.g. ( Glz2) = — log(2) )
[for review, see e.g. Panzer 1506.07243; Abreu, Britto, Duhr 2203.13014]

e MPLs tame [ on Riemann sphere = arena of rational fct. R(z) of z € C



I. 2 Integration on the torus

Riemann sphere («» MPLs) is Riemann surface of genus h = 0.

How to integrate on torus = Riemann surface of genus h =1 77

e need closure under integration of rational fcts.

R(z,y) of z,y € C subject to y? = 2>+ bz +¢

e accomplished by elliptic MPLs: roughly speaking, iterated integrals

dx

dz 2dr 4o well as
y (v—

y’ vy

of kernels

Pi

] for marked points p1, pa, - - -

e J a variety of equivalent ways to span function space of elliptic MPLs

[e.g. Levin, Racinet 0703237; Brown, Levin 1110.6917; Broedel, Mafra, Matthes, OS
1412.5535; Broedel, Duhr, Dulat, Tancredi 1712.07089; Enriquez, Zerbini 2307.01833]



I. 3 Integration on more general geometries

Going beyond the well-explored cases of ..

. <— MPLs, kemels dr
d d d

<— elliptic MPLs, kernels x, ‘ x) u
y (v—p;)

.. this talk is dedicated to MPLs on Riemann surfaces of arbitrary genus h

also beyond hyperelliptic surfaces

with y% = H?T{Q(az ;) description!

Important challenge beyond the scope of this talk: integration on

higher-dimensional varieties (K3 surfaces, Calabi-Yau n-folds, etc.)
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I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

e Feynman integrals in scattering amplitudes of particle physics / gravity

+>%<+ oo+ B E 4

— ¢.g. higher-genus Riemann surfaces in Standard Model interactions
[e.g. Marzucca, McLeod, Page, Pogel, Weinzierl 2307.11497]

— e.g. Calabi-Yau geometries for gravitational precision computations

[e.g. Driesse, Uhre Jakobsen, Klemm, Mogull, Nega, Plefka, Sauer, Usovitsch:
Nature 641 (2025) no.8063, 603-607, 2411.11846]
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I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

e Feynman integrals in scattering amplitudes of particle physics / gravity

e moduli-space integrals over Riemann surfaces in string amplitudes

/ —l_ /. —|_ /~+ / N
MNMo.4 M4 Moy U

—— guiding the search for integration kernels on Riemann surfaces
le.g. Broedel, Mafra, Matthes, OS 1412.5535; D’Hoker, Hidding, OS 2308.05044]
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I. 4 Physics motivation

Heavy demand for integration techniques from scattering amplitudes:

e Feynman integrals in scattering amplitudes of particle physics / gravity

e moduli-space integrals over Riemann surfaces in string amplitudes

/ —l_ /. —|_ /~+ / N
MNMo.4 M4 Moy U

e your favorite other research problem / field besides high-energy physics
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I. 5 String theory, polylogarithms and number theory

Perturbative string amplitudes = Riemann sufaces >, at all h > 0

/ —I_ /. _|_ /~—|— / N
9ﬁ();ll 9Jt1;4 m2;4 m3;4

Polylogarithms on >3, & their integration kernels are valuable to:
e integrate over points in low-energy expansion (1 modulus at a time)

+ multiple zeta values (MZVs) in o/-expansion of open /closed-string trees
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I. 5 String theory, polylogarithms and number theory

Perturbative string amplitudes = Riemann sufaces >, at all h > 0

/ —I_ /. _|_ \/‘~—|— / N
9ﬁ();ll ml;él 9ﬁQ;ZL m3;4

Polylogarithms on >3, & their integration kernels are valuable to:
e integrate over points in low-energy expansion (1 modulus at a time)

+ multiple zeta values (MZVs) in o/-expansion of open /closed-string trees

flat space: closed strings as “single-valued” open strings
[Baune, Broedel, Brown, Dupont, OS, Schnetz, Stieberger, Taylor, Vanhove, Zerbini]

recently extended to building blocks of string amplitudes in AdS
[Alday, Fardelli, Giribet, Hansen, Silva; Alday, Nocchi, Strémholm 2504.19973,
Baune 2505.23385, poster of Aurélie Stromholm-Sangaré]
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I. 5 String theory, polylogarithms and number theory

Perturbative string amplitudes = Riemann sufaces >, at all h > 0

/ —I_ /. _|_ /~—|— / N
gﬁO;ZL ml;él 9ﬁ2;4 m3;4

Polylogarithms on >3, & their integration kernels are valuable to:
e integrate over points in low-energy expansion (1 modulus at a time)

+ multiple zeta values (MZVs) in o/-expansion of open /closed-string trees

* loop-level effective actions from elliptic MZVs/non-holo” modular graph

forms / (sv) iterated Eisenstein integrals & higher-genus analogues

[refs. in 2024 textbook of D’Hoker-Kaidi, Snowmass White Paper 2203.09099
and SaGeX Review 2203.13021; poster of Yoann Sohnle]
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I. 5 String theory, polylogarithms and number theory

Perturbative string amplitudes = Riemann sufaces >J;, at all h > 0

/ —l_ /. —l_ /~—|— / N
i)ﬁ();ll 9ﬁl;él m2;4 m3;4

Polylogarithms on Y35, & their integration kernels are valuable to:
e integrate over points in low-energy expansion (1 modulus at a time)
e organize / bootstrap IMy,.,, integrand, i.e. delimit function space

x int’ kernels of elliptic MPLs universally capture 1-loop integrands

x expect kernels for higher-genus polylogs to unlock integral rep’s

of superstring amplitudes beyond today’s reach (e.g. 2-loop > 6pt)
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I. 5 String theory, polylogarithms and number theory

Perturbative string amplitudes = Riemann sufaces >, at all h > 0

/ —I_ /. _|_ /~—|— / N
gﬁO;ZL ml;él 9ﬁ2;4 m3;4

Polylogarithms on >3, & their integration kernels are valuable to:
e integrate over points in low-energy expansion (1 modulus at a time)
e organize / bootstrap IMy,.,, integrand, i.e. delimit function space

e symbiosis string theory questions / info <+ mathematical developments

.. and concrete starting points to organize higher-genus polylogarithms!



II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces >J;, of arbitrary genus h > 1:

e holomorphic Abelian differentials wy_1 o  7(2) on X,

gldgeeesy

normalization %]wj(z)dz = (5§
A

period matrix 7{ wilz)dz = Qpy
B

18



19

II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces >J;, of arbitrary genus h > 1:

e holomorphic Abelian differentials wy—j o p(2) on X,

normalization ]{[wj(z)dz = (5§
A

period matrix 7{ wilz)dz = Qpy
B

dz

e kernels with poles at points p; by analogy with genus h <1

<—Pi

e additional kernels: whatever it takes for closure under integration
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II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces >J;, of arbitrary genus h > 1:

e holomorphic Abelian differentials wy—j o p(2) on X,

normalization ]{[wj(z)dz = (5§
A

period matrix 7{ wilz)dz = Qpy
B

dz

e kernels with poles at points p; by analogy with genus h <1

<—Pi
e additional kernels: whatever it takes for closure under integration

— gather entirety of higher-genus kernels in a flat connection J(z, p;)

d. T (z,p;)) = T(z,p)ANT (z,p;) = homotopy invariant iterated integrals
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II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces YJ;, of arbitrary genus h > 1:

3 several alternatives for their flat connection having 2 out of 3 properties:

(i) meromorphicity You can
have it all.
(ii) single-valuedness You just
| | o can't have
(iii) at most simple poles in points it all at

one time.
~Oprah Winfrey

: £
Sleepingfingel.com

image from SleepingAngel.com
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II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces YJ;, of arbitrary genus h > 1:

3 several alternatives for their flat connection having 2 out of 3 properties:

(i) meromorphicity You can
have it all.
(ii) single-valuedness You just
T can't have
(iii) at most simple poles in points it all at
one time.
Intuitive reason why all 3 don’t work: ~Oprah Winfrey

already on torus .31, cannot have

;i AN
Sleepingfingel.com

elliptic (meromorphic + single-valued) mage from Sleping ngel.con

functions with only simple pole (but 3 elliptic Weierstrafl p(z) =
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II. Higher-genus polylogarithms

Integration kernels on Riemann surfaces YJ;, of arbitrary genus h > 1:

3 several alternatives for their flat connection having 2 out of 3 properties:

(i) meromorphicity You can
have it all.
(ii) single-valuedness You just
| S can't have
(iii) at most simple poles in points it all at
one time.
This talk: 2 connections subject to (iii): ~Oprah Winfray

e single-valued / non-holo” Jpys(z, p)

;i AN
Sleepingfingel.com

e meromorphic / multivalued Kr(z image from SleepingAngel.com
Eld,

.. which span same space of polylogs [D’Hoker, Enriquez, OS, Zerbini 2501.07640]
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II. 1 Polylogarithms from single-valued connection

Singular kernels ~ xd—f:g from (Arakelov) Green function G(z, y) on X5, X 33,

G(zr,y) = —1In ‘a:—y’Q + sv completion

e symmetry G(z,y) = G(y, ) ol = [(ImQ)~ W w;
e Laplace equation 0,0:G(x,y) = mk(x) — 7T52(x, n
e “integrates to zero”, i.e. normalization fzh k(z)G(x,y) = 0

Explicit realization in terms of “prime form” E(xz,y) = z—y+O((z—y)°)

— combination of odd Riemann @[v|( fyx w|$2), see appendix

[Fay ’73; Faltings ’84; D’Hoker, Green, Pioline 1712.06135]



II. 1 Polylogarithms from single-valued connection

Embed simplest singular kernel 9,G(z,y) = -9% + ... into rk 2 tensor:

'
T yay) = / 122 0,G(z, 2)” (2)wi(z) — 6}0:G(,y)
2h

— need the h x h components for closure under integration, see later

25



II. 1 Polylogarithms from single-valued connection

dx

Embed simplest singular kernel 9,G(x,y) = -—= + - -+ into rk 2 tensor:

iy = / 122 0,6 (2, 2)” (2)wi(2) — 6}0:G(,y)
J2p

J

-~

7 at genus 1 since G(x,2) integrates to zero against W’ (2)wg(2)

Higher-rank kernels f{1--In 7 with n+1 free indices from recursion

FlrIn gz, y) —/ A%z 0:G(x, 2) @' (2) f1210 4(2, y)
2

26



II. 1 Polylogarithms from single-valued connection

dx

Embed simplest singular kernel 0,G(x,y) = —=— + - -+ into rk 2 tensor:

y—x

iy = / 122 0,6 (2, 2)” (2)wr(z) — 8}0:G(x,y)
J2p

J

-~

7 at genus 1 since G(x,2) integrates to zero against W’ (2)wg(2)

Higher-rank kernels f{1--In 7 with n+1 free indices from recursion

FlrIn gz, y) —/ d°2 0,6 (x, 2) 'L (2) f121n 4(2, y)
2

o kernels f11n ;(z,y) at n > 2 are regular throughout ¥y, x X,

5[
only n = 1 case has simple pole flj(x, y) = —L 4 O((f—y)o)
=Y
e non-meromorphic: 05;f]1"']”J(33, y) = —W@h(i'?)f[Q'”[”J(an y)

27

[D’Hoker, Hidding, OS 2306.08644]
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II. 1 Polylogarithms from single-valued connection

Assembly line for higher-genus polylogarithms [D’Hoker, Hidding, OS 2306.08644]

e combine f-tensors to flat connection

TIous(z,p) = —mdza! (2) by + dz (wJ(z) + Z ady, - adb]nf]l'"[”t](z,p)> a’
n=1

% (1,0) @ (0,1) form in z € ¥}y, scalar in p € ¥,

* valued in free Lie algebra with 2h generators by, - - - , by, & al, - a”

. Tpns = TpusATpus by 0zf 11710 5(2, p) = —mwli(2) fl21n 52, p)
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II. 1 Polylogarithms from single-valued connection

Assembly line for higher-genus polylogarithms [D’Hoker, Hidding, OS 2306.08644]

e combine f-tensors to flat connection
TIous(z,p) = —mdza! (2) by + dz (wJ(z) + Z ady, - adb]nf]l'"[”t](z,p)> a’
n=1
e cxpand homotopy-inv. path-ordered exp. in non-commutative var’s a’ b T

PeXp(/ jDHS(Z7p>> =1+/ jDHS(Zyp>+/ jDHS(Zlap>/ Jpus(z2,p) + - ..
Yy Yy Yy Yy

= 1+ CLJFJ(:CMU) + b[ FI(:Cmy) —i_aja’K FJK<x7y> + b[aJFIJ<£C,y;p)

+a’bre Uy (@, y:p) + bibg T (2,4 p) + “> 3 letters”
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II. 1 Polylogarithms from single-valued connection

Assembly line for higher-genus polylogarithms [D’Hoker, Hidding, OS 2306.08644]

e combine f-tensors to flat connection

TIous(z,p) = —mdza! (2) by + dz (wJ(z) + Z ady, - adb]nf]l'"[”t](z,p)> a’
n=1

Ny

PeXp(/ jDHS(Z7p>) =1+/ jDHS(Zyp>+/ jDHS(Zlap>/ Jpus(z2,p) + - ..
y y y y

= 14+ a’ Tz, y) + b T (x,y) + a’a” Typc(x,y) + bra’ T j(z, y; p) + - -

e cxpand homotopy-inv. path-ordered exp. in non-commutative var’s a

e polylogarithm [' 7 - ['“(:z:, y; p) := coeff. of word . .a”’ L e.g.

dZQCdJ 29)

—
~
S5
Ny
=
@\H
=y
2
.
~
~_
}\2
=
|
=
\
=y
N
E
@\

At genus h = 1 reproduces elliptic polylogs of [Brown, Levin 1110.6917]
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II. 1 Polylogarithms from single-valued connection

Assembly line for higher-genus polylogarithms [D’Hoker, Hidding, OS 2306.08644]

e combine f-tensors to flat connection
TIous(z,p) = —mdza! (2) by + dz (wJ(z) + Z ady, - adb]nf]l'"[”t](z,p)> a’
n=1
e cxpand homotopy-inv. path-ordered exp. in non-commutative var’s a’ b T

PeXp(/ jDHS(Z7p>> =1+/ jDHS(Zyp>+/ jDHS(Zlap>/ Jpus(z2,p) + - ..
Yy Yy Yy Yy

= 14+ a’ Tz, y) + b T (x,y) + a’a” Typc(x,y) + bra’ T j(z, y; p) + - -

e polylogarithm I ; -~ [“'(:1:, y; p) := coeff. of word . . . a’ ... br...

Both flv=In y(z,y) & T ; 1 (z, y;p) transform as modular tensors

DY

under Sp(2h,Z) 3 (é B) taking Q — (AQ+B)(CQ+D)~ ! eg.

Firtn s (z,y) — (CO4+D) g, -+ (COFD) e, F57 50 (@, y) (CO+D) M),
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II. 2 Polylogarithms from meromorphic connection

Alternative to single-valued /non-holo connection Jppg with coeft’s f Ly-In J

— meromorphic/multivalued Enriquez connection KCp with coeft’s g] 1Ay ;

o
Kg(z,y) = dr (wj(x) +> adp, - --ady gz, y)) a’
n=1

defined through its functional properties in [Enriquez 1112.0864]
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II. 2 Polylogarithms from meromorphic connection

Alternative to single-valued /non-holo connection Jppg with coeft’s f Ly-In J

— meromorphic/multivalued Enriquez connection KCp with coeft’s g] 1 In 7

O
Kg(r,y) = dz (wj(fv) + D ady, -oeady, gty (x, y)) a’
n=1

defined through its functional properties in [Enriquez 1112.0864]
e 10 A-cycle monodromies g/t (AN -z y) = gliIn 1 (x,y)

but non-trivial 2B-cycle monodromies (familiar from genus A = 1)

—2m)" ]
gty (Brea,y) = | /i ) o7 oy gl s y)
(=0 '

I
e only n = 1 case has simple pole glj@% ?/) — 5J + O(( >O)

— same poles as single-valued, but non-meromorphic f{1-In g7(x,y)
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II. 2 Polylogarithms from meromorphic connection

Alternative to single-valued /non-holo connection Jppg with coeft’s f Ly-In J

— meromorphic/multivalued Enriquez connection KCp with coeft’s g] 1 In 7

O
Kg(r,y) = dz (wJ(@ + D ady, -oeady, gty (x, y)) a’
n=1

defined through its functional properties in [Enriquez 1112.0864]

e J Poincaré-series representations via Schottky uniformization
[Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051]

o expressing ¢/l In (2, y) in terms of fIrIn ;(z,y) & Tpps polylogs:

cauge transformation & Lie-algebra automorphism of flat connections

(d— Kglz.y;a,b)) = Uz, y;0) 71 (d — Tpus(e, y; a, b)) Uz, y; b)

[D’Hoker, Enriquez, OS, Zerbini 2501.07640]
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II. 2 Polylogarithms from meromorphic connection

Alternative to single-valued /non-holo connection Jppg with coeft’s f Ly-In J

— meromorphic/multivalued Enriquez connection KCp with coeft’s g] 1 In 7

O
Kg(r,y) = dz (wJ(@ + D ady, -oeady, gty (x, y)) a’
n=1

defined through its functional properties in [Enriquez 1112.0864]

e J Poincaré-series representations via Schottky uniformization
[Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051]

o expressing ¢/l In (2, y) in terms of fIrIn ;(z,y) & Tpps polylogs:

cauge transformation & Lie-algebra automorphism of flat connections

(d o ICE<I7y;a7 b)) — \U(ZE,y, >, (d jDHS 2 y\,’) CC y7

series In JpHs series in Jpus polylogs
polylogs and by & ady,. acting on a”, by

[D’Hoker, Enriquez, OS, Zerbini 2501.07640]
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II. 2 Polylogarithms from meromorphic connection

Direct construction of g/t ;(z, y) via U-cycle convolutions:

adapt surface integrals defining f] 1+ 7(x,y) according to
/ Przal(z) — dz, 0:G(x,y) — —0,In E(z,y)
)} A

However, 3 tail of additive lower-rank corrections with Q|27 coefficients
g j(z,y) = — ]{] dzwj(2z) 0y In E(x, 2) + 5§ OrIn E(x,y)+ z'775§ wg(T)
2

i1, y) = / 122! (2) wy(2) 0uG(x, ) — 61 0:G (2, )
by

[D’Hoker, OS 2502.14769]

Valid for «, y inside fundamental domain within universal cover %, of ¥,

— see appendix for details
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II. 2 Polylogarithms from meromorphic connection

Direct construction of g] 1 In 7(x,y) via -cycle convolutions:

adapt surface integrals defining f/1"In ;(z, y) according to

/ rol(z) = ¢ dz,  0:G(x,y) — —0In Bz, y)
)} A
However, 3 tail of additive lower-rank corrections with Q|27 coefficients
g[J(:z:, y) = — ]{[ dzwj(z) 0z In E(x, z) + 5§ OrIn E(x,y)+ i7r5§ w ()
2
Recursion for n > 2 in parallel to surface- [ representation of f Iy In gz, y):
n—I1
g (2, y) = —]{] dz0pn E(x,2)g"> 1 j(z,y) + > " (2mi)" ™" (vank r)
A1
r=0
Pt o) = [ 2wl 0G0 ) 1)
h

[D’Hoker, OS 2502.14769]
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II. 2 Polylogarithms from meromorphic connection

Meromorphic polylogarithms constructed from Enriquez kernels

(zz ? xy) /}dezg?ljl(z,pl)F(?Q ? zy)

p1 P2 - pr p2 - pr

. V(L . Q) . .. . Il S
with I'(0; z,y) = 1 & ¢” (2, p) = w(z) and multi-indices T, = I - I,
[Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051; D’Hoker, OS 2407.11476;

Baune, Broedel, Im, Lisitsyn, Mockli 2409.08208; Enriquez, Zerbini: work in progress]

e term-by-term homotopy invariant but non-tensorial under Sp(2h, Z)
e first explorations of numerical evaluations in [above 2406.10051],

and of functional identities in [above 2407.11476, 2409.08208]
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II. 2 Polylogarithms from meromorphic connection

Meromorphic polylogarithms constructed from Enriquez kernels

(zz ? :z:y) /@dezg?ljl(z,pl)F(?Q ? zy)

p1 P2 - pr p2 - pr

. V(L . Q) . .. . Il S
with I'(0; z,y) = 1 & ¢” (2, p) = w(z) and multi-indices T, = I - I,
[Baune, Broedel, Im, Lisitsyn, Zerbini 2406.10051; D’Hoker, OS 2407.11476;

Baune, Broedel, Im, Lisitsyn, Mockli 2409.08208; Enriquez, Zerbini: work in progress]

e term-by-term homotopy invariant but non-tensorial under Sp(2h, Z)

e first explorations of numerical evaluations in [above 2406.10051],

and of functional identities in [above 2407.11476, 2409.08208]

¢ /pus polylogarithms expressible via I multiplied by iterated int’s of w!
[D’Hoker, Enriquez, OS, Zerbini 2501.07640]

1

e reduce to elliptic polylogs F( pr , ) at genus h =1 and y = 0
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II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels f/1In (2, y) from convolutions of

Green function G(z,y) < (X(2)X(y))y, of free boson on ¥,

h
central ingredient for moduli-space integrands of string amplitudes, e.g.
n
B / ' ' - rest of CF'T correlator
Ag;n o /ﬂﬁ CXp (Oz Z ki k] Gz, ZJ)) < of vertex operators )
gn 1<i<y

Contributions to “rest of CF'T correlators” from polynomials in G, f:

¢ 0.G(z,y) and 0,0,G(z,y) and cc’s from bosons X (z) € vertex operator
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II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels f Ly-+-dn g(x,y) from convolutions of

Green function G(z,y) < (X(2)X(y))y, of free boson on ¥,

h

central ingredient for moduli-space integrands of string amplitudes, e.g.

n
_ / o o rest of CF'T correlator
Ag;n B /ﬁﬁ P (Oz Z kz k] g<zz’zj>> ( of vertex operators )
gin 1<i<j

Contributions to “rest of CF'T correlators” from polynomials in G, f:

¢ 0.G(z,y) and 0,0,G (2, y) and cc’s from bosons X (z) € vertex operator

o worldsheet fermions ¥ (2) of RNS superstrings: all z;-dependence of

ible via modular tensors f11!r ;(z, y) or Enriquez kernels /117 ;(z, y)
[D’Hoker, Hidding, OS 2308.05044; D’Hoker, OS 2505.07947]
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II. 3 Higher-genus kernels and string amplitudes

Constructed higher-genus kernels f/1In (2, y) from convolutions of

Green function G(z,y) < (X(2)X(y))y, of free boson on ¥,

h

central ingredient for moduli-space integrands of string amplitudes, e.g.

n
__ / : : : : Hz of fllm[rn](zh Zj)7
Ag;n — /9)1 CXp (Q Z k’é ' k] Q(ZZ, ZJ)) ' ( their sz’s and cc’s
gin 1<i<j

e plan to bootstrap M., Integrand of g > 2 amplitudes using ansaetze
built from 11 ;(z;, z;) and imposing consistency conditions

e 2; integrals in low-energy expansion will become algorithmic using
higher-genus polylogarithms and their single-valued versions

e to do: connect with [ over modular parameters [talk of Lorenz Eberhardt,
[Baccianti, Chandra, Eberhardt, Hartmann, Manschot, Mizera, Wang 2022 - 2025]
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II. 4 Closure under integration

%
Products of F(71 7 z y) with g?L(z p;i) & g™ n(p;, 2) close under

pP1 - Pr
integration over z and p; by algebraic identities of integration kernels:

(zz 7 xy) /y$dzg?Jl(z pl)F(? 7 zy)

p1 P2 - pr p2 - pr
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II. 4 Closure under integration

T T, W

Products of F( pl g 2 y) with g?L(z p;) & g™ n(p;, 2) close under
[ r
integration over z and p; by algebraic identities of integration kernels:

e warmup: how to integrate wg(2)g™ 7(p, 2)T(- -+ : 2, y) over z?

“Interchange lemma” wK(z)gKJ(p, z) = ij(p)gKJ(ZapZ

fewer 2’s t?lran on LHS

e similarly, need to convert 0, — 0,

“swapping identities” 9pg/t12Is8 (2 p) = (=1)% 0,g%s 211K 4(p, 2)
[D’Hoker, OS 2407.11476]
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II. 4 Closure under integration

T T, W

Products of F( pl g 2 y) with g?L(z p;) & g™ n(p;, 2) close under
[ r
integration over z and p; by algebraic identities of integration kernels:

e “Interchange lemma” wK(z)gKJ(p, z) = —wK(p)gKJ(z,p)
e “swapping identities” ﬁpgh]?"'lsKJ(z,p) = (—1)502918'”]2[1[({](197 z)

e more generally, Fay identities eliminate repeated appearance of z, e.g.

g 1y, 2)97 k(z2) = ¢ Jly, )97 k(2 2) — gL (2, 9)97 Kk (y, 2)

—wiW)g" k(2 y9) — wi) g k(2 2) — wi(2) g™ Ky, 2)

@&ted ~ on RHS! [D’Hoker, OS 2407.11476]
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II. 4 Closure under integration

Products of modular I' 7 /= (z, y; p) with kernels from Jpg close under

integration over z and p by algebraic identities of integration kernels:

e “interchange lemma” wp(2) 5 1(p, 2) = —wr(p)f5 1(z,p)
e “swapping identities” 6pf[1[2"'[3KJ(z,p) = (—1)° (9zf[3m[2]1KJ(p7 z)
e more generally, Fay identities eliminate repeated appearance of z, e.g.
Fat ) gz a) = flyo)f kle2) = 0 Ky, )
—wi) Y g (zy) — w7 k(2 2) = wi) M k(g @)
e identical interchange /swapping /Fay identities for g? g(x,y) < f 7 g7(x,y)

—> closely related integration algorithms for combinations of f’s & ¢’s
[D’Hoker, OS 2407.11476]
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II. 4 Closure under integration

Tensorial Fay identities of bilinears in f T g(x,y) at arbitrary rank
Frtge o) [ ey, 2) = (e, e) 7 ke, @)

r

+Z<—1>m—8—1 D f Wl () fR ittt (y, )

(=0

4 Z m 5— 1 mJ(:U, 33) [f(PS"'Pm+1‘]U-|Il‘"Ir—l)ITK(Z’ QZ)

@ted < @ + f(Ps...PmHI_LIh...[7~)JK(Z7 y>]

e proven by (inductively) showing LHS - RHS is holomorphic in z, y, 2

and integrates to zero against @’ (z)o™ (y) [D’Hoker, OS 2407.11476]

i1 7

e analogous proof for f* j(x,y) — g* j(x,y) based on monodromy;,

reformulation via generating series and proof of completeness in
[Baune, Broedel, Im, Lisitsyn, Mockli 2409.08208]
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Summary

e 2 equivalent constructions of polylogs on higher-genus Riemann surfaces
via single-valued *or™ meromorphic kernels with at most simple poles
—— by closure under integration, expect wide range of applications

e single-valued f111n 7 from surtace integrals of Arakelov Green function,
— arise naturally in worldsheet CF'T' for string amplitudes

— bootstrap approaches and algorithms for f dz; at small o

Thank you for your attention !
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Appendix: Arakelov Green function G from theta functions

e cenus-h theta fct. with € (Ch, odd characteristics k=[x’, k"'] €40, %}%

0r)(¢l) = Y emilntn ) Q) 2miln (G
ncZh

o prime form: E(z,y) = (z—y) + O((z—y)?) without extra zeros

0lx]( J, wi)
() hie(y)
with half-differentials hy(z)? = 21}21 W ](x)é%ﬁm (0)

E([C,y) —

— independent on odd characteristics k with 0|x](—() = —0|k]({)

o string Green function: compensate x — B-x monodromy of In |E(x, y)|?

G(z,y) = —log|E(x,y)‘2+2ﬂIm/ w][(ImQ)_l]]‘]Im/ W J
Y Y
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Appendix: Arakelov Green function G from theta functions

o string Green function: compensate x — B-x monodromy of In |F(x, y)|

- x x
G(z,y) = —log |E(:E,y)‘2 + 27 Im / wr [(Im Q)1 Im / W g
Y Y
e can find straightforward shifts G(z, y) = G(x, y)+. . . such that Arakelov

Green function integrates to zero against k(x) = %QI (x)wi(z):

N\

G(z,y) = G(z,y) —/

2

()Gl ~

)

k(2)G(z,x) + /(Z ; k(2)k(w)G(z, w)

e By the construction of G(x,y) from E(x,y) and hence 0|x]((|2),

Arakelov Green function — theta functions and their integrals over .

e Work in progress: expansion around degenerations suitable for numerics
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Appendix: Fundamental domain D for Enriquez kernels

A-integral representation of Enriquez kernels ¢/t n ;(z, y) applies to

z,y € (fundamental domain D) inside universal cover ¥, of surface ¥y,

Reduce x, y outside D to x, y € D via known monodromies of g[ 1



