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•As an illustrative example, consider a system of  qubits at infinite temperature. By 
typical EPR we mean a random and maximally entangled state between two systems.
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•Typical EPRs have the same entanglement spectrum as the TFD but simple  
correlation functions are  and very erratically dependent on the specific 
microstate. This was used in the past to argue against their semiclassicality.

𝖫𝖱
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•Outline: (1) Explicitly construct families of ER bridges that incorporate this erraticity 
semiclassically. The wormholes are long caterpillars:

(2) Use the GPI to derive a quantitative correspondence between the length of the 
wormholes and the amount of microscopic quantum randomness of the states.

 [Marolf, Polchinski '13]
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The evolution fails to generate typical EPRs:



•Still, for black holes, the Hamiltonian evolution generates more general examples of ER 
= EPR. The wormhole stretches under time evolution.
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•The wormhole emerges as the “quantum circuit” associated to time evolution. The 
length of the wormhole represents the circuit depth, while its volume is the circuit size.
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•At Heisenberg times , the state becomes maximally complex and yet atypical. 
Non-perturbative effects are expected to be important at this timescale.

t = O(βeS)

 [Stanford, Yang  '22] … [Susskind  '20]
 [Iliesiu, Mezei, Sarosi  '21]

 [Hartman, Maldacena  '13] … [Susskind  '13]

•The wormhole emerges as the “quantum circuit” associated to time evolution. The 
length of the wormhole represents the circuit depth, while its volume is the circuit size.



•To densely explore the Hilbert space, we will consider time-dependent Hamiltonians.                           
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Brownian time evolution

•Specifically, we consider Brownian Hamiltonians, consisting on a set of few-body 
operators  with i.i.d. white-noise correlated Gaussian random couplings.𝒪α

 [Lashkari et al. '11]
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Brownian time evolution

•The dynamics is the continuous version of a random quantum circuit: at each time the 
system evolves via an infinitesimal “random gate” .U(t, δt) = e−𝗂δt H(t)
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 [Bentsen, Jian, Swingle  '22]
 [Saad, Shenker, Stanford  '18]

•Brownian dynamics can be formally solved exactly on average. As an example, consider 
the spectral form factor of .U(t)
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 [Bentsen, Jian, Swingle  '22]
 [Saad, Shenker, Stanford  '18]

•Brownian dynamics can be formally solved exactly on average. As an example, consider 
the spectral form factor of .U(t)

•The effective Hamiltonian is gapped and its unique GS is the infinite temperature TFD. 
At late times this produces:
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•The late time SFF signals that the Brownian evolution dynamically forms a generic 
unitary (an thus a generic EPR) which incorporates the eigenphase repulsion of Haar.



Finite temperature

 [Shenker, Stanford '13]
…

•AdS/CFT systems that describe black holes. We construct  with the Brownian 
time-evolution applied to a finite temperature TFD.

|Ψt⟩
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•Out-of-equilibrium at  times.O(S/K )

Finite temperature

 [Shenker, Stanford '13]
…

•AdS/CFT systems that describe black holes. We construct  with the Brownian 
time-evolution applied to a finite temperature TFD.

|Ψt⟩
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•Incorporate Euclidean evolution to gradually cool the state down. This injects the 
perturbations from the Euclidean past and directly creates them in the BH interior.

(  while  fixed)δt = δβ → 0 t
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•Incorporate Euclidean evolution to gradually cool the state down. This injects the 
perturbations from the Euclidean past and directly creates them in the BH interior.

(  while  fixed)δt = δβ → 0 t

The timefolds implement the 
interaction Hamiltonian:

•The CFT path integral prepares an equilibrium version of the time-evolved TFD.
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Semiclassical duals: caterpillars

•Use GPI to prepare the semiclassical dual to  computing its norm. The 
geometry of individual instances is too complicated  take average over couplings.

|Ψt⟩
→
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•The effective Hamiltonian is a “double-trace” or Maldacena-Qi Hamiltonian which 
has appeared in holography in the context of eternal traversable wormholes.

 [Maldacena, Qi '18]
 [Cotrell et al. '18]
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•The effective Hamiltonian is a “double-trace” or Maldacena-Qi Hamiltonian which 
has appeared in holography in the context of eternal traversable wormholes.

 [Maldacena, Qi '18]
 [Cotrell et al. '18]

•Use GPI to prepare the semiclassical dual to  computing its norm. The 
geometry of individual instances is too complicated  take average over couplings.

|Ψt⟩
→

Semiclassical duals: caterpillars

•We want to evaluate the average norm using the GPI.



•In SYK, at low temperatures, we can solve for the disk saddle point, using the 
Liouville particle formulation of JT gravity: 
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 [Maldacena, Qi '18]

The disk geometry is stretched horizontally 
since the geodesic length is stabilized by the 
interaction.

There is an approximate Euclidean time 
translation symmetry.



•In SYK, at low temperatures, we can solve for the disk saddle point, using the 
Liouville particle formulation of JT gravity: 
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 [Maldacena, Qi '18]

•The consequence is that the length of the wormhole (red slice) grows linearly with .t

The disk geometry is stretched horizontally 
since the geodesic length is stabilized by the 
interaction.

There is an approximate Euclidean time 
translation symmetry.
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•In higher dimensions we can argue for the same result for  single-trace 
matter operators using general properties of the effective Hamiltonian: it has a 
unique ground state that looks like a finite-temperature TFD and it is gapped. 

O(c)

 [Cotrell et al. '18]
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•In higher dimensions we can argue for the same result for  single-trace 
matter operators using general properties of the effective Hamiltonian: it has a 
unique ground state that looks like a finite-temperature TFD and it is gapped. 

O(c)

 [Cotrell et al. '18]

•The slope of the linear growth can be related to the energy gap  of the 
effective Hamiltonian using the lightest excitations on the wormhole as a “clock”:

Egap
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Randomness growth in gravity

•Universally, the Brownian dynamics produces a dense exploration of Hilbert space and 
the ensemble of states becomes more and more random in time.

•For black holes, how does randomness grow with time ?t

•QI notion of a quantum state -design: an ensemble of states which reproduces the 
first  moments of the typical EPRs. At infinite temperature, the Brownian evolution 
produces a linear growth of randomness: 
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( )k = 1
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•The distance to -design is encoded in the statistics of inner products, whose moments 
are known as the frame potentials  of the ensemble of states.

k
Fk(t)
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•The FP is a thermal partition function for a -replica effective Hamiltonian at inverse 
temperature . At late times its low-energy sector dominates, which breaks replica 
symmetry and it is captured by  copies of the 2-replica physics of .
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•The FP is a thermal partition function for a -replica effective Hamiltonian at inverse 
temperature . At late times its low-energy sector dominates, which breaks replica 
symmetry and it is captured by  copies of the 2-replica physics of . In gravity:

2k
2t

k Heff
 [Magán, Swingle, MS  '24 '25]

•Randomness grows linearly with the same slope as the average length of the wormhole.

( )k = 1

•The distance to -design is encoded in the statistics of inner products, whose moments 
are known as the frame potentials  of the ensemble of states.

k
Fk(t)



The ensemble of caterpillars of length  and matter correlation scale 
 forms an -approximate quantum state -design of the black holes 

for

ℓ
ℓΔ ε k

Wormhole length = randomness

16

•Combining both linear growths we arrive to our main result: 

•This constitutes a “complexity” = geometry relation in holography, derived from the GPI.



Discussion

•Ensembles of caterpillars provide a window into the generic structure of the 
Hilbert space of black holes in any theory of gravity with low-energy matter.
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Discussion

•Ensembles of caterpillars provide a window into the generic structure of the 
Hilbert space of black holes in any theory of gravity with low-energy matter.

 [Maldacena, Kourkoulou '17]  [de Boer et al. '19]
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- Formation of -designs of black holes in other ways, e.g., performing measurements?k

- Firewalls? What is the ratio of caterpillars with firewalls and without firewalls?

•Some open questions: 

 [Stanford, Yang '22]

- Plateau signal of EPR correlators?

- Matter that forms the caterpillar falls into the singularity. Is there any relation 
between the genericity of the microstates and the genericity of the singularity? 



Thanks!



•In JT gravity the relevant two-boundary wormhole for the linear growth of randomness 
is a stabilized double trumpet.
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•It can be constructed as a classical solution of the Euclidean geodesic length degree of 
freedom. It is stabilized by the interaction term coming from the bulk fields.



Firewalls in typical states?

•It seems from the average the geometry that only past-evolved caterpillars have 
firewalls. Are states with firewalls indistinguishable from states without firewalls?

 [Susskind '15]
 [Stanford, Yang '22] …

 [Shenker, Stanford '13]
•Firewalls can simply correspond to matter shocks in a highly boosted frame.
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