ER for typical EPR

Martin Sasieta, UC Berkeley

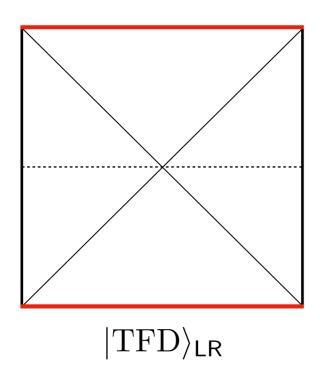
Eurostrings

Stockholm, Aug 2025

Based on: [2412.08693] [2504.17546] w/ Javier Magán & Brian Swingle

Introduction

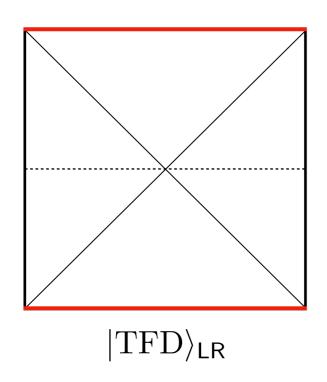
•In holography, two ideas appear to be in tension. One is ER=EPR: enough microscopic entanglement generates a connected space (e.g. the black hole interior).

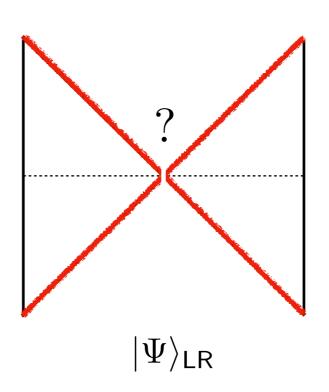


... [van Raamsdonk '13] [Maldacena, Susskind '13] ...

Introduction

• In holography, two ideas appear to be in tension. One is ER=EPR: enough microscopic entanglement generates a connected space (e.g. the black hole interior).





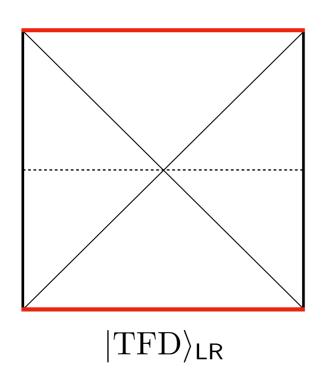
... [van Raamsdonk '13] [Maldacena, Susskind '13] ...

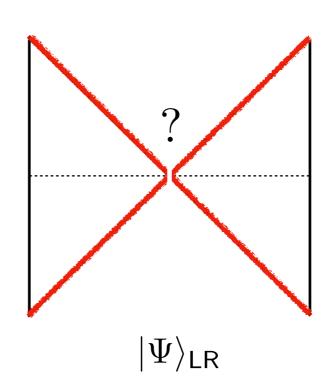
■ The other one is that the TFD example or a collapse situation are atypical, and that typical (entangled) states have no semiclassical interiors.

... [Marolf, Polchinski '13]

Introduction

• In holography, two ideas appear to be in tension. One is ER=EPR: enough microscopic entanglement generates a connected space (e.g. the black hole interior).





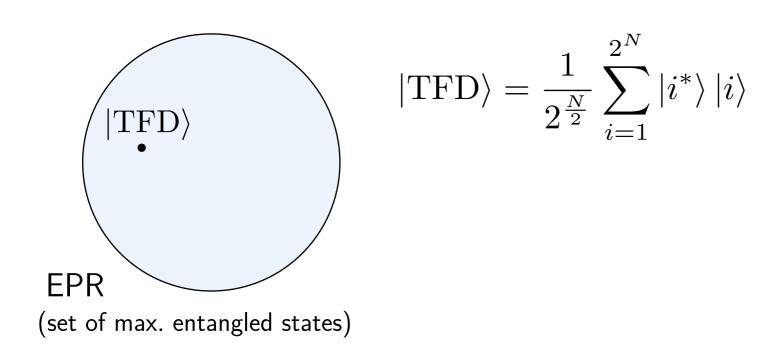
... [van Raamsdonk '13] [Maldacena, Susskind '13] ...

• The other one is that the TFD example or a collapse situation are atypical, and that typical (entangled) states have no semiclassical interiors.

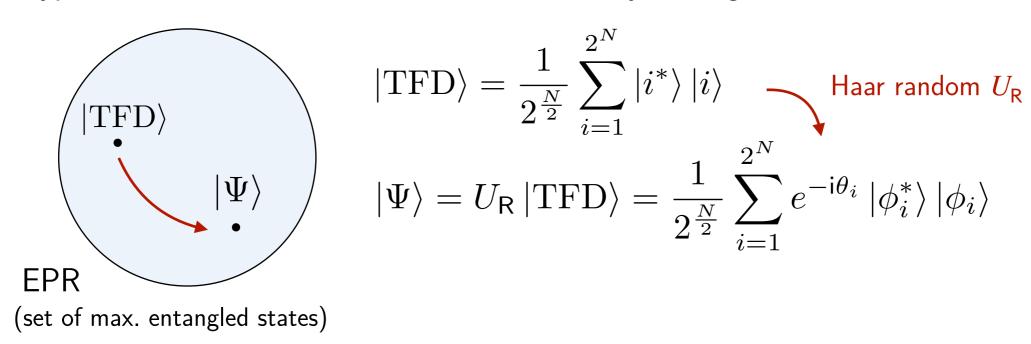
... [Marolf, Polchinski '13]

Do generic (typical) EPRs of two black holes have ERs?

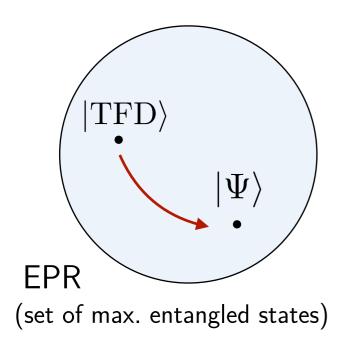
ullet As an illustrative example, consider a system of N qubits at infinite temperature.



• As an illustrative example, consider a system of N qubits at infinite temperature. By typical EPR we mean a random and maximally entangled state between two systems.



• As an illustrative example, consider a system of N qubits at infinite temperature. By typical EPR we mean a random and maximally entangled state between two systems.

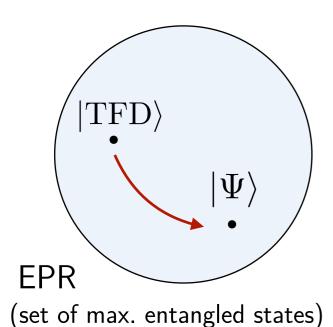


$$|\text{TFD}\rangle = \frac{1}{2^{\frac{N}{2}}} \sum_{i=1}^{2^N} |i^*\rangle |i\rangle \qquad \text{Haar random } U_{\text{R}}$$

$$|\Psi\rangle = U_{\text{R}} |\text{TFD}\rangle = \frac{1}{2^{\frac{N}{2}}} \sum_{i=1}^{2^N} e^{-\mathrm{i}\theta_i} |\phi_i^*\rangle |\phi_i\rangle$$

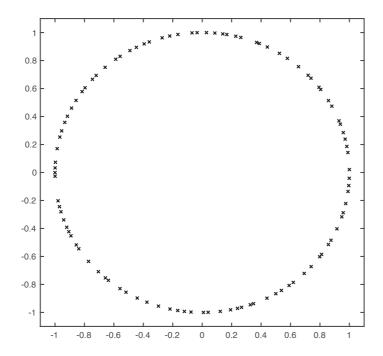
- lacktriangle The eigenvectors $|\phi_i\rangle$ are uniform random states.
- The eigenphases $e^{-i\theta_i}$ are distributed according to the CUE.

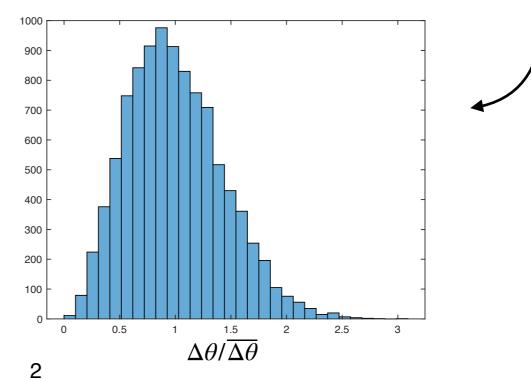
• As an illustrative example, consider a system of N qubits at infinite temperature. By typical EPR we mean a random and maximally entangled state between two systems.



$$\begin{split} |\text{TFD}\rangle &= \frac{1}{2^{\frac{N}{2}}} \sum_{i=1}^{2^N} |i^*\rangle \, |i\rangle \qquad \text{Haar random } \textbf{\textit{U}}_{\text{R}} \\ |\Psi\rangle &= \textbf{\textit{U}}_{\text{R}} \, |\text{TFD}\rangle = \frac{1}{2^{\frac{N}{2}}} \sum_{i=1}^{2^N} e^{-\mathrm{i}\theta_i} \, |\phi_i^*\rangle \, |\phi_i\rangle \end{split}$$

- The eigenvectors $|\phi_i\rangle$ are uniform random states.
- The eigenphases $e^{-\mathrm{i}\theta_i}$ are distributed according to the CUE.





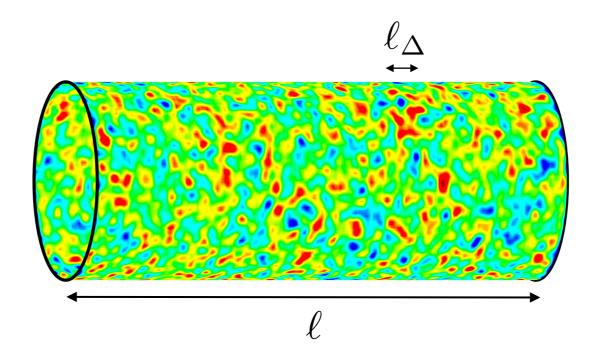
• Typical EPRs have the same entanglement spectrum as the TFD but simple LR correlation functions are $O(2^{-N})$ and very erratically dependent on the specific microstate. This was used in the past to argue against their semiclassicality.

[Marolf, Polchinski '13]

• Typical EPRs have the same entanglement spectrum as the TFD but simple LR correlation functions are $O(2^{-N})$ and very erratically dependent on the specific microstate. This was used in the past to argue against their semiclassicality.

[Marolf, Polchinski '13]

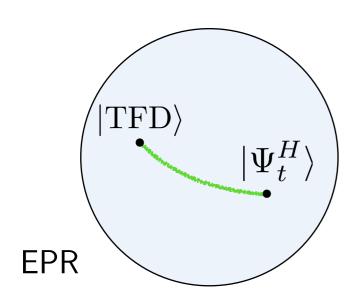
• Outline: (1) Explicitly construct families of ER bridges that incorporate this erraticity semiclassically. The wormholes are long **caterpillars**:



(2) Use the GPI to derive a quantitative correspondence between the length of the wormholes and the amount of microscopic quantum randomness of the states.

Towards typical EPRs

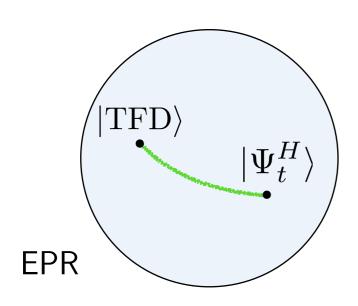
•Starting from the TFD, a natural possibility to construct more generic entangled states is to time-evolve it with the time-independent Hamiltonian H_R .



$$\left|\Psi_{t}^{H}\right\rangle = e^{-\mathrm{i}tH_{\mathsf{R}}}\left|\mathrm{TFD}\right\rangle = \frac{1}{2^{\frac{N}{2}}}\sum_{i=1}^{2^{N}}e^{-\mathrm{i}tE_{i}}\left|i^{*}\right\rangle\left|i\right\rangle$$

Towards typical EPRs

•Starting from the TFD, a natural possibility to construct more generic entangled states is to time-evolve it with the time-independent Hamiltonian H_R .



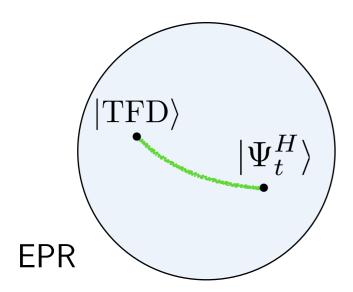
$$\left|\Psi_{t}^{H}\right\rangle = e^{-\mathrm{i}tH_{R}}\left|\mathrm{TFD}\right\rangle = \frac{1}{2^{\frac{N}{2}}}\sum_{i=1}^{2^{N}}e^{-\mathrm{i}tE_{i}}\left|i^{*}\right\rangle\left|i\right\rangle$$

The evolution fails to generate typical EPRs:

- For few-body H_R the $|i\rangle$ are not random states.
- The wavefunction e^{-itE_i} is never typical.

Towards typical EPRs

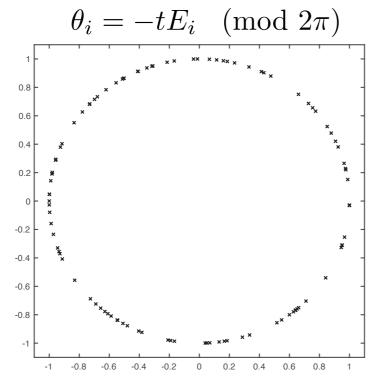
•Starting from the TFD, a natural possibility to construct more generic entangled states is to time-evolve it with the time-independent Hamiltonian H_R .

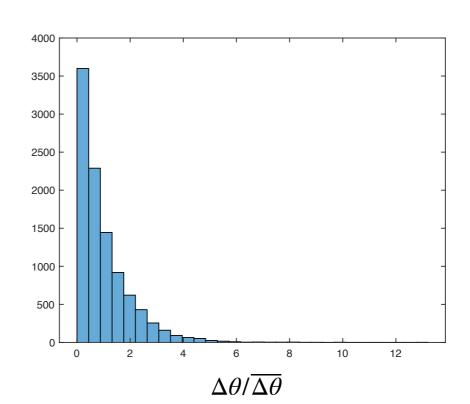


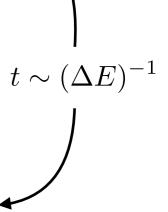
$$\left|\Psi_{t}^{H}\right\rangle = e^{-\mathrm{i}tH_{\mathrm{R}}}\left|\mathrm{TFD}\right\rangle = \frac{1}{2^{\frac{N}{2}}}\sum_{i=1}^{2^{N}}e^{-\mathrm{i}tE_{i}}\left|i^{*}\right\rangle\left|i\right\rangle$$

The evolution fails to generate typical EPRs:

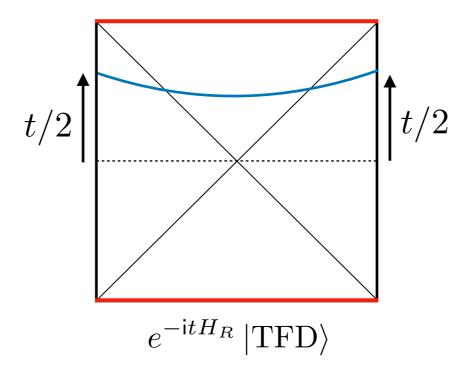
- For few-body H_R the $|i\rangle$ are not random states.
- The wavefunction e^{-itE_i} is never typical.



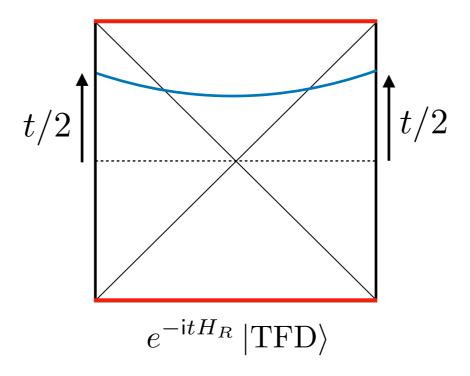




• Still, for black holes, the Hamiltonian evolution generates more general examples of ER = EPR. The wormhole stretches under time evolution.



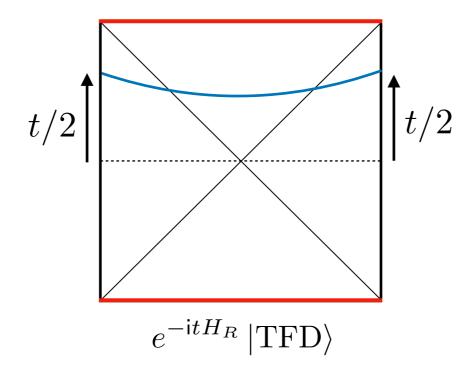
•Still, for black holes, the Hamiltonian evolution generates more general examples of ER = EPR. The wormhole stretches under time evolution.



• The wormhole emerges as the "quantum circuit" associated to time evolution. The length of the wormhole represents the circuit depth, while its volume is the circuit size.

[Hartman, Maldacena '13] [Susskind '13] ...

•Still, for black holes, the Hamiltonian evolution generates more general examples of ER = EPR. The wormhole stretches under time evolution.



• The wormhole emerges as the "quantum circuit" associated to time evolution. The length of the wormhole represents the circuit depth, while its volume is the circuit size.

[Hartman, Maldacena '13] [Susskind '13] ...

• At Heisenberg times $t = O(\beta e^S)$, the state becomes maximally complex and yet atypical. Non-perturbative effects are expected to be important at this timescale.

[Susskind '20] [Stanford, Yang '22] ... [Iliesiu, Mezei, Sarosi '21]

Brownian time evolution

• To densely explore the Hilbert space, we will consider time-dependent Hamiltonians.

$$U(t) = \mathsf{T}e^{-\mathsf{i}\int_0^t \mathrm{d}s \, H(s)}$$

Brownian time evolution

■ To densely explore the Hilbert space, we will consider time-dependent Hamiltonians.

$$U(t) = \mathsf{T}e^{-\mathsf{i}\int_0^t \mathrm{d}s \, H(s)}$$

• Specifically, we consider Brownian Hamiltonians, consisting on a set of few-body operators \mathcal{O}_{α} with i.i.d. white-noise correlated Gaussian random couplings.

$$|\Psi_t\rangle = U(t)\,|\text{TFD}\rangle \qquad \qquad H(t) = \sum_{\alpha=1}^K g_\alpha(t)\mathcal{O}_\alpha \qquad \qquad [\text{Lashkari et al. '11}]$$

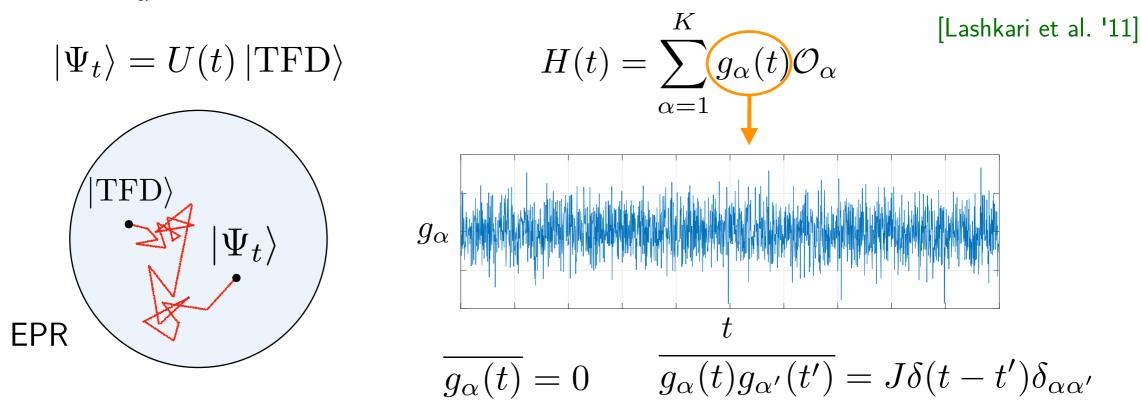
$$g_\alpha \qquad \qquad g_\alpha(t) = 0 \qquad \frac{t}{g_\alpha(t)g_{\alpha'}(t')} = J\delta(t-t')\delta_{\alpha\alpha'}$$

Brownian time evolution

■ To densely explore the Hilbert space, we will consider time-dependent Hamiltonians.

$$U(t) = \mathsf{T}e^{-\mathsf{i}\int_0^t \mathrm{d}s \, H(s)}$$

• Specifically, we consider Brownian Hamiltonians, consisting on a set of few-body operators \mathcal{O}_{α} with i.i.d. white-noise correlated Gaussian random couplings.



• The dynamics is the continuous version of a random quantum circuit: at each time the system evolves via an infinitesimal "random gate" $U(t, \delta t) = e^{-i\delta t H(t)}$.

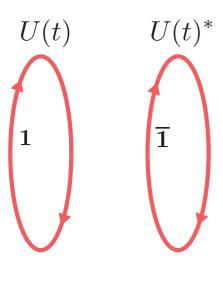
• Brownian dynamics can be formally solved exactly on average. As an example, consider the spectral form factor of U(t).

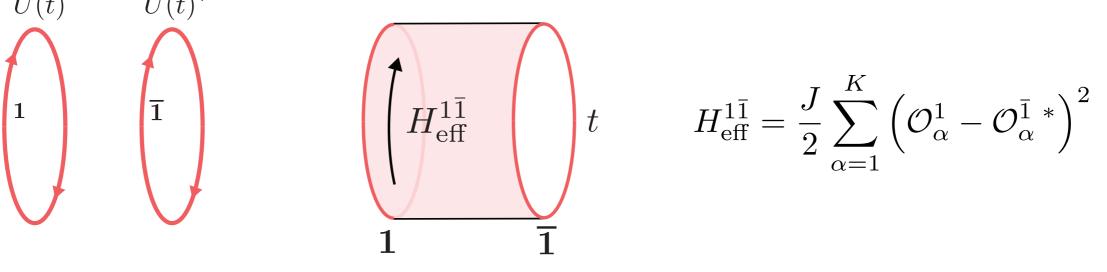
$$\mathsf{SFF}(t) = \overline{\left| \mathrm{Tr} \, U(t) \right|^2} =$$
[Saad, Shenker, Stanford '18]
[Bentsen, Jian, Swingle '22]

• Brownian dynamics can be formally solved exactly on average. As an example, consider the spectral form factor of U(t).

$$\mathsf{SFF}(t) = \overline{|\mathrm{Tr}\,U(t)|^2} = \mathrm{Tr}\,e^{-tH_{\mathrm{eff}}^{1\bar{1}}}$$

[Saad, Shenker, Stanford '18] [Bentsen, Jian, Swingle '22]

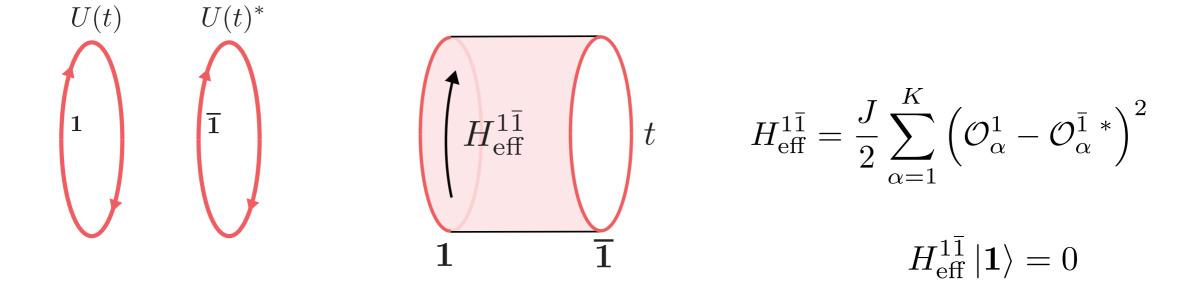




$$H_{\text{eff}}^{1\bar{1}} = \frac{J}{2} \sum_{\alpha=1}^{K} \left(\mathcal{O}_{\alpha}^{1} - \mathcal{O}_{\alpha}^{\bar{1}} * \right)^{2}$$

• Brownian dynamics can be formally solved exactly on average. As an example, consider the spectral form factor of U(t).

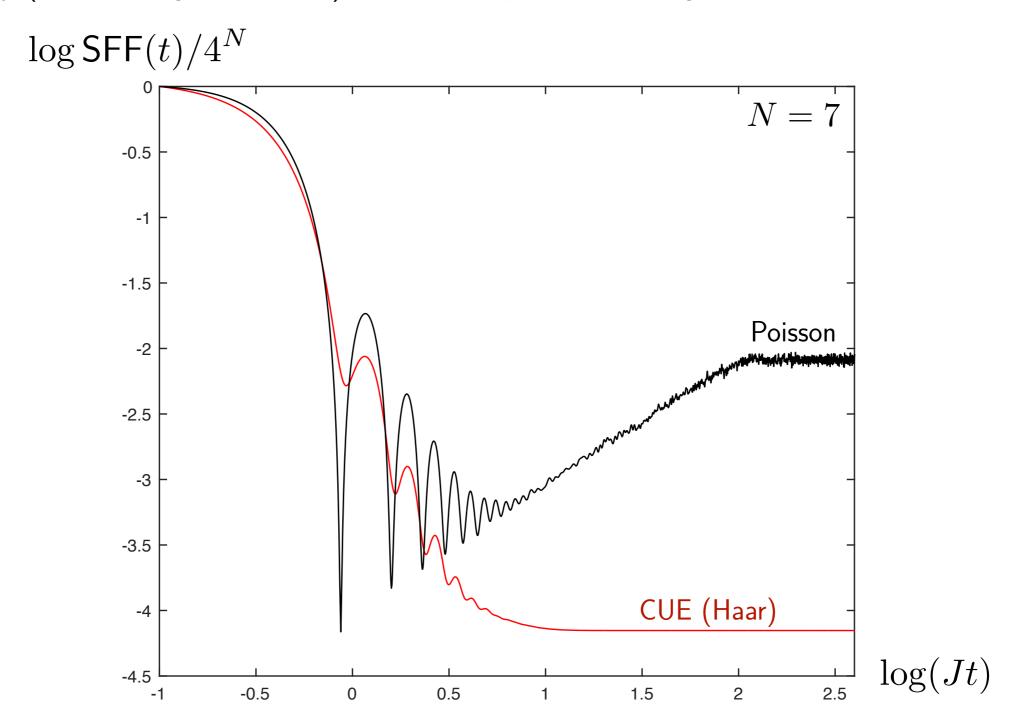
$$\mathsf{SFF}(t) = \overline{\left| \mathrm{Tr} \, U(t) \right|^2} = \, \mathrm{Tr} \, e^{-t H_{\mathrm{eff}}^{1\overline{1}}} \qquad \qquad \begin{array}{c} \text{[Saad, Shenker, Stanford '18]} \\ \text{[Bentsen, Jian, Swingle '22]} \end{array}$$



• The effective Hamiltonian is gapped and its unique GS is the infinite temperature TFD. At late times this produces:

$$SFF(t) \approx 1 + N_* e^{-2tE_{gap}}$$

• The late time SFF signals that the Brownian evolution dynamically forms a generic unitary (an thus a generic EPR) which incorporates the eigenphase repulsion of Haar.



Finite temperature

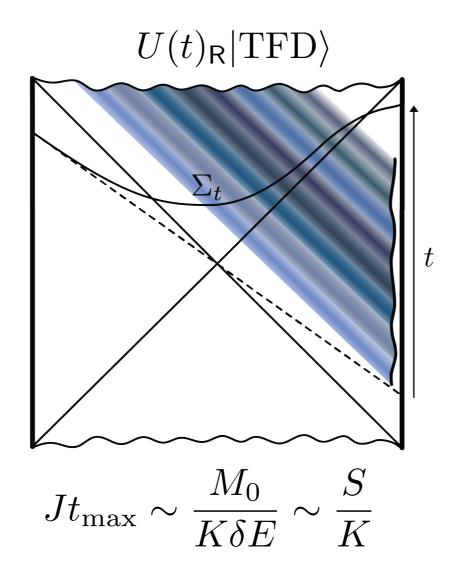
• AdS/CFT systems that describe black holes. We construct $|\Psi_t\rangle$ with the Brownian time-evolution applied to a finite temperature TFD. [Shenker, Stanford '13]

 $U(t)_{\mathsf{R}}|\mathrm{TFD}\rangle$

Finite temperature

• AdS/CFT systems that describe black holes. We construct $|\Psi_t\rangle$ with the Brownian time-evolution applied to a finite temperature TFD.

[Shenker, Stanford '13]



• Out-of-equilibrium at O(S/K) times.

• Incorporate Euclidean evolution to gradually cool the state down. This injects the perturbations from the Euclidean past and directly creates them in the BH interior.

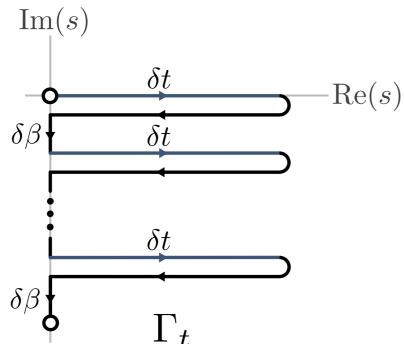
$$U(\Gamma_t) = e^{-\delta\beta H_0} U_I(n, \delta t) \cdots e^{-\delta\beta H_0} U_I(2, \delta t) e^{-\delta\beta H_0} U_I(1, \delta t)$$

$$(\delta t = \delta\beta \to 0 \text{ while } t \text{ fixed})$$

• Incorporate Euclidean evolution to gradually cool the state down. This injects the perturbations from the Euclidean past and directly creates them in the BH interior.

$$U(\Gamma_t) = e^{-\delta\beta H_0} U_I(n, \delta t) \cdots e^{-\delta\beta H_0} U_I(2, \delta t) e^{-\delta\beta H_0} U_I(1, \delta t)$$

$$(\delta t = \delta\beta \to 0 \text{ while } t \text{ fixed})$$



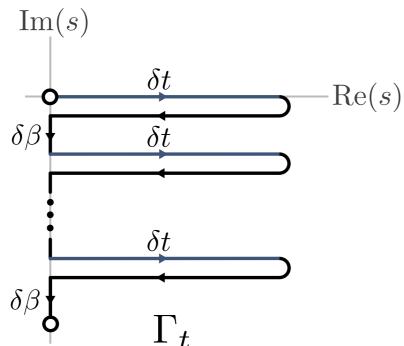
◆ The timefolds implement the interaction Hamiltonian:

$$H(s)_{I} = \sum_{\alpha=1}^{K} g_{\alpha}(s)\mathcal{O}_{\alpha}(s)$$

 Incorporate Euclidean evolution to gradually cool the state down. This injects the perturbations from the Euclidean past and directly creates them in the BH interior.

$$U(\Gamma_t) = e^{-\delta\beta H_0} U_I(n, \delta t) \cdots e^{-\delta\beta H_0} U_I(2, \delta t) e^{-\delta\beta H_0} U_I(1, \delta t)$$

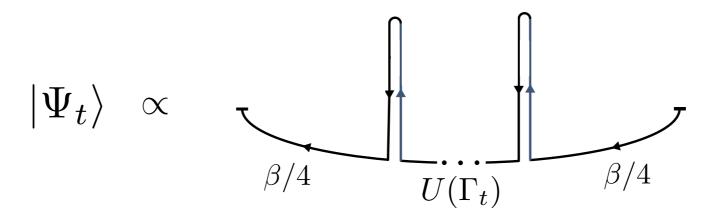
$$(\delta t = \delta\beta \to 0 \text{ while } t \text{ fixed})$$



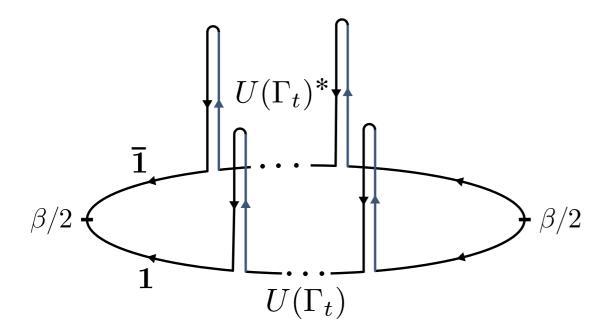
◆ The timefolds implement the interaction Hamiltonian:

$$H(s)_{I} = \sum_{\alpha=1}^{K} g_{\alpha}(s)\mathcal{O}_{\alpha}(s)$$

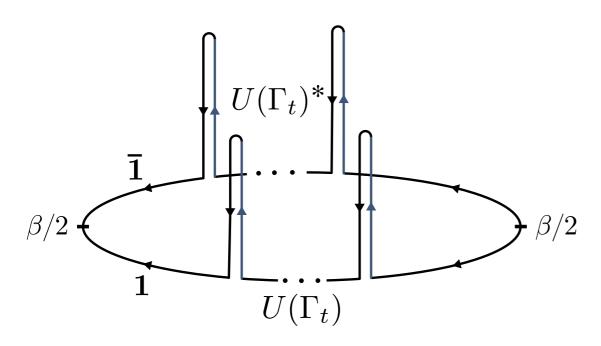
• The CFT path integral prepares an equilibrium version of the time-evolved TFD.



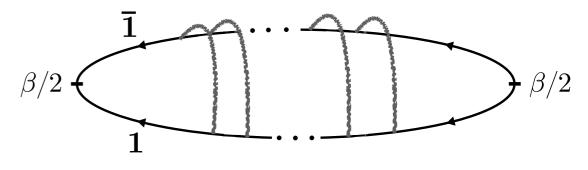
• Use GPI to prepare the semiclassical dual to $|\Psi_t\rangle$ computing its norm.



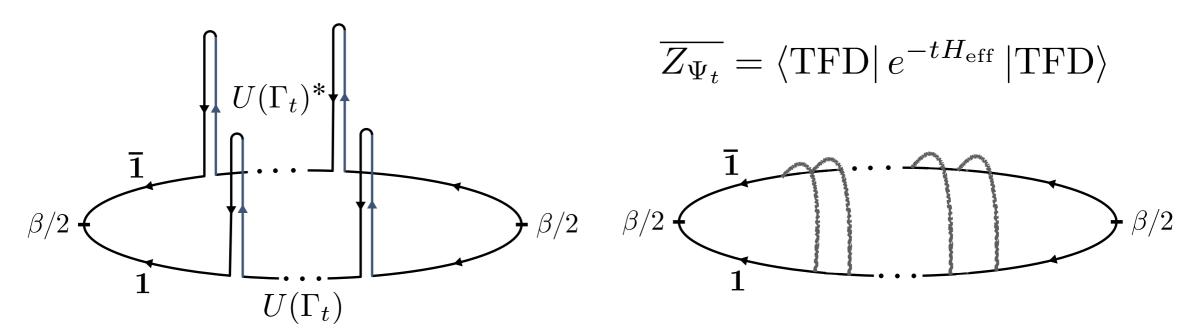
• Use GPI to prepare the semiclassical dual to $|\Psi_t\rangle$ computing its norm. The geometry of individual instances is too complicated \rightarrow take average over couplings.



$$\overline{Z_{\Psi_t}} = \langle \text{TFD} | e^{-tH_{\text{eff}}} | \text{TFD} \rangle$$



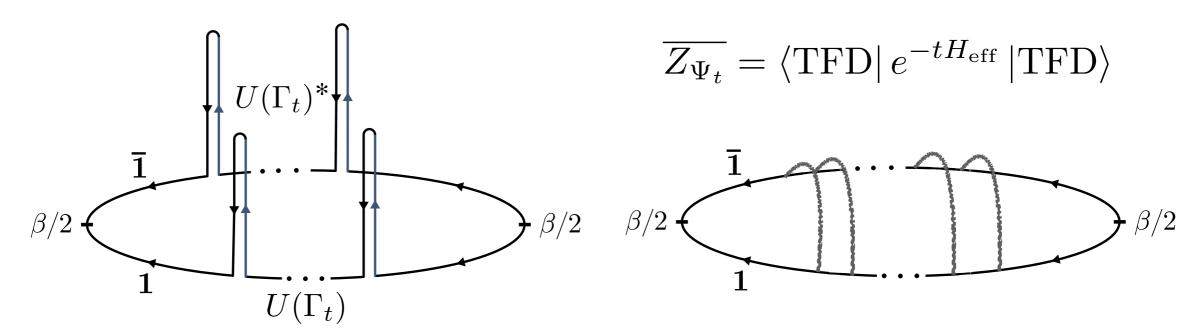
• Use GPI to prepare the semiclassical dual to $|\Psi_t\rangle$ computing its norm. The geometry of individual instances is too complicated \rightarrow take average over couplings.



■ The effective Hamiltonian is a "double-trace" or Maldacena-Qi Hamiltonian which has appeared in holography in the context of eternal traversable wormholes.

$$H_{\rm eff} = H_0^1 + H_0^{\bar 1} + \frac{J}{2} \sum_{\alpha} \left(O_{\alpha}^1 - O_{\alpha}^{\bar 1} * \right)^2 \qquad \qquad \mbox{[Maldacena, Qi '18]} \label{eq:Heff}$$

• Use GPI to prepare the semiclassical dual to $|\Psi_t\rangle$ computing its norm. The geometry of individual instances is too complicated \rightarrow take average over couplings.



■ The effective Hamiltonian is a "double-trace" or Maldacena-Qi Hamiltonian which has appeared in holography in the context of eternal traversable wormholes.

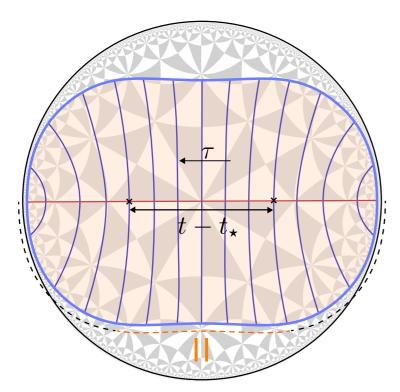
$$H_{\rm eff} = H_0^1 + H_0^{\bar 1} + \frac{J}{2} \sum_{\alpha} \left(O_{\alpha}^1 - O_{\alpha}^{\bar 1} * \right)^2 \qquad \qquad \mbox{[Maldacena, Qi '18]} \label{eq:Heff}$$

• We want to evaluate the average norm using the GPI.

$$\overline{Z_{\Psi_t}} = e^{-I} Z_{1-\text{loop}}$$

• In SYK, at low temperatures, we can solve for the disk saddle point, using the Liouville particle formulation of JT gravity:

[Maldacena, Qi '18]



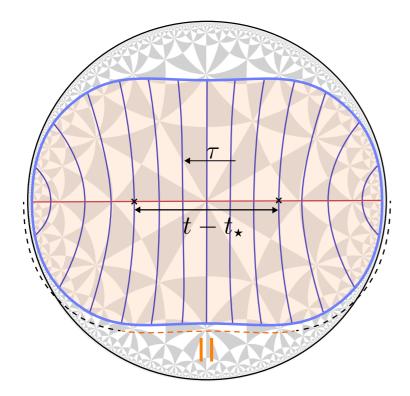
$$I = \frac{N}{2} \int du \left(\frac{1}{2} \dot{L}^2 + 2e^{-L} - \eta e^{-\Delta L} \right)$$

The disk geometry is stretched horizontally since the geodesic length is stabilized by the interaction.

There is an approximate Euclidean time translation symmetry.

In SYK, at low temperatures, we can solve for the disk saddle point, using the Liouville particle formulation of JT gravity:

[Maldacena, Qi '18]

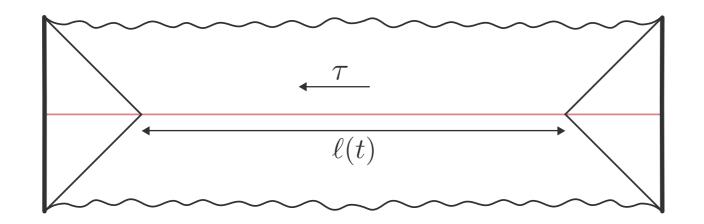


$$I = \frac{N}{2} \int du \left(\frac{1}{2} \dot{L}^2 + 2e^{-L} - \eta e^{-\Delta L} \right)$$

The disk geometry is stretched horizontally since the geodesic length is stabilized by the interaction.

There is an approximate Euclidean time translation symmetry.

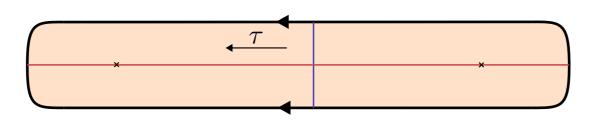
• The consequence is that the length of the wormhole (red slice) grows linearly with t.



$$\ell(t) \sim t - t_{\star}$$

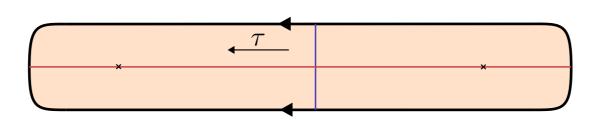
• In higher dimensions we can argue for the same result for O(c) single-trace matter operators using general properties of the effective Hamiltonian: it has a unique ground state that looks like a finite-temperature TFD and it is gapped.

[Cotrell et al. '18]

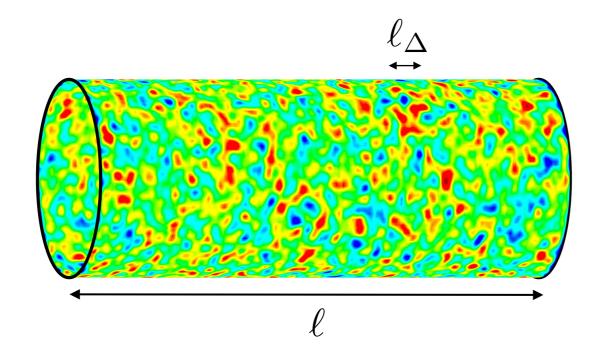


• In higher dimensions we can argue for the same result for O(c) single-trace matter operators using general properties of the effective Hamiltonian: it has a unique ground state that looks like a finite-temperature TFD and it is gapped.

[Cotrell et al. '18]

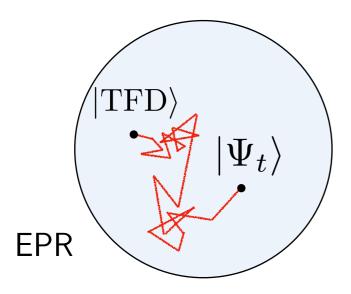


• The slope of the linear growth can be related to the energy gap E_{gap} of the effective Hamiltonian using the lightest excitations on the wormhole as a "clock":

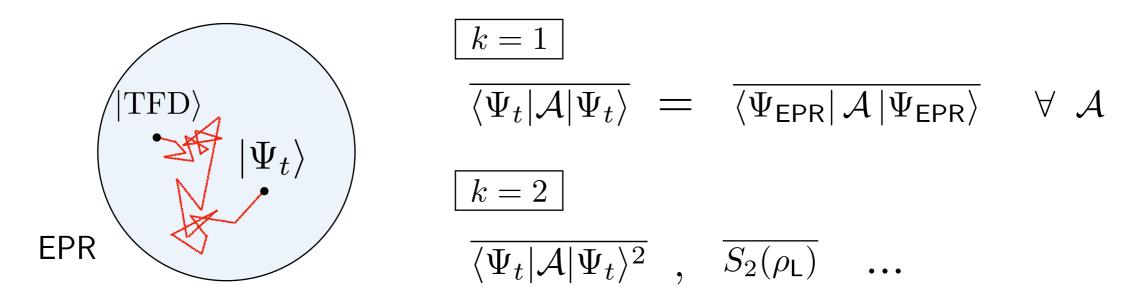


$$\frac{\ell}{\ell_{\Delta}} = E_{\rm gap}(t - t_{\star})$$

• Universally, the Brownian dynamics produces a dense exploration of Hilbert space and the ensemble of states becomes more and more random in time.

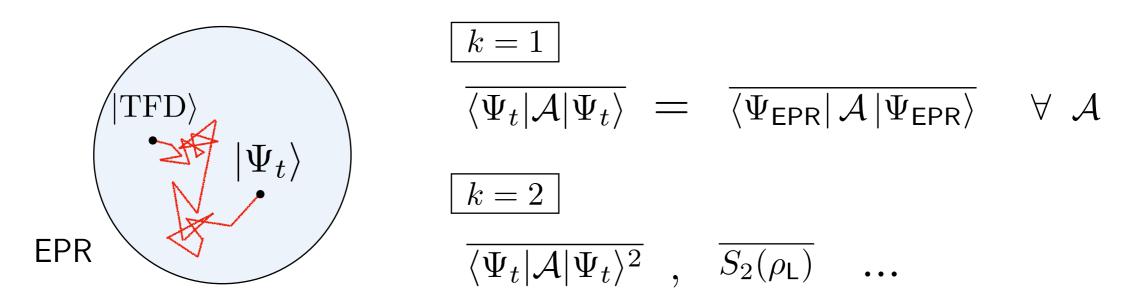


• Universally, the Brownian dynamics produces a dense exploration of Hilbert space and the ensemble of states becomes more and more random in time.



•QI notion of a **quantum state** k-**design**: an ensemble of states which reproduces the first k moments of the typical EPRs.

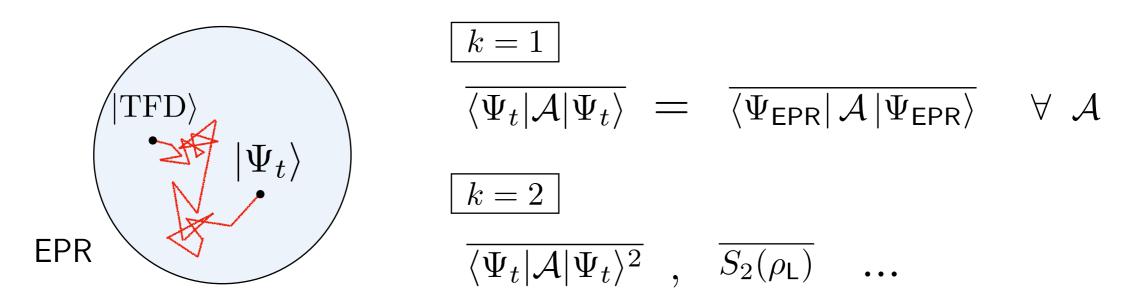
 Universally, the Brownian dynamics produces a dense exploration of Hilbert space and the ensemble of states becomes more and more random in time.



•QI notion of a **quantum state** k-**design**: an ensemble of states which reproduces the first k moments of the typical EPRs. At infinite temperature, the Brownian evolution produces a linear growth of randomness:

$$k \sim t$$
 [Bentsen, Jian, Swingle '22] [Guo, Swingle, MS '24]

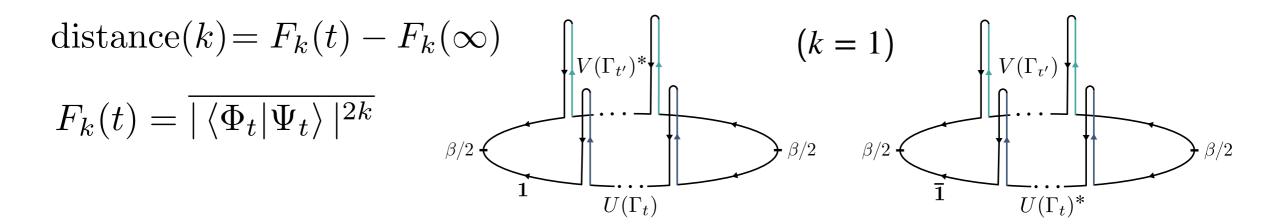
 Universally, the Brownian dynamics produces a dense exploration of Hilbert space and the ensemble of states becomes more and more random in time.

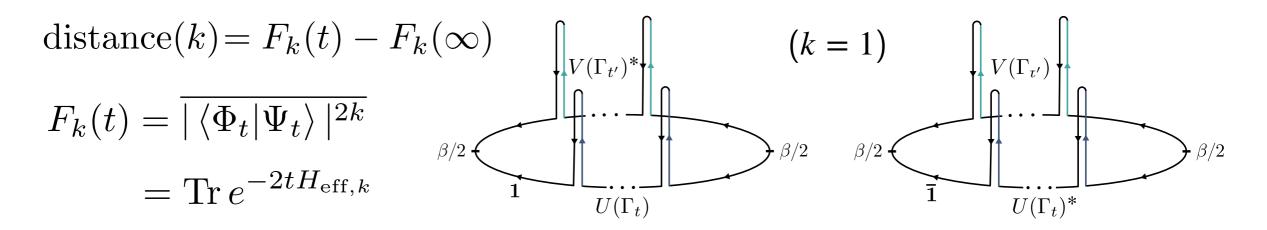


•QI notion of a **quantum state** k-**design**: an ensemble of states which reproduces the first k moments of the typical EPRs. At infinite temperature, the Brownian evolution produces a linear growth of randomness:

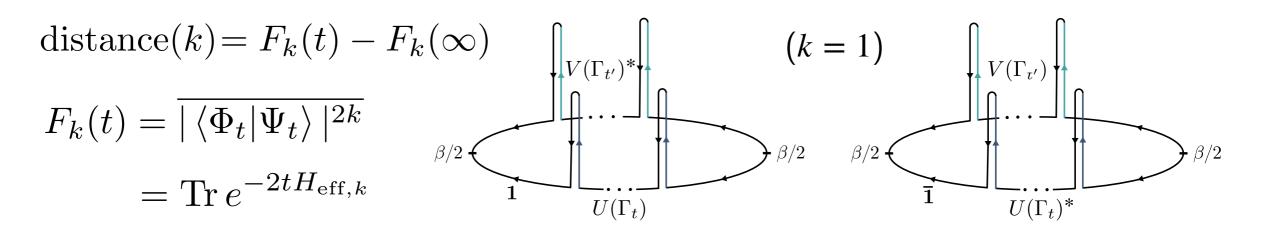
$$k \sim t$$
 [Bentsen, Jian, Swingle '22] [Guo, Swingle, MS '24]

• For black holes, how does randomness grow with time *t*?



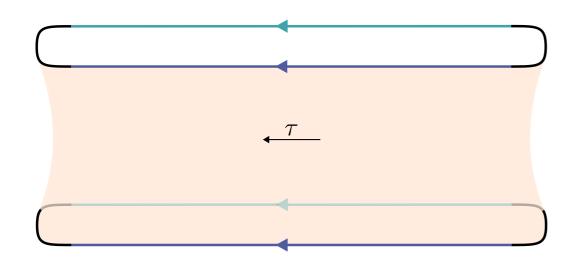


• The FP is a thermal partition function for a 2k-replica effective Hamiltonian at inverse temperature 2t. At late times its low-energy sector dominates, which breaks replica symmetry and it is captured by k copies of the 2-replica physics of H_{eff} .



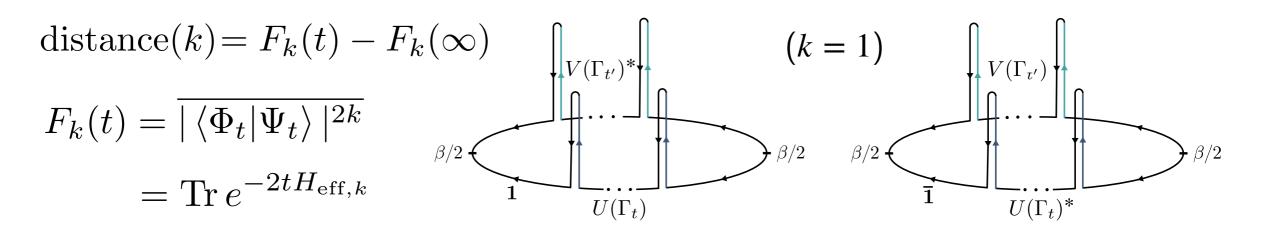
• The FP is a thermal partition function for a 2k-replica effective Hamiltonian at inverse temperature 2t. At late times its low-energy sector dominates, which breaks replica symmetry and it is captured by k copies of the 2-replica physics of $H_{\rm eff}$. In gravity:

[Magán, Swingle, MS '24 '25]



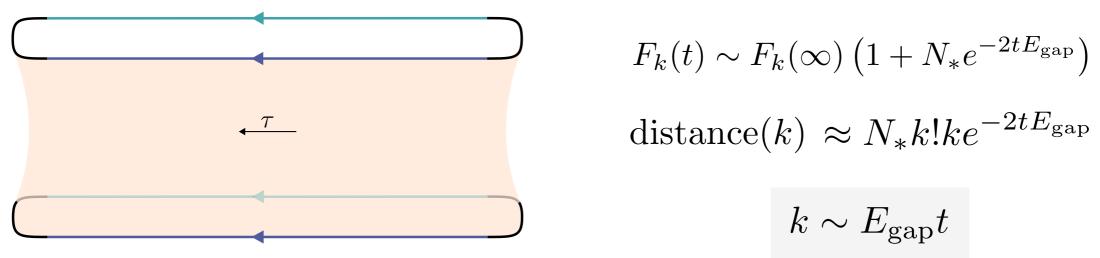
$$F_k(t) \sim F_k(\infty) \left(1 + N_* e^{-2tE_{\text{gap}}}\right)$$

distance(k)
$$\approx N_* k! k e^{-2tE_{\rm gap}}$$



• The FP is a thermal partition function for a 2k-replica effective Hamiltonian at inverse temperature 2t. At late times its low-energy sector dominates, which breaks replica symmetry and it is captured by k copies of the 2-replica physics of H_{eff} . In gravity:

[Magán, Swingle, MS '24 '25]



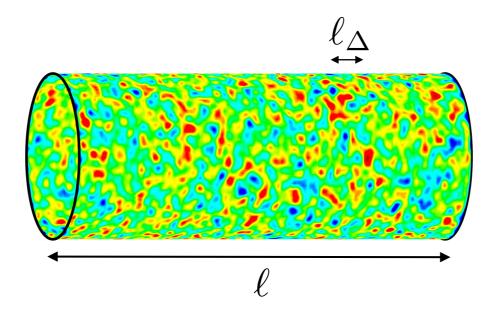
• Randomness grows linearly with the same slope as the average length of the wormhole.

Wormhole length = randomness

• Combining both linear growths we arrive to our main result:

The ensemble of caterpillars of length ℓ and matter correlation scale ℓ_Δ forms an ϵ -approximate quantum state k-design of the black holes for

$$k \sim \frac{\ell - \ell_{\varepsilon}}{\ell_{\Lambda}} \qquad (\ell_{\varepsilon} = \ell_{\Delta} \log \varepsilon^{-1})$$



• This constitutes a "complexity" = geometry relation in holography, derived from the GPI.

Discussion

• Ensembles of caterpillars provide a window into the generic structure of the Hilbert space of black holes in any theory of gravity with low-energy matter.

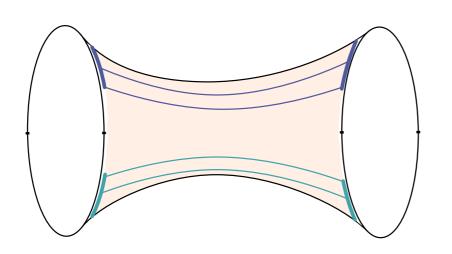
Discussion

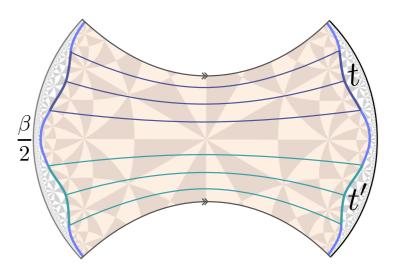
- Ensembles of caterpillars provide a window into the generic structure of the Hilbert space of black holes in any theory of gravity with low-energy matter.
- Some open questions:
 - Firewalls? What is the ratio of caterpillars with firewalls and without firewalls?

 [Stanford, Yang '22]
 - Plateau signal of EPR correlators?
 - Formation of k-designs of black holes in other ways, e.g., performing measurements? [Maldacena, Kourkoulou '17] [de Boer et al. '19]
 - Matter that forms the caterpillar falls into the singularity. Is there any relation between the genericity of the microstates and the genericity of the singularity?

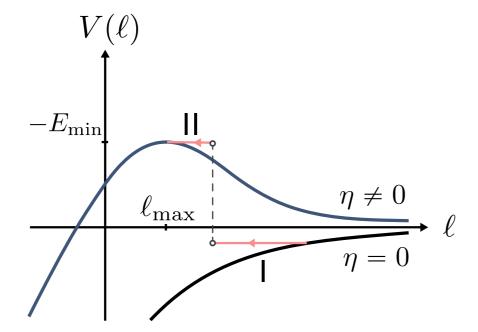
Thanks!

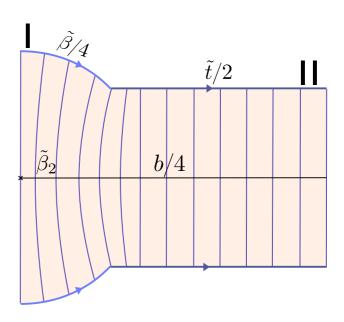
In JT gravity the relevant two-boundary wormhole for the linear growth of randomness is a stabilized double trumpet.





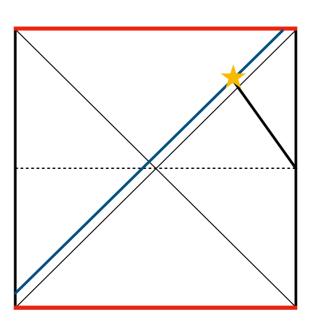
• It can be constructed as a classical solution of the Euclidean geodesic length degree of freedom. It is stabilized by the interaction term coming from the bulk fields.





Firewalls in typical states?

• Firewalls can simply correspond to matter shocks in a highly boosted frame.



[Shenker, Stanford '13][Susskind '15] [Stanford, Yang '22] ...

• It seems from the average the geometry that only past-evolved caterpillars have firewalls. Are states with firewalls indistinguishable from states without firewalls?

