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Introduction

*In holography, two ideas appear to be in tension. One is ER=EPR: enough microscopic
entanglement generates a connected space (e.g. the black hole interior).
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Do generic (typical) EPRs of two black holes have ERs?
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 Typical EPRs have the same entanglement spectrum as the TFD but simple LR
correlation functions are O(27") and very erratically dependent on the specific
microstate. This was used in the past to argue against their semiclassicality.
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[Marolf, Polchinski '13]

* Qutline: (1) Explicitly construct families of ER bridges that incorporate this erraticity
semiclassically. The wormholes are long caterpillars:

(2) Use the GPI to derive a quantitative correspondence between the length of the
wormholes and the amount of microscopic quantum randomness of the states.
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= Starting from the TFD, a natural possibility to construct more generic entangled states
is to time-evolve it with the time-independent Hamiltonian Hy.
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= Still, for black holes, the Hamiltonian evolution generates more general examples of ER
= EPR. The wormhole stretches under time evolution.
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* The wormhole emerges as the “quantum circuit” associated to time evolution. The
length of the wormhole represents the circuit depth, while its volume is the circuit size.

[Hartman, Maldacena '13|[Susskind '13] ..

« At Heisenberg times t = O(fe”), the state becomes maximally complex and yet atypical.
Non-perturbative effects are expected to be important at this timescale.

[Susskind '20] [Stanford, Yang '22] ..
[lliesiu, Mezei, Sarosi '21]
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= Specifically, we consider Brownian Hamiltonians, consisting on a set of few-body
operators @O, with i.i.d. white-noise correlated Gaussian random couplings.
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* The dynamics is the continuous version of a random quantum circuit: at each time the
system evolves via an infinitesimal “random gate” U(t, 6t) = e "0 H®



= Brownian dynamics can be formally solved exactly on average. As an example, consider
the spectral form factor of U(%).

[Saad, Shenker, Stanford '18]
[Bentsen, Jian, Swingle '22]
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* The effective Hamiltonian is gapped and its unique GS is the infinite temperature TFD.
At late times this produces:

SFF(t) ~ 1 + N, e~ 2Pear



= The late time SFF signals that the Brownian evolution dynamically forms a generic
unitary (an thus a generic EPR) which incorporates the eigenphase repulsion of Haar.
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Finite temperature

» AdS/CFT systems that describe black holes. We construct |¥,) with the Brownian

time-evolution applied to a finite temperature TFD.
[Shenker, Stanford '13]




Finite temperature

» AdS/CFT systems that describe black holes. We construct |¥,) with the Brownian

time-evolution applied to a finite temperature TFD.
[Shenker, Stanford '13]

= Qut-of-equilibrium at O(S/K) times.



" Incorporate Euclidean evolution to gradually cool the state down. This injects the
perturbations from the Euclidean past and directly creates them in the BH interior.
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(0t = 6 — 0 while 7 fixed)
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* The CFT path integral prepares an equilibrium version of the time-evolved TFD.
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Semiclassical duals: caterpillars

= Use GPI to prepare the semiclassical dual to |W¥,) computing its norm.
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» The effective Hamiltonian is a “double-trace” or Maldacena-Qi Hamiltonian which
has appeared in holography in the context of eternal traversable wormholes.
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» The effective Hamiltonian is a “double-trace” or Maldacena-Qi Hamiltonian which
has appeared in holography in the context of eternal traversable wormholes.

- J T . 2 [Maldacena, Qi '18]
Heg = Hy + Hy + 5 Z (Oclx -0, ) [Cotrell et al. '18]

= We want to evaluate the average norm using the GPI.
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“In SYK, at low temperatures, we can solve for the disk saddle point, using the
Liouville particle formulation of JT gravity: Maldacena, Qi '18]

N 1.
I = §/du (§L2 + 2¢~ L —neAL>

The disk geometry is stretched horizontally
since the geodesic length is stabilized by the
interaction.

There is an approximate Euclidean time
translation symmetry.
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“In SYK, at low temperatures, we can solve for the disk saddle point, using the
Liouville particle formulation of JT gravity: Maldacena, Qi '18]

N 1.
I = §/du (§L2 + 2¢~ L —neAL>

The disk geometry is stretched horizontally
since the geodesic length is stabilized by the
interaction.

There is an approximate Euclidean time
translation symmetry.

* The consequence is that the length of the wormhole (red slice) grows linearly with ¢.
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*In higher dimensions we can argue for the same result for O(c) single-trace
matter operators using general properties of the effective Hamiltonian: it has a
unique ground state that looks like a finite-temperature TFD and it is gapped.

[Cotrell et al. '18]
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*In higher dimensions we can argue for the same result for O(c) single-trace
matter operators using general properties of the effective Hamiltonian: it has a
unique ground state that looks like a finite-temperature TFD and it is gapped.

[Cotrell et al. '18]
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« The slope of the linear growth can be related to the energy gap E, = of the

gap

effective Hamiltonian using the lightest excitations on the wormhole as a “clock”:
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Randomness growth in gravity

= Universally, the Brownian dynamics produces a dense exploration of Hilbert space and
the ensemble of states becomes more and more random in time.

'TFD)
W)
/

EPR

14



Randomness growth in gravity

= Universally, the Brownian dynamics produces a dense exploration of Hilbert space and
the ensemble of states becomes more and more random in time.

k=1
'TFD) (W) AlT) = (Pepr| A|¥epr) V A
Wy)
/' k=2
(U A[TH2 ) Sa(pL)

EPR

* QI notion of a quantum state k-design: an ensemble of states which reproduces the
first k moments of the typical EPR:s.

14



Randomness growth in gravity

= Universally, the Brownian dynamics produces a dense exploration of Hilbert space and
the ensemble of states becomes more and more random in time.

k=1
'TFD) (W) AlT) = (Pepr| A|¥epr) V A
Wy)
/' k=2
=R (U A[T)2 | S2(pl)

* QI notion of a quantum state k-design: an ensemble of states which reproduces the

first kK moments of the typical EPRs. At infinite temperature, the Brownian evolution
produces a linear growth of randomness:

[Bentsen, Jian, Swingle '22]
k~t [Guo, Swingle, MS '24]

14



Randomness growth in gravity

= Universally, the Brownian dynamics produces a dense exploration of Hilbert space and
the ensemble of states becomes more and more random in time.

k=1
'TFD) (W) AlT) = (Pepr| A|¥epr) V A
Wy)
/' k=2
=R (U A[T)2 | S2(pl)

* QI notion of a quantum state k-design: an ensemble of states which reproduces the
first kK moments of the typical EPRs. At infinite temperature, the Brownian evolution
produces a linear growth of randomness:

[Bentsen, Jian, Swingle '22]
k~t [Guo, Swingle, MS '24]

= For black holes, how does randomness grow with time #?
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= The distance to k-design is encoded in the statistics of inner products, whose moments
are known as the frame potentials F(7) of the ensemble of states.

distance(k)= Fj(t) — Fx(o0)

Fyo(t) = [ (@] W) [
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= The distance to k-design is encoded in the statistics of inner products, whose moments
are known as the frame potentials F(7) of the ensemble of states.
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* The FP is a thermal partition function for a 2k-replica effective Hamiltonian at inverse
temperature 2¢. At late times its low-energy sector dominates, which breaks replica
symmetry and it is captured by k copies of the 2-replica physics of H..
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* Randomness grows linearly with the same slope as the average length of the wormhole.
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Wormhole length = randomness

» Combining both linear growths we arrive to our main result:

The ensemble of caterpillars of length £ and matter correlation scale
£, forms an e-approximate quantum state k-design of the black holes
for

(68 = /a log 5_1)

= This constitutes a “complexity” = geometry relation in holography, derived from the GPI.
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Discussion

= Ensembles of caterpillars provide a window into the generic structure of the
Hilbert space of black holes in any theory of gravity with low-energy matter.
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Discussion

= Ensembles of caterpillars provide a window into the generic structure of the
Hilbert space of black holes in any theory of gravity with low-energy matter.

*Some open questions:

- Firewalls? What is the ratio of caterpillars with firewalls and without firewalls?
[Stanford, Yang '22]

- Plateau signal of EPR correlators?

- Formation of k-designs of black holes in other ways, e.g., performing measurements?
[Maldacena, Kourkoulou '17] [de Boer et al. '19]

- Matter that forms the caterpillar falls into the singularity. Is there any relation
between the genericity of the microstates and the genericity of the singularity?

17



Thanks!



“In JT gravity the relevant two-boundary wormhole for the linear growth of randomness
is a stabilized double trumpet.

VS

= It can be constructed as a classical solution of the Euclidean geodesic length degree of
freedom. It is stabilized by the interaction term coming from the bulk fields.
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Firewalls in typical states?

= Firewalls can simply correspond to matter shocks in a highly boosted frame.

[Shenker, Stanford '13][Susskind '15]
[Stanford, Yang '22] ..

* It seems from the average the geometry that only past-evolved caterpillars have
firewalls. Are states with firewalls indistinguishable from states without firewalls?
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