Coulomb Branch of $\mathcal{N}=4$ SYM and integrability

Victor Mishnyakov Nordita

Eurostrings 2025, Nordita

Based on 2405.19043 [Ivanovskiy, Komatsu, M., Terziev, Zaigraev, Zarembo]

- SYM theory has many nice features: integrability and holography etc.
- Reasonably well understood at the conformal point.
- We are going to study $\mathcal{N}=4,\ U(\textit{N})$ SYM theory in a symmetry breaking vacuum.
- Example: defect CFT [de Leeuw, Kristjansen, Zarembo],[de Leeuw, Kristjansen, Linardopoulos],[de Leeuw, Kristjansen, Linardopoulos]

Gauge theory set-up

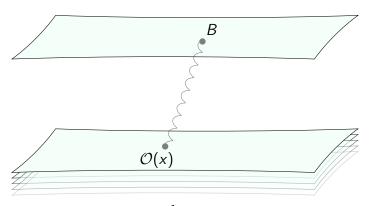
Give a vev to the scalar fields, i = 1, ..., 6:

$$\Phi_i^{
m cl} = egin{pmatrix} v_i & 0 & \dots & 0 \ 0 & 0 & & 0 \ dots & \ddots & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} \in U(N), \qquad ext{choose} \quad v_i = v \, \delta_{i,1}$$

Symmetry breaking pattern

- Conformal symmetry is broken to Poincare
- Gauge symmetry is higgsed $U(N) \to U(N-1) \times U(1)$
- Massive fields from fields with 1j indices, for $j \neq 1$.

The holographic set up



Position in AdS $z_0 \sim \frac{1}{v}$, W-boson mass $m_W = v$

Motivation

- Interesting to test holography and integrability beyond conformal symmetry.
- Theory is closer to realistic ones. Natural IR regularization of the S-matrix [Alday,Henn,Plefka,Schuster] and spectrum of W-boson bound states [Caron-Huot,Henn] .
- Condensates (one-point functions) are important: QCD sum rules [Shifman, Vainshtein, Zakharov], resurgence [Liua, Mariño]

One-point functions

 Chiral primaries – tree level exact and the results coincides with a holographic computation

$$C_L(x, y) = \operatorname{Tr}((y \cdot \Phi)^L)(x), \quad y \cdot y = 0$$

Other operators receive loop-corrections. Konishi operator:

$$K(x) = Z_K \sum_{i=1}^6 \operatorname{Tr} \Phi_i \Phi_i(x)$$

Renormalization of operators

- In theories with SSB renormalized operators have finite one-point function.
- Scheme dependence.

Renormalized Konishi one-point function

$$\left\langle \mathcal{K} \right\rangle_{v} = \frac{\left\langle \mathcal{K}^{b}(0) \right\rangle_{v}}{|x|^{\Delta} \left\langle \mathcal{K}^{b}(x) \mathcal{K}^{b}(0) \right\rangle^{\frac{1}{2}}},$$

- The result is scheme independent
- Denominator computed at conformal point
- Result:

$$\left\langle \mathcal{K} \right
angle_{\mathbf{v}} = rac{4\pi^2 \mathbf{v}^2}{\sqrt{3} \; \lambda} \left[1 + rac{3\lambda}{4\pi^2} \left(\gamma + \ln rac{\mathbf{v}}{2}
ight)
ight].$$

• To one loop we have:

$$\langle K \rangle_{v} = c_{K} v^{\Delta_{K}}.$$

$$c_{\mathcal{K}} = rac{4\pi^2}{\sqrt{3}\,\lambda} + \sqrt{3}\left(\gamma - \ln 2
ight).$$

- γ contribution is scheme independent - reproduced by integrability.

First hint of integrability

 To one loop one-point function can be represented as an onverlap with a boundary state

$$\langle \mathcal{O} \rangle_{v} \sim \langle B | \Psi \rangle \,,$$

$$B_{i_{1}...i_{L}} = n_{i_{1}}...n_{i_{L}}, \qquad n_{i} \equiv \frac{v_{i}}{v}.$$

 The boundary state is integrable [de Leeuw, Gombor, Kristjansen, Linardopoulos, Pozsgay]

Structure of the two-point functions

• UV: OPE on the Coulomb branch

• IR: The dilaton Ward identity

OPE vs one-point functions

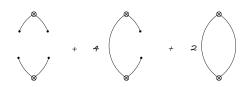
BPS operator:

$$\mathcal{O} = \operatorname{Tr} Z^2(x), \quad Z = \Phi_1 + i\Phi_2$$

· OPE:

$$\underbrace{\mathcal{O}^{\dagger}(x)\mathcal{O}(0) \approx \frac{1}{x^4} + \underbrace{\frac{\widetilde{\mathcal{O}}(0)}{\widetilde{\mathcal{O}}(0)}}_{\text{not renormalized}} + \underbrace{\frac{K(0)}{x^{4-2\Delta_K}}}_{\text{renormalized}} + \underbrace{\frac{K(0)}{x^{4-2\Delta_K}}}_{\text{renormalized}}$$

Diagrams:



• UV limit of the massive propagator:

$$D_{v}(x) \overset{x \to 0}{\simeq} \frac{1}{4\pi^{2}x^{2}} + \left(\ln \frac{vx}{2} + \gamma - \frac{1}{2}\right) \frac{v^{2}}{8\pi^{2}}$$

Structure constants at one loop:

$$C_{\mathcal{O}^{\dagger}\mathcal{O}\widetilde{\mathcal{O}}} = rac{4}{\sqrt{6}\,\textit{N}}\,, \qquad C_{\mathcal{O}^{\dagger}\mathcal{O}\mathcal{K}} = rac{2}{\sqrt{3}\,\textit{N}}\left(1 - rac{3\lambda}{8\pi^2} + \ldots
ight).$$

Consistency implies that:

$$egin{aligned} rac{2}{\sqrt{3}} \left[1 + \left(\Delta_{\mathcal{K}} - 2
ight) \ln x - rac{3\lambda}{8\pi^2}
ight] \left\langle \mathcal{K}
ight
angle = \ & = 2 v^2 \left(rac{4\pi^2}{3\lambda} + \ln rac{vx}{2} + \gamma - rac{1}{2}
ight) \end{aligned}$$

Convergence of OPE

- We find that one-loop corrections do not spoil the convergence of the OPE.
- Coulomb branch bootstrap:

$$egin{aligned} \langle \mathcal{O}_i(x)\mathcal{O}_j(0)
angle_{
m vac} &\stackrel{|x| o\infty}{\sim} (exttt{const}) + (exttt{power}) + e^{-m_0|x|} \ \langle \mathcal{O}_i(x)\mathcal{O}_j(0)
angle_{
m vac} &= \sum_k c_{ijk} \langle \mathcal{O}_k
angle_{
m vac} (vx)^{\Delta_k-\Delta_i-\Delta_j} \end{aligned}$$

Estimates of growth of OPE data:

$$C(\Delta) \stackrel{\Delta \to \infty}{\sim} \frac{e^{-\pi i \Delta} (m_0/v)^{\Delta}}{\Gamma(\Delta)}$$

[Cuomo, Rastelli, Sharon]

Large distance behavior.

• Dilaton Ward identity dictates the large distance behavior

$$\begin{split} \langle \mathcal{O}_1 \mathcal{O}_2 \rangle_{\nu} &\stackrel{|x| \to \infty}{\to} \langle O_1 \rangle_{\nu} \langle O_2 \rangle_{\nu} + \\ &+ \frac{\left(\Delta_1 \Delta_2 + \sum\limits_{I=1}^5 \hat{R}_I^{(1)} \hat{R}_I^{(2)} \right) \langle \mathcal{O}_1 \rangle_{\nu} \langle \mathcal{O}_2 \rangle_{\nu}}{f_{\pi}^2 v^2 |x|^2} \end{split}$$

At one loop the dilaton decay constant is not renormalized

$$_{v}\langle 0|T_{\mu
u}(p)|\pi
angle _{v}=rac{f_{\pi}}{3}vp_{\mu}p_{
u}$$

Integrability of SYM

- At $\lambda \ll 1$ spin chain.
- ${\ \ }$ Can be extended to any λ via BA, QCS
- At $\lambda\gg 1$ string sigma model

Integrability on the Coulomb branch

- At loop level overlap with a integrable boundary state.
- Integrability extends to all λ [Coronado, Komatsu, Zarembo] closed form determinant formula.
- String σ -model with the bulk D3 brane b.c. is integrable [Demjaha, Zarembo]
- Integrable properties of amplitudes [Alday, Henn,Plefka,Schuster],[Loebbert,Miczajka, Müller,Münkler]

Outlook

- Coulomb branch is integrable
- OPE vs condensates
- Large charge