FORMAL ASPECTS OF SCATTERING AMPLITUDES:
 LESSONS AND CHALLENGES IN 2023
 Sebastian Mizera (IAS)

The field of scattering amplitudes continues to be enormously rich and fast-growing

Date of paper

Can't possibly do it justice in 60 mins!

Today, I'll cover some of the highlights in the following formal areas:

1) Precision frontier

a) Amplitudology in curved space

i) String amplitudes

A) S-matrix bootstrap

I) Polytopes and tropical geometry

α) Crossing symmetry

2) PRECISION FRONTIER

Life cycle of a scattering amplitude in 2023

(simplified version)
[Talks on Monday]

- Draw all Feynman diagrams
- Reduce colors/tensor structures to scalar Feynman integrals

- Express in terms of master integrals $\vec{I}, \quad|\vec{I}|=\mathcal{O}\left(10^{2}\right)$
- Find canonical differential equations $\mathrm{d} \vec{I}=\epsilon \boldsymbol{\Omega} \vec{I}$
- Get the analytic form for all $\vec{I} \quad \longleftarrow$ Skip?!
- Use to evaluate observables numerically
[Recent books by Badger, Henn, Plefka, Zoia 2306.05976 and Weinzierl 2201.03593]
[Review talk by Stefanyszyn] [Talk by Lee]

Example cutting-edge computations: polylogarithmic

(Higgs+jet production at LHC)

(a) PBmzz

(d) HBmzz

(b) PBzmz

(e) HBzmz

(c) PBzzz

(f) HBzzz

(g) DPmz

(h) DPzz
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 2306.15431]

Lesson: No longer clear having an analytic expression is useful!
Challenge: Rethink the way we represent scattering amplitudes

Example cutting-edge computations: elliptic and beyond

Rule of thumb:
Cut with 3 massive particles
\Rightarrow not a polylog

[Pogel, Wang, Weinzierl 2212.08908]

[Wilhelm, Zhang 2206.08378]
(more formal progress, symbology)

[Duhr, Klemm, Nega, Tancredi 2212.09550]

Many other ideas in multi-loop computations:

- Pentagon functions
- Prescriptive unitarity
- Intersection theory

Recent highlights in software for Feynman integrals

- PySecDec 1.6: up to $5 x$ speedup in numerical evaluation
- AMFlow: fast numerics with auxiliary mass flow
- FeynTrop: evaluate integrals up to 17-loop (finite only)
- INITIAL: canonical differential equations for elliptics
- NeatIBP: small-size IBP relations
- PLD: predicting singularities of Feynman integrals
[Heinrich, Jones, Kerner, Magerya, Olsson, Schlenk 2305.19768]
[Liu, Ma 2201.11669]
[Borinsky, Munch, Tellander 2302.08955]
[Dlapa, Henn, Wagner 2211.16357]
[Wu, Boehm, Ma, Xu, Zhang 2305.08783]

There's been enormous progress on

```
    Amplifying
    Gravity
            @
    All Scales
```



```
[Talks by Cangemi, Carrillo Gonzalez, Cristofoli, Heissenberg, Kälin, van de Meent, Mogull, Pound, Roiban, Ruf, Skvortsov, Travaglini]
Lessons/challenges: [Review talk by Buonanno]
We'll come back to gravitational waveforms in the last part of the talk
```


Infrared divergences

- QED: Bloch-Nordsieck, Chung-Faddeev-Kulish dressing, eikonal exponentiation, Wilson lines, ...
- Perturbative gravity: Chung-Faddeev-Kulish-like dressing, eikonal exponentiation, Wilson lines, ...
- QCD: Non-forward factorization, otherwise ${ }^{-} \backslash _(ツ) 」^{-}$
[Sterman 2207.06507]
[Review by Agarwal, Magnea, Signorile-Signorile, Tripathi 2112.07099]
Lesson: No theorem guaranteeing inclusive cross-sections are finite [Frye, Hannesdottir, Paul, Schwartz, Yan 1810.10022]

Some recent progress:

- Trouble with non-perturbative gravity
- Soft-collinear effective theory for gravity
- Local unitarity: compute finite cross-sections
- Connections to celestial amplitudes
[Prabhu, Satishchandran, Wald 2203.14334]
[Beneke, Hager, Szafron 2210.09336]
[Capatti, Hirschi, Ruijl 2203.11038]
[Review talk by Raclariu]
[Talks by Taylor, Yelleshpur Srikant]
i) STRING AMPLITUDES

String perturbation theory

[Recent reviews: Mafra, Schlotterer 2210.14241, Snowmass 2203.09099]

$$
\begin{gathered}
\text { Formal expression: } \begin{array}{c}
\mathcal{A}_{g, n} \sim \int_{\mathcal{M}_{g, n}}\left\langle\mathcal{V}_{1}\left(z_{1}\right) \mathcal{V}_{2}\left(z_{2}\right) \cdots \mathcal{V}_{n}\left(z_{n}\right)\right\rangle \mathrm{d} \mu_{g, n} \\
{\text { Genus = \#loops } \quad \text { \#legs }}
\end{array} .
\end{array}
\end{gathered}
$$

Four avenues of recent progress

- Tree-level scattering
- Computing the correlation function \& relations to double copy
- Number theory in the α^{\prime} expansion
- Computing the amplitude

Recent progress on tree-level scattering

- Coon amplitude: accumulation point in the spectrum
[Jepsen 2303.02149]
[Geiser, Lindwasser 2210.14920]
[Bhardwaj, De, Spradlin, Volovich 2212.00764]
[Cheung, Remmen 2302.12263]
[Li, Sun 2307.13117]
Challenge: Do any of such Veneziano-like expressions come from a consistent model?
- Bounds on the rank of gauge group: $\mathrm{N}=32$ seems to be special [Bachu, Hillman 2212.03871]
[Bianchi, Firrotta, Sonnenschein,
- Chaotic scattering off excited strings?

Correlation functions/loop integrands

- State of the art: One-loop for any n

Two-loop for $n \leqslant 5$
Three-loop for $n \leqslant 4$ (conjecturally)
[Mafra, Schlotterer, ...]
[D'Hoker, Mafra, Pioline, Schlotterer 2008.08687]
[Geyer, Monteiro, Stark-Muchao 2106.03968]

- Color-kinematics dual representation of one-loop integrands
[Edison, He, Johansson, Schlotterer, Teng, Zhang 2211.00638]
- KLT-like relations for the correlation function at one loop
[Stieberger 2212.06816]
- New ideas in representing the correlator in bosonic string theory (surfacehedron)

Mathematical input on α^{\prime}-expansions of string amplitudes

	open strings	closed strings
tree level	motivic MZVs and their " f-alphabet" $[$ Brown 1102.1310] $[$ Stieberger-OS '12] Drinfeld associator $[$ Terasoma '02] multiple zeta $[$ Broedel-OS-Stie- values (MZVs)	single-valued integration \& periods [Brown, Schnetz '13] [Brown-Dupont '18] stringy applications [OS, Schnetz, Stieberger, Taylor, Vanhove Zerbini ${ }^{\prime} 12$ - $\left.{ }^{\prime} 18\right]$
one loop		non-holo' modular from involving MZVs [D'Hoker, Green, Gür- dogan, Vanhove '15/16] equiv. Eisenstein int's [Brown '17]
highe loop	higher-genus ϑ-functions [Fay, Mumford, import to string amplitudes [Alvarez-Gaum single-valued "Arakelov" Green function non-holomorphic modular tensors [Kawazun 2-loop α^{\prime}-expansion [D'Hoker, Green, Pioline, higher-genus polylogs: function space [Enriquez ... and an explicit construction [D'Hoker, H	

α^{\prime}-expansion and number theory

- Polylogs for higher-genus Riemann surfaces

Challenge: Applications to Feynman integrals?

- Closed strings as single-valued version of open?
[D'Hoker, Hidding, Schlotterer 2306.08644] [Enriquez, Zerbini 2212.03119]
[Talk by Hidding]

[Snowmass 2203.09099]
[Alday, Hansen 2306.12786]
[Baune, Broedel 2306.16257]
[Talk by Hansen]
- Exact integrated correlators in $\mathbf{N}=4$ super Yang-Mills

Computing string amplitudes

Formal integrals \Rightarrow numbers

New understanding of the integration contour consistent with causality and unitarity at genus one

String cross-section

Fixed-angle scattering

[Eberhardt, SM 2208.12233, 2302.12733]
Lesson: We can finally compute string amplitudes in Lorentzian kinematics
Challenge: Directly verify/disprove old conjectures

I) CONNECTIONS TO MATHEMATICS

Much-needed mathematical input

- Expanding integrals by regions (tropical and polyhedral geometry)
- Integration by parts (syzygy, twisted cohomology)
- Convergence (polytopes)
- Efficient numerical evaluation (tropical geometry)
- Computing differential equations (D-modules, GKZ systems)
- Planar N=4 SYM (projective geometry, cluster algebras)
- Function space of amplitudes (algebraic topology, motives, Calabi-Yau)
- ...
[Lecture notes by Matsubara-Heo, SM, Telen 2306.13578]

Lesson: If you're doing heavy computations, it pays off to know cutting-edge mathematics

Tropical and polyhedral geometry

(is all about understanding limits)

Original function

- Measure for Monte-Carlo computations
[Borinsky 2008.12310]
- Soft and collinear divergences
[Arkani-Hamed, Hillman, SM 2202.12296]
- Method of regions
[pySecDec 2108.10807]
- $\mathrm{N}=4$ SYM and cluster algebras

[Gardi, Herzog, Jones, Ma, Schlenk 2211.14845]
[Drummond et al., Henke et al.]

[insert noun]-hedron

- Surfacehedron: organizing principle for loop integrands

[Arkani-Hamed, Frost, Salvatori, Plamondon, Thomas]
- Non-perturbative negative geometries: amplitude-like objects at strong coupling
[Arkani-Hamed, Henn, Trnka 2112.06956]
- ABJM amplituhedron
- Related: New letters in the $\mathrm{N}=4$ SYM heptagon symbol alphabet?

a) AMPLITUDOLOGY IN CURVED SPACE

Vast topic with many exciting results

[Review talk by Stefanyszyn] [Snowmass 2203.08121]
[Talks by Cohen, Lee, Nagy, Sleight]

Different representations of (A)dS amplitudes

- Coordinate space

- Momentum space (TOPT-like)

- Mellin amplitudes

$$
A\left(x_{i}\right)=\frac{\mathcal{N}}{(2 \pi i)^{n(n-3) / 2}} \int d \delta_{i j} M\left(\delta_{i j}\right) \prod_{i<j}^{n} \Gamma\left(\delta_{i j}\right)\left(x_{i j}^{2}\right)^{-\delta_{i j}}
$$

- Differential representation

Double copy in curved space?

- Theoretical data: Cosmological bootstrap gave the tree-level graviton 4-pt function

```
[Bonifacio, Goodhew, Joyce, Pajer, Stefanyszyn, Nagy 2212.07370]
[Talk by Stefanyszyn]
```

- Double-copy-like relation to the gluon 3, 4-pt functions
[Armstrong, Goodhew, Lipstein, Mei 2304.07206] [Lee, Wang 2212.11282]
- Previous progress on color-kinematics duality in AdS:

BCJ in differential representation

```
[Herderschee, Roiban, Teng 2201.05067] [Li 2212.13195]
[Cheung, Parra-Martinez, Sivaramakrishnan 2201.05067]
```

- Self-dual kinematic algebras in AdS?
[Lipstein, Nagy 2304.07141] [Talk by Nagy]
Challenge: Use your favorite formalism to predict a gravity correlator that wasn't known before

Other amplitudes-inspired highlights

- Tree-level Virasoro-Shapiro amplitude in AdS (Mellin space)

$$
\begin{array}{r}
A^{(k)}(S, T)=\int d^{2} z|z|^{-2 S-2}|1-z|^{-2 T-2} G_{\text {tot }}^{(k)}(S, T, z), \\
\text { R } \begin{array}{r}
\text { single-valued polylogs }
\end{array} \\
\text { [Alday, Hansen, Silva 2209.06223, 2305.03593] } \\
\text { [Alday, Hansen 2306.12786] } \\
\text { [Talk by Hansen] }
\end{array}
$$

- Mathematics of cosmological wavefunctions (momentum space)

A) S-MATRIX BOOTSTRAP

Old idea: use causality, locality, unitarity, crossing symmetry etc. to constrain the S-matrix

```
[Lecture notes, SM 2306.05395]
```


New philosophy inspired by the success of the CFT bootstrap:

Instead of try to determine the S-matrix uniquely, carve out the space of theories and look for special corners

Example: Bootstrapping large- N confining gauge theories

Four-derivative couplings

[Albert, Rastelli 2307.01246]

Not to be confused with other bootstrap approaches we've seen a lot of progress in:

- $\mathbf{N}=4$ SYM bootstrap: antipodal duality
- Cosmological bootstrap
- Bootstrapping individual Feynman integrals
- Bootstrapping Mellin amplitudes
- Bootstrapping double copy
[Dixon, Gürdoğan, Liu, McLeod, Wilhelm 2212.02410]
[Talks by Stefanyszyn, Lee]
[Morales, Spiering, Wilhelm, Yang, Zhang 2212.09762]
[Alday, Gonçalves, Nocchi, Zhou 2307.06884]
[Chen, Elvang, Herderschee 2302.04895]
[Brown, Kampf, Oktem, Paranjape, Trnka 2305.05688]

Lesson: Being inventive about bootstrap axioms helps
Challenge: Apply tools from large language models to discovering new patterns

Where's string theory in the space of QFT's?

[Guerrieri, Murali, Penedones, Vieira 2212.00151]

Parametrize 4-graviton SUGRA amplitude through

$$
\frac{T(s, t, u)}{8 \pi G_{N}}=s^{4}\left(\frac{1}{s t u}+\alpha \ell_{P}^{6}+\ldots\right)
$$

want to bound
bootstrapped minimal value

Dimension	Bootstrap	String/M-Theory
9	0.223 ± 0.002	0.241752
10	0.124 ± 0.003	0.138949
11	0.101 ± 0.005	0.102808

String/M-theory slightly above at the minimum

Lesson: There might be supergravity theories not realizable as string theories

Other exciting developments:

Constructing amplitudes iteratively using elastic unitarity [Tourkine, Zhiboedov 2303.08839]

Computing amplitudes with Hamiltonian truncation
[Henning, Murayama, Riva, Thompson, Walters 2209.14306]

Challenge: Study scattering beyond the $2 \rightarrow 2$ case

Other exciting developments:

Massive gravity is not positive
[Bellazzini, Isabella, Ricossa, Riva 2304.02550]

Lesson: Is massive gravity in the swampland?

$\alpha)$ CROSSING SYMMETRY

Is a particle equivalent to an anti-particle moving back in time?

Well known story for $2 \rightarrow 2$ scattering:

Does the same work for $2 \rightarrow 3$?

$\xrightarrow[\text { continuation }]{\stackrel{\text { analytic }}{\longrightarrow}}$
?

The result of crossing is not yet another scattering amplitude:

Instead, an expectation value of a photon in a Compton scattering background

Lesson: The S-matrix theory is not just about scattering amplitudes!
Challenge: Apply crossing symmetry to computing the RHS

Gravitational radiation in the background of two black holes:

$$
a_{\frac{\text { BH }}{\mathrm{BH}_{2}}} a_{h}^{\text {out }, \dagger} \leftrightarrow-a_{h}^{\text {out }} a_{\mathrm{BH}_{2}}^{\text {in }, \dagger}
$$

[Kosower, Maybee, O’Connell 1811.10950]

Compute the regular time-ordered amplitude
${ }_{\text {in }}\left\langle\mathrm{BH}_{1} \mathrm{BH}_{2} \overline{\mathrm{BH}}_{2} \mid h \mathrm{BH}_{1}\right\rangle_{\text {out }}$

Analytic continuation results in

$$
-{ }_{\text {in }}\left\langle\mathrm{BH}_{1} \mathrm{BH}_{2}\right| a_{h}^{\text {out }}\left|\mathrm{BH}_{1} \mathrm{BH}_{2}\right\rangle_{\text {in }}
$$

$$
=-{ }_{\mathrm{in}}\left\langle\mathrm{BH}_{1} \mathrm{BH}_{2}\right| S^{\dagger} a_{h}^{\mathrm{in}} S\left|\mathrm{BH}_{1} \mathrm{BH}_{2}\right\rangle_{\mathrm{in}}
$$

Challenge: Need to take analytic features such as anomalous thresholds more seriously

1) Precision frontier

a) Amplitudology in curved space

i) String amplitudes

A) S-matrix bootstrap

I) Polytopes and tropical geometry

a) Crossing symmetry

Thank you!

