Bootstrapping the AdS Virasoro-Shapiro amplitude

Tobias Hansen, University of Oxford

From Amplitudes to Gravitational Waves, Nordita July 27, 2023

Based on:

2204.07542, 2209.06223, 2303.08834, 2305.03593 with Luis F. Alday, João Silva 2306.12786 with Luis F. Alday

1

type IIb string theory in $AdS_5{\times}S^5$

=

 $\mathcal{N} = 4$ SYM theory with SU(N) gauge group

What is the worldsheet theory?

What is the 4 graviton tree level string amplitude?

$$A_4(S,T) = \sum_{k=0}^{\infty} \left(\frac{\alpha'}{R_{AdS}^2}\right)^k A_4^{(k)}(S,T)$$

Can we bootstrap it?

Part 0 Flat Space Review

STRING AMPLITUDE SHOPPING LIST

- WORLDSHEET INTEGRAL
- REGGE BOUNDEDNESS
- PARTIAL WAVE EXPANSION
- LOW ENERGY EXPANSION

I will review these first for the Virasoro-Shapiro amplitude (4 gravitons in the type IIb superstring):

$$A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$$
$$S = -\frac{\alpha'}{4}(p_1 + p_2)^2, \qquad T = -\frac{\alpha'}{4}(p_1 + p_3)^2$$
$$S + T + U = 0$$

World-sheet integral (flat space)

The amplitude is the integral over the world-sheet (sphere)

$$A^{(0)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(0)}_{\text{tot}}(S,T,z)$$

$$G_{ ext{tot}}^{(0)}(S,T,z) = rac{1}{3}\left(rac{1}{U^2} + rac{|z|^2}{S^2} + rac{|1-z|^2}{T^2}
ight)$$

The integrand is a single-valued function of z!

STRING AMPLITUDE SHOPPING LIST

- WORLDSHEET INTEGRAL - REGGE BOUINDEDNESS - PARTIAL WAVE EXPANSION - LOW ENERGY EXPANSION

Regge boundedness (flat space)

String amplitudes have soft UV (Regge) bahaviour

$$\lim_{|S| o \infty} A^{(0)}(S,T) \sim S^{lpha' T + lpha_0}$$

and higher spin resonances

$$m^2, \ell$$
 = $\frac{P_\ell(S)}{T - m^2}$ $P_\ell(S) = S^\ell + O(S^{\ell-1})$

Regge bahaviour places strong constraints on the coefficients $a_{\delta,\ell}$ in

$$A^{(0)}(S,T) = \sum_{(\delta,\ell)} rac{a_{\delta,\ell} P_\ell(S)}{T-\delta}$$

STRING AMPLITUDE SHOPPING LIST WORLDSHEET INTEGRAL REGGE BOUNDEDNESS

PARTIAL WAVE EXPANSION

The exchanged massive string spectrum is extracted via the partial wave expansion

$$A^{(0)}(S,T) = \sum_{(\delta,\ell)} rac{a_{\delta,\ell} P_\ell(S)}{T-\delta}$$

It forms linear Regge trajectories.

Low energy effective action (supergravity + derivative interactions) \rightarrow Low energy expansion:

$$A^{(0)}(S,T) = \frac{1}{STU} + 2\sum_{a,b=0}^{\infty} (\frac{1}{2}(S^2 + T^2 + U^2))^a (STU)^b \alpha_{a,b}^{(0)}$$

Wilson coefficients $\alpha_{a,b}^{(0)}$ are in the ring of single-valued multiple zeta values [Stieberger;2013],[Brown,Dupont;Schlotterer,Schnetz;Vanhove,Zerbini;2018]

Example:
$$\alpha_{a,0}^{(0)} = \zeta(3+2a), \qquad \alpha_{a,1}^{(0)} = \sum_{\substack{i_1,i_2=0\\i_1+i_2=a}}^{a} \zeta(3+2i_1)\zeta(3+2i_2)$$

8

STRING AMPLITUDE SHOPPING LIST WORLDSHEET INTEGRAL REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION LOW ENERGY EXPANSION

Plan for AdS

How do we determine $A^{(k)}(S,T)$? $A(S,T) = \sum_{k=0}^{\infty} \left(\frac{\alpha'}{R_{AdS}^2}\right)^k A^{(k)}(S,T)$

Ansatz (world-sheet):

$$A^{(k)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(k)}_{\text{tot}}(S,T,z)$$

Part 1: Strings in AdS \rightsquigarrow functions in $G_{tot}^{(k)}(S, T, z)$

Pix the parameters of the ansatz (target space):

Part 2: The dual CFT

S Compare with integrability and localisation results.

Part 1 Strings in AdS

Toy model for strings in AdS

Polyakov action:

AdS metric expanded around flat space:

$$S_{P} = \frac{1}{4\pi\alpha'} \int d^{2}\sigma \sqrt{g} g^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} G_{\mu\nu}(X) \longleftarrow G_{\mu\nu}(X) = \eta_{\mu\nu} + \frac{h_{\mu\nu}}{R_{AdS}^{2}} + \cdots$$

$$= S_{flat} + \frac{1}{R_{AdS}^{2}} \underbrace{\lim_{q \to 0} \frac{\partial^{2}}{\partial q^{\mu} \partial q^{\nu}} V_{graviton}^{\mu\nu}(q)}_{\equiv \tilde{V}} + \cdots \qquad h_{\mu\nu} \sim X_{\mu} X_{\nu} \sim \lim_{q \to 0} \frac{\partial^{2}}{\partial q^{\mu} \partial q^{\nu}} e^{iq \cdot X}$$

$$Amplitude:$$

$$A_{4}(p_{i}) \sim \int \mathcal{D}X \mathcal{D}g \ e^{-S_{P}} V_{graviton}^{4} = \int \mathcal{D}X \mathcal{D}g \ e^{-S_{flat}} \left(1 - \frac{\tilde{V}}{R_{AdS}^{2}} + \frac{1}{2} \frac{\tilde{V}^{2}}{R_{AdS}^{4}} + \cdots\right) V_{graviton}^{4}$$

$$\Rightarrow \quad A_4^{(k)}(p_i) \sim \lim_{q_i \to 0} \left(\frac{\partial}{\partial q_i}\right)^{2k} A_{4+k}^{(0)}(p_i, q_i) + \dots$$

Soft gravitons in flat space

$$\mathcal{A}_{4}^{(k)}(p_i) \sim \lim_{\epsilon \to 0} \left(\frac{\partial}{\epsilon \, \partial q_i} \right)^{2k} \mathcal{A}_{4+k}^{(0)}(p_i, \epsilon q_i) + \dots$$

Soft graviton theorem:

$$A_{n+1}(p_1,\ldots,p_n,\epsilon q) = \sum_{i=1}^n \left(\frac{1}{\epsilon} \frac{\varepsilon_{\mu\nu} p_i^{\mu} p_i^{\nu}}{p_i \cdot q} + \frac{\varepsilon \cdot p_i \varepsilon_{\mu} q_{\nu} J_i^{\mu\nu}}{p_i \cdot q} + O(\epsilon) \right) A_n(p_1,\ldots,p_n)$$

Flat space amplitude with k soft gravitons:

$$\begin{aligned} A_{4+k}^{(0)}(p_i,\epsilon q_i) &\sim \frac{1}{\epsilon^k} A_4^{(0)}(p_i) + \frac{1}{\epsilon^{k-1}} "\partial_{p_i} "A_4^{(0)}(p_i) + \dots \\ &\sim \int d^2 z |z|^{-25-2} |1-z|^{-2T-2} \left(\frac{1}{\epsilon^k} + \frac{1}{\epsilon^{k-1}} \left(\# \log |z|^2 + \# \log |1-z|^2 \right) + \dots + \epsilon^{2k} \mathcal{L}_{|w|=3k}(z) \right) \end{aligned}$$

 \Rightarrow $G_{tot}^{(k)}(S, T, z) \sim$ single-valued multiple polylogs of weight $\leq 3k$

Single-valued multiple polylogarithms

MPLs:

$$\begin{aligned}
\mathsf{MPLs:} & \mathsf{SVMPLs:} \quad [\mathsf{Brown}; 2004] \\
\mathcal{L}_{a_1 \dots a_{|w|}}(z) &= \int_0^z \frac{dt}{t - a_1} \mathcal{L}_{a_2 \dots a_{|w|}}(t) & \mathcal{L}_w(z) &= \sum_{\substack{w_1, w_2 \\ |w_1| + |w_2| = |w|}} \mathcal{C}_{w, w_1, w_2} \mathcal{L}_{w_1}(z) \mathcal{L}_{w_2}(\bar{z}) \\
\mathcal{L}(z) &= 1, \quad a_i \in \{0, 1\}
\end{aligned}$$

Examples :

$$\begin{split} \mathcal{L}_{0^{p}}(z) &= \frac{1}{p!} \log^{p}(z) & \mathcal{L}_{0^{p}}(z) = \frac{1}{p!} \log^{p} |z|^{2} \\ \mathcal{L}_{1^{p}}(z) &= \frac{1}{p!} \log^{p}(1-z) & \mathcal{L}_{1^{p}}(z) = \frac{1}{p!} \log^{p} |1-z|^{2} \\ \mathcal{L}_{0^{p-1}1}(z) &= -\operatorname{Li}_{p}(z) & \mathcal{L}_{01}(z) = \operatorname{Li}_{2}(z) - \operatorname{Li}_{2}(\overline{z}) - \log(1-\overline{z}) \log |z|^{2} \\ &\downarrow z = 1 & \downarrow z = 1 \end{split}$$

MZVs: $\zeta(n_1, n_2, ...)$ SVMZVs: $\zeta^{sv}(n_1, n_2, ...)$ [Brown;2013]

Part 2 The Dual CFT

The dual CFT correlator

4 graviton amplitude in $AdS_5 \times S^5$ \leftrightarrow $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle$ in $\mathcal{N} = 4$ SYM theory $g_s \ll \frac{\alpha'}{R_{AdS}^2} \ll 1$ \Leftrightarrow $\frac{1}{N} \ll \frac{1}{\sqrt{\lambda}} \ll 1$

 $\mathcal{O}_2 =$ superconformal primary of stress-tensor multiplet

Mellin transform

$$H(U, V) = \int_{-i\infty}^{i\infty} \frac{dsdt}{(4\pi i)^2} U^{\frac{s}{2} + \frac{2}{3}} V^{\frac{t}{2} - \frac{4}{3}} \Gamma\left(\frac{4}{3} - \frac{s}{2}\right)^2 \Gamma\left(\frac{4}{3} - \frac{t}{2}\right)^2 \Gamma\left(\frac{4}{3} - \frac{u}{2}\right)^2 M(s, t)$$

Borel transform

$$A(S,T) = 2\lambda^{\frac{3}{2}} \int_{-i\infty}^{i\infty} \frac{d\alpha}{2\pi i} e^{\alpha} \alpha^{-6} M\left(\frac{2\sqrt{\lambda}S}{\alpha}, \frac{2\sqrt{\lambda}T}{\alpha}\right)$$

Dispersion relation

M(s, t) has only OPE poles:

poles
$$\sim rac{C^2_{\Delta,\ell}Q_{\Delta,\ell,m}(t)}{s'-(\Delta-\ell+2m)}$$

[Mack;2009], [Penedones,Silva,Zhiboedov;2019]

Regge bounded due to bound on chaos:

$$\lim_{|s| o \infty} |M(s,t)| \lesssim |s|^{-2}, \; {
m Re}(t) < 2$$

[Maldacena, Shenker, Stanford; 2015]

$$M(s,t) = \oint_{s} \frac{ds'}{2\pi i} \frac{M(s',t)}{(s'-s)} = -\sum_{\text{operators}} \left(\frac{C_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{s - (\Delta - \ell + 2m)} + \frac{C_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{u - (\Delta - \ell + 2m)} \right)$$

STRING AMPLITUDE SHOPPING LIST

Spectrum of exchanged operators

Degeneracies in the spectrum

The amplitude encodes OPE data of multiple degenerate superprimaries. We determined the degeneracies starting from type IIb strings in flat 10d:

$$SO(9) \rightarrow SO(4) \times SO(5) \stackrel{KK}{\rightarrow} SO(4) \times SO(6)$$

Number of superconformal long
multiplets with superprimary $\mathcal{O}_{\delta,\ell}$
 SO(6) singlet
• $\Delta = 2\sqrt{\delta}\lambda^{rac{1}{4}} + O(\lambda^0)$

Example: $\mathcal{O}_{1,0} = \text{Konishi} \sim \text{Tr}(\phi' \phi_I)$

The counting was confirmed for $\delta \leq 3$ with quantum spectral curve. [Gromov,Hegedus,Julius,Sokolova;2023]

STRING AMPLITUDE SHOPPING LIST

- WORLDSHEET INTEGRAL - REGGE BOUNDEDNESS - PARTIAL WAVE EXPANSION - LOW ENERGY EXPANSION

Dispersion relation \rightarrow Residues

Dispersion relation for $M(s,t) \rightsquigarrow A^{(k)}(S,T)$ expanded around $S = \delta = 1, 2, ...$

$$A^{(k)}(S,T) = \frac{R_{3k+1}^{(k)}(T,\delta,C_{\delta,\ell}^{2(0)})}{(S-\delta)^{3k+1}} + \ldots + \frac{R_{1}^{(k)}(T,\delta,C_{\delta,\ell}^{2(0)},\ldots,\Delta_{\delta,\ell}^{(k)},C_{\delta,\ell}^{2(k)})}{S-\delta} + \operatorname{reg.}$$

(OPE data)^{$$(k-1)$$} fixes most residues of $A^{(k)}(S, T)$!

Next steps (order by order):

- Write world-sheet ansatz for $A^{(k)}(S, T)$.
- Compute its residues and match with the above to fix ansatz.

World-sheet \rightarrow Residues

Q: How to compute the singularities at $S=\delta=1,2,\ldots$ of

$$\int d^2 z \, |z|^{-2S-2} |1-z|^{-2T-2} \mathcal{L}_w(z)$$

A: Integrating near $z \sim 0$ using polar coordinates $z = \rho e^{i\phi}$ and

$$\int_{0}^{\rho_{0}} d\rho \, \rho^{-2S+2\delta-1} \frac{1}{\rho!} \log^{p}(\rho^{2}) = -\frac{1}{2} \frac{1}{(S-\delta)^{p+1}} + \operatorname{reg}$$

Leading pole order 3k + 1 (predicted by dispersion relation) = max order from weight 3k SVMPLs (predicted by string model):

$$\mathcal{L}_{0^{3k}}(z) = rac{1}{(3k)!} \log^{3k} |z|^2 \quad o \quad rac{1}{(S-\delta)^{3k+1}}$$

World-sheet correlator (ansatz)

Ansatz:

$$A^{(k)}(S,T) = B^{(k)}(S,T) + B^{(k)}(U,T) + B^{(k)}(S,U)$$

$$B^{(k)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(k)}(S,T,z)$$

Assumed properties of $G^{(k)}(S, T, z)$:

- uniform transcendentality 3k (SVMPLs(z), SVMZVs)
- rational function in S, T with homogeneity 2k 2
- denominator = U^n , $n \leq 2$
- crossing symmetry: $G^{(k)}(S,T,z) = G^{(k)}(T,S,1-z)$

Recall (flat space):

$$G^{(0)}(S,T,z) = rac{1}{3U^2}$$

STRING AMPLITUDE SHOPPING LIST

WORLDSHEET INTEGRAL REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION LOW ENERGY EXPANSION

World-sheet correlator (solution)

Symmetrised single-valued multiple polylogs:

$$\mathcal{L}^\pm_w(z) = \mathcal{L}_w(z) \pm \mathcal{L}_w(1-z) + \mathcal{L}_w(ar{z}) \pm \mathcal{L}_w(1-ar{z})$$

k = 1: weight 3 basis = 4 symmetric + 3 antisymmetric functions

Solution:

$$G^{(1)}(S, T, z) = -\frac{1}{6}\mathcal{L}^{+}_{000}(z) + 0\mathcal{L}^{+}_{001}(z) - \frac{1}{4}\mathcal{L}^{+}_{010}(z) + 2\zeta(3) + \frac{S - T}{S + T} \left(-\frac{1}{6}\mathcal{L}^{-}_{000}(z) + \frac{1}{3}\mathcal{L}^{-}_{001}(z) + \frac{1}{6}\mathcal{L}^{-}_{010}(z) \right)$$

k = 2: weight 6 basis = 25 symmetric + 20 antisymmetric functions

We need to input the dimension of 1 operator ($\Delta_{1.0}^{(2)} = \text{Konishi}$) to fix $A^{(2)}(S, T)$ completely.

STRING AMPLITUDE SHOPPING LIST

WORLDSHEET INTEGRAL REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION LOW ENERGY EXPANSION

OPE data

We compute $\forall \delta, \ell \qquad \# \in \mathbb{Q}$

SHOPPING LIST WORLDSHEET INTEGRAL REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION

STRING AMPLITUDE

 $\begin{array}{ll} k = 0: & \langle C^{2(0)} \rangle_{\delta,\ell} = \# \\ k = 1: & \sqrt{\delta} \langle C^{2(0)} \Delta^{(1)} \rangle_{\delta,\ell} = \#, & \langle C^{2(1)} \rangle_{\delta,\ell} = \# \zeta(3) + \# \\ k = 2: & \langle C^{2(0)} (\Delta^{(1)})^2 \rangle_{\delta,\ell} = \# \\ & \sqrt{\delta} \langle C^{2(0)} \Delta^{(2)} + C^{2(1)} \Delta^{(1)} \rangle_{\delta,\ell} = \# \zeta(3) + \# \\ & \langle C^{2(2)} \rangle_{\delta,\ell} = \# \zeta(3)^2 + \# \zeta(5) + \# \zeta(3) + \# \end{array}$

Leading Regge trajectory:

$$\begin{split} &\Delta\left(\frac{\ell}{2}+1,\ell\right)=2\sqrt{\frac{\ell}{2}+1}\lambda^{\frac{1}{4}}-2+\frac{3\ell^{2}+10\ell+16}{4\sqrt{2(\ell+2)}}\lambda^{-\frac{1}{4}}\\ &-\frac{21\ell^{4}+144\ell^{3}+292\ell^{2}+80\ell-128+96(\ell+2)^{3}\zeta(3)}{32(2(\ell+2))^{\frac{3}{2}}}\lambda^{-\frac{3}{4}}+\mathcal{O}(\lambda^{-\frac{5}{4}})\,, \end{split}$$

Agrees with integrability result!

[Gromov, Serban, Shenderovich, Volin; 2011], [Basso; 2011], [Gromov, Valatka; 2011]

World-sheet \rightarrow Low energy expansion

The low energy expansion ($S \sim T \sim 0$) can be computed following [Vanhove,Zerbini;2018]

$$\int d^{2}z|z|^{-2S-2}|1-z|^{-2T-2}\mathcal{L}_{w}(z)$$

$$= \text{poles} + \sum_{p,q=0}^{\infty} (-S)^{p}(-T)^{q} \int \frac{d^{2}z}{|z|^{2}|1-z|^{2}} \underbrace{\mathcal{L}_{0^{p}}(z)\mathcal{L}_{1^{q}}(z)\mathcal{L}_{w}(z)}_{=\sum_{W \in 0^{p} \sqcup 1^{q} \sqcup W} \mathcal{L}_{W}(z)}$$

$$= \text{poles} + \sum_{p,q=0}^{\infty} (-S)^{p}(-T)^{q} \sum_{W \in 0^{p} \sqcup 1^{q} \sqcup W} \underbrace{\mathcal{L}_{0W}(1) - \mathcal{L}_{1W}(1)}_{=\sum_{W \in 0^{p} \sqcup 1^{q} \sqcup W} \mathcal{L}_{W}(z)}$$

Single-valued multiple zeta values of weight $1+p+q+\left|w\right|$

STRING AMPLITUDE SHOPPING LIST

WORLDSHEET INTEGRAL REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION LOW ENERGY EXPANSION

$$A^{(k)}(S,T) = \text{SUGRA}^{(k)} + 2\sum_{a,b=0}^{\infty} (\frac{1}{2}(S^2 + T^2 + U^2))^a (STU)^b \alpha_{a,b}^{(k)}$$

We compute $\forall a, b \qquad \# \in \mathbb{Q}$

$$\alpha_{a,b}^{(0)} = \sum_{k_i \text{ odd}} \#\zeta(k_1) \dots \zeta(k_n)$$

$$\alpha_{a,b}^{(1)} = \sum_{k_i \text{ odd}} \#\zeta^{\text{sv}}(k_1, k_2, k_3)\zeta(k_4) \dots \zeta(k_n) + \dots$$

$$\alpha_{a,b}^{(2)} = \sum_{k_i \text{ odd}} \#\zeta^{\text{sv}}(k_1, k_2, k_3, k_4, k_5)\zeta(k_6) \dots \zeta(k_n) + \dots$$

In particular:

$$\alpha_{0,0}^{(1)} = 0, \quad \alpha_{1,0}^{(1)} = -\frac{22}{3}\zeta(3)^2, \quad \alpha_{0,0}^{(2)} = \frac{49}{4}\zeta(5), \quad \alpha_{1,0}^{(2)} = \frac{4091}{16}\zeta(7)$$

Agrees with localisation result!

[Binder, Chester, Pufu, Wang; 2019], [Chester, Pufu; 2020], [Alday, TH, Silva; 2022]

STRING AMPLITUDE SHOPPING LIST

- WORLDSHEET INTEGRAL - REGGE BOUINDEDNESS - PARTIAL WAVE EXPANSION - LOW ENERGY EXPANSION

- Open strings / AdS Veneziano amplitude
 - Generalizations of KLT relations / single-valued map?
 - Problem: no strong coupling OPE data known for consistency checks. Integrability?
- Compute $A^{(k)}(S, T)$ directly from string theory?
 - Ramond-Ramond background flux. . .
 - Pure spinors?

Thank you!

Questions?