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Introduction

Polylogarithms play an important role in theoretical physics, including
quantum field theory and string theory.
Much of the literature on polylogarithms has focused on genus zero and
genus one Riemann surfaces, with higher-genus surfaces less understood.

Proposals for higher-genus polylogarithm function spaces exist, but without
explicit formulas for use in physics. [Enriquez, 1112.0864]

[Enriquez, Zerbini, 2110.09341] [Enriquez, Zerbini, 2212.03119]

Today, we will explore a new construction of higher-genus polylogarithms.
Our method includes two key steps:

We create a new set of integration kernels using convolutions of certain
functions defined on higher-genus Riemann surfaces.

With these kernels, we build a generating function, which helps define our
higher-genus polylogarithms which are closed under taking primitives.
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String amplitudes motivation

String perturbation theory involves expanding in the string coupling
constant gs, which in turn is an expansion based on the genus of the string
world-sheet. [Figure taken from PhD thesis of J. Gerken]

Furthermore, typically we also expand in the inverse string tension α′,
which corresponds to low energy and weak coupling regimes.

The resulting function space of these expansions is that of polylogarithms,
(or single-valued combinations thereof.)
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String amplitudes and special functions

Different types of special functions emerge depending on whether we are
considering open/closed strings, and depending on the genus:

Martijn Hidding 6 / 39



Higher genus curves in Feynman integrals
The appearance of hyperelliptic curves in Feynman integrals has also been
observed in a number of publications. See for example:
R. Huang and Y. Zhang, “On Genera of Curves from High-loop Generalized Unitarity Cuts,” JHEP 04

(2013), 080 [arXiv:1302.1023 [hep-ph]].

A. Georgoudis and Y. Zhang, “Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves,”

JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].
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The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].

C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, “Motivic geometry of two-loop Feynman

integrals,” [arXiv:2302.14840 [math.AG]].

R. Marzucca, A. J. McLeod, B. Page, S. Pögel, S. Weinzierl, “Genus Drop in Hyperelliptic Feynman

Integrals,” [arXiv:2307.11497 [hep-th]]. See also Andrew’s talk earlier at the workshop!
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Review of polylogarithms at genus zero and one
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Building Polylogarithms as Iterated Integrals

We want to construct polylogarithms, using iterated integrals, on a compact
Riemann surface, Σ, with genus h.

The polylogarithms we construct should have these qualities:

1. Homotopy Invariance: The polylogarithms should retain their value
when we smoothly change the path of integration, keeping the
endpoints constant.

2. Logarithmic Branch-Cuts: The integration kernels (or the ’hearts’ of
these integrals) should only have simple poles, meaning our integrals
should show just logarithmic irregularities at branch points.

3. Closed Under Integration: Our function space should remain intact
under integration, and in total, form a basis for all possible iterated
integrals on Σ.
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Homotopy-Invariant Iterated Integrals on a Surface
Let’s consider the differential equation: dΓ = J Γ.

If we want the equation to be integrable, we need d2 = 0. This leads us to
the Maurer-Cartan equation for the connection J :

dJ − J ∧ J = 0

We give a special name to such a connection - we call it flat. The solution Γ

to our differential equation can be obtained by the path-ordered
exponential over any open path C between points z0, z ∈ Σ:

Γ(C) = P exp
∫
C
J (·) = P exp

∫ 1

0
dt J(t)

Let’s denote J = J(t)dt, following a path C where t ∈ [0, 1], C(0) = z0, and
C(1) = z. Using physics conventions, we position J(t) to the left of J(t′) for
t > t′:

P exp
∫
C
J (·) = 1+

∫ 1

0
dt J(t) +

∫ 1

0
dt

∫ t

0
dt′ J(t)J(t′) + . . .
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Homotopy-Invariant Iterated Integrals on a Surface

The ’flatness’ of our connection J ensures that Γ(C) stays the same, even
when we tweak the path C a bit.

We’ll call such integrals homotopy-invariant.

Be aware, paths Γ(C) might still give different results for z0 and z when the
path circles around marked points (poles of J ) on Σ.

Later on, we’ll see that our connection J and Γ are valued in a Lie algebra
and its universal enveloping algebra, respectively.

We will derive polylogarithms on surfaces of any genus from these
path-ordered exponentials by examining the coefficients in words of the Lie
algebra generators.
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Genus 0: MPLs and Generating Series

Multiple polylogarithms (MPLs) are iterated integrals of rational forms
dz/(z − s) with z, s ∈ C, on the Riemann sphere CP1.

[A.B. Goncharov, Math. Res. Lett. 5 (1998) 497]
[A.B. Goncharov, math.AG/0103059]They are defined recursively by:

G(s1, s2, · · · , sn; z) =
∫ z

0

dt
t−s1

G(s2, · · · , sn; t)

where we have the special case G(∅; z) = 1. The integer n ≥ 0 is referred to
as the transcendental weight.

Iterated integrals such as MPLs satisfy shuffle relations, for example:

G(s1; z) · G(s2; z) = G(s1, s2; z) + G(s2, s1; z).

We define the special case G(0; z) = log(z), which serves as a regularization
prescription when the last parameters are zeros.
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Closure of MPLs Under Integration

Any integral of a rational function times a multiple polylogarithm (MPL) can
be expressed in terms of MPLs.

This is achieved by partial fractioning the rational function and/or using
integration by parts (IBP) identities. For example:

1
(x − s1)(x − s2)

=
1

(s1 − s2)

(
1

(x − s1)
− 1

(x − s2)

)
After partial fractioning, we distinguish the following cases:∫ z

0
dt

1

(t − b)k
G (⃗s; t) ,

∫ z

0
dt G (⃗s; t) ,

∫ z

0
dt tkG (⃗s; t)

where 0 < k ̸= 1. We then use IBP identities to iteratively reduce the value
of k. For example:∫ z

0
dt

1
(t + 1)2

G(0; t) =
z

1+ z
G(0; z)− G(−1; z)
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Generating Series

A generating series for the polylogarithms can be constructed from the
Knizhnik-Zamolodchikov (KZ) connection:

JKZ(z) =
m∑
i=1

dz
z − si

ei

The elements e1, · · · , em are generators of a free Lie algebra L associated
with the marked points s1, · · · , sm.
Choosing endpoints z0 = 0 and z1 = z, we can organize the expansion of
the path-ordered exponential in terms of the generators e1, · · · , em:

P exp
∫ z

0
JKZ(·) = 1+

m∑
i=1

eiG(si; z) +
m∑
i=1

m∑
j=1

eiejG(sisj; z)

+
m∑
i=1

m∑
j=1

m∑
k=1

eiejekG(sisjsk; z) + · · ·
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Genus 1: Elliptic Multiple Polylogarithms
Next, consider a compact genus-one surface, Σ, with modulus τ , denoted as
a lattice by Σ = C/(Z+ τZ).

For a surface with genus h ≥ 1, there are two key options for constructing a
connection: [Brown, Levin, arXiv:1110.6917]

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]
[Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

1. A connection that is single-valued on Σ, but non-meromorphic (due to
z̄-dependence), with at most simple poles.

2. A meromorphic connection that has at most simple poles, but is not
single-valued (and lives on the universal cover of Σ). This can be obtained with
a minor tweak of the first construction.

The Brown-Levin construction opts for the first choice.

Interestingly, the construction of elliptic multiple polylogarithms at genus 1
is quite different from the genus 0 case. Notably, there is an infinite set of
integration kernels at genus one, even for a single marked point z.
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The Brown-Levin Construction
Brown and Levin pioneered a method of homotopy-invariant iterated
integrals at genus one. [Brown, Levin, arXiv:1110.6917]

The key element to their construction is the so-called Kronecker-Eisenstein
(KE-) series:

Ω(z, α|τ) = exp

(
2πiα

Im z
Im τ

)
ϑ′
1(0|τ)ϑ1(z+α|τ)
ϑ1(z|τ)ϑ1(α|τ)

=
∞∑
n=0

αn−1f (n)(z|τ)

The KE-series is single-valued on the torus, has a simple pole at z = 0 and
satisfies the following differential relation (for z ̸= 0):

∂z̄Ω(z, α|τ) = − π α

Im τ
Ω(z, α|τ)

They then constructed the flat connection JBL(z|τ), which is valued in the
Lie algebra L, generated by elements a, b:

JBL(z|τ) =
π

Im τ
(dz−dz̄) b+ dz adb Ω

(
z, adb|τ

)
a

Note that we have put α → adb = [b, ◦]. Flatness can be proven using that
dz = dz∂z + dz̄∂z̄, and using the above differential equation.
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Homotopy-Invariant Iterated Integrals

We may write down homotopy-invariant iterated integrals on the torus by
expanding the path-ordered exponential in terms of words in a, b:

P exp
∫ z

0
JBL(·|τ) = 1+ a Γ(a; z|τ) + b Γ(b; z|τ)

+ ab Γ(ab; z|τ) + ba Γ(ba; z|τ) + . . .

The resulting coefficient functions Γ(w; z|τ) are homotopy-invariant
iterated integrals, referred to as elliptic polylogarithms.

Also note that while the connection is single-valued on the torus, the
integrals are not and have monodromies along the A- and B-cycles.

In the physics literature we typically see the following functions:

Γ̃
( n1 n2 ··· nr
w1 w2 ··· wr ; z|τ

)
=

∫ z

0
dz1 g(n1)(z1−w1|τ) Γ̃

( n2 ··· nr
w2 ··· wr ; z1|τ

)
which are a meromorphic variant of the elliptic polylogarithms that were
constructed above. Let us briefly relate the two types of functions.
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Meromorphic Variant

We can define a meromorphic counterpart of the doubly-periodic
Kronecker-Eisenstein series and its expansion coefficients g(n)(z|τ):

ϑ′
1(0|τ)ϑ1(z+α|τ)
ϑ1(z|τ)ϑ1(α|τ)

=
∞∑
n=0

αn−1g(n)(z|τ)

The meromorphic integration kernels g(n)(z|τ) are multiple-valued on the
torus, and actually live on the universal covering space, which is C.
Brown-Levin polylogarithms associated with words w → ab · · · b reduce to a
single integral over the meromorphic kernels. For example:

Γ(ab; z|τ) =
∫ z

0
dt

(
2πi

Im t
Im τ

− f (1)(t|τ)
)

= −
∫ z

0
dt g(1)(t|τ) = −Γ̃

(
1
0 ; z|τ

)
More generally, Γ(ab · · · b; z|τ) can be expressed as:

Γ(a b · · · b︸ ︷︷ ︸
n

; z|τ) = (−1)n
∫ z

0
dt g(n)(t|τ) = (−1)nΓ̃

( n
0 ; z|τ

)
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Closure under integration
For the MPLs, we saw that partial fraction identities were essential for
splitting up a product of integration kernels.
We need similar identities for the function space to close under integration
at genus one. For example, we might encounter an integral of the type:∫ z

0
dt f (n1) (t − a1) f (n2) (t − a2)

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

The so-called Fay identities generalize the partial fraction relations. They
are generated by:

Ω (z1, α1, τ) Ω (z2, α2, τ) = Ω (z1, α1 + α2, τ) Ω (z2 − z1, α2, τ)
+ Ω (z2, α1 + α2, τ) Ω (z1 − z2, α1, τ)

For example we have that:

f (1)(t − x)f (1)(t) = f (1)(t − x)f (1)(x)− f (1)(t)f (1)(x)

+ f (2)(t) + f (2)(x) + f (2)(t − x)
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Alternative Construction via Convolutions
An alternative construction of the functions f (k)(z|τ) is in terms of the scalar
Green function g(z|τ) on Σ. The Green function is defined by:

∂z̄∂z g(z|τ) = −πδ(z) +
π

Im τ
,

∫
Σ

d2z g(z|τ) = 0

It can be expressed in terms of the Jacobi theta function ϑ1 and the
Dedekind eta-function η as follows:

g(z|τ) = − ln

∣∣∣∣ϑ1(z|τ)η(τ)

∣∣∣∣2 − π
(z−z̄)2

2 Im τ

We define the function f (1)(z|τ) as the derivative of the Green’s function:

f (1)(z|τ) = −∂zg(z|τ)

Subsequently, we can define higher dimensional convolutions of f
recursively as follows:

f (k)(z|τ) = −
∫
Σ

d2x
Im τ

∂xg(x|τ) f (k−1)(x−z|τ), k ≥ 2

We will see in the following that similar convolutions underlie our
higher-genus generalizations of these kernels.
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Constructing a flat connection at higher genus

In the next part, we will focus on how we can construct a flat connection at
a higher-genus. This will involve:

1. A brief overview of higher-genus Riemann surfaces.

2. A short review of the Arakelov Green’s function.

3. Derivation of higher-genus analogues of Kronecker-Eisenstein kernels.

4. Definition of the flat connection at higher-genus.

After this, we will introduce higher-genus polylogarithms by computing the
path-ordered exponential of our connection and extracting the component
integrals.
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Brief overview of higher-genus Riemann surfaces

Martijn Hidding 22 / 39



Topology of a Compact Riemann Surface Σ

The topology of a compact Riemann surface Σ without boundary is specified
by its genus h.

The homology group H1(Σ,Z) is isomorphic to Z2h and supports an
anti-symmetric non-degenerate intersection pairing denoted by J.

A1
A2

B1 B2

Σ

A choice of canonical homology basis on a compact genus-two Riemann surface Σ.

A canonical homology basis of cycles AI and BJ with I, J = 1, · · · , h has
symplectic intersection matrix J(AI,BJ) = −J(BJ,AI) = δIJ, and
J(AI,AJ) = J(BI,BJ) = 0.

A new canonical basis Ã and B̃ is obtained by applying a modular
transformation M ∈ Sp(2h,Z), such that MtJM = J.
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Canonical Basis of Holomorphic Abelian Differentials

A canonical basis of holomorphic Abelian differentials ωI may be
normalized on A-cycles:∮

AI

ωJ = δIJ

∮
BI

ωJ = ΩIJ

The complex variables ΩIJ denote the components of the period matrix Ω of
the surface Σ.

By the Riemann relations, Ω is symmetric, and has positive definite
imaginary part:

Ωt = Ω Y = ImΩ > 0

We will use the matrix YIJ = ImΩIJ and its inverse Y IJ =
(
(ImΩ)−1

)IJ to raise
and lower indices:

ωI = Y IJωJ ω̄I = Y IJω̄J Y IKYKJ = δIJ
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The Arakelov Green Function

The Arakelov Green function G(x, y|Ω) on Σ× Σ is a single-valued version
of the Green function, defined by: [D’Hoker, Green, Pioline, arXiv:1712.06135]

[G. Faltings, Ann. Math., 119(2), 1984]

∂x̄∂xG(x, y|Ω) = −πδ(x, y) + πκ(x) ,
∫
Σ

κ(x)G(x, y|Ω) = 0

where the Kähler form κ is given by:

κ =
i
2h

ωI ∧ ω̄I = κ(z) d2z
∫
Σ

κ = 1

In what follows we will drop the explicit dependence on the moduli Ω.

At genus one the (Arakelov) Green function only depends on a difference of
points G(x, y)|h=1 = G(x − y)|h=1.
However, this translation invariance is absent on a Riemann surface Σ of
genus h > 1.
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The Interchange Lemma

The tensor ΦI J(x), introduced by Kawazumi, compensates for the lack of
translation invariance at higher genus: [Kawazumi, MCM2016] [Kawazumi,
2017]

ΦI J(x) =
∫
Σ

d2z G(x, z) ω̄I(z)ωJ(z)

Note that the trace of ΦI J(x) vanishes by the definition of the Arakelov
Green function.

In particular, the so-called interchange lemma provides a substitute for the
absence of translation invariance:

∂xG(x, y)ωJ(y) + ∂yG(x, y)ωJ(x)− ∂xΦ
I
J(x)ωI(y)− ∂yΦ

I
J(y)ωI(x) = 0

[E. D’Hoker et al., arXiv:2008.08687 [hep-th]]
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Higher Convolution of the Arakelov Green Function

Inspired by the alternative construction of the Kronecker-Eisenstein kernels
through convolutions, we define the tensors ΦI1···Ir J(x) and G I1···Is(x, y):

ΦI1···Ir J(x) =
∫
Σ

d2z G(x, z) ω̄I1(z) ∂zΦI2···Ir J(z) (r ≥ 2)

G I1···Is(x, y) =
∫
Σ

d2z G(x, z) ω̄I1(z) ∂zG I2···Is(z, y) (s ≥ 1)

At genus one, the derivatives of the tensor G I1···Is for I1 = · · · = Is = 1 equal
the Kronecker-Eisenstein integration kernels f (s+1):

∂xG I1···Is(x, y)
∣∣
h=1 = −f (s+1)(x−y|τ)

The trace ΦI1···Ir Ir = 0 for arbitrary genus implies that Φ-tensors for arbitrary
r ≥ 1 vanish identically for genus one.

In the next part: we will construct generating functions of our kernels, and
combine them into a flat connection.
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Construction of higher-genus polylogarithms
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Generating Functions

Let us introduce a non-commutative algebra freely generated by BI for
I = 1, · · · , h (loosely inspired by the approach of Enriquez and Zerbini
arXiv:2110.09341).

Next, we fix an arbitrary auxiliary marked point p on the Riemann surface Σ
and introduce the following generating functions:

H(x, p;B) = ∂xG(x, p) +
∞∑
r=1

∂xG I1I2···Ir (x, p)BI1BI2 · · · BIr

HJ(x;B) = ωJ(x) +
∞∑
r=1

∂xΦ
I1I2···Ir

J(x)BI1BI2 · · · BIr

By forming the combination ΨJ(x, p;B) = HJ(x;B)−H(x, p;B)BJ, we obtain
a compact antiholomorphic derivative:

∂x̄ΨJ(x, p;B) = −πω̄I(x)BIΨJ(x, p;B)

for x ̸= p, which generalizes the genus-one differential relation for Ω.
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The Flat Connection

Next, we extend to a Lie algebra L freely generated by elements aI and bI
for I = 1, · · · , h and set BI = adbI = [bI, ·].

Our connection J (x, p), on a Riemann surface Σ of arbitrary genus h with a
marked point p ∈ Σ and valued in the Lie algebra L is then given by:

J (x, p) = −π dx̄ ω̄I(x) bI + π dxHI(x;B) bI + dxΨI(x, p;B) aI

Working out dx = dx∂x + dx̄∂x̄ , we may show that:

dxJ (x, p)− J (x, p) ∧ J (x, p) = πdx̄ ∧ dx δ(x, p) [bI, aI]

proving that the connection is flat (away from x = p).
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Reduction to the Brown-Levin Connection

To prove that the connection J (x, p) reduces to the non-holomorphic
single-valued Brown-Levin connection at genus one, we relabel a1 = a and
b1 = b.

Since the tensor ΦI J and its higher-rank versions all vanish identically at
genus one, the generating function H1(x;B) reduces to:

H1(x;B)
∣∣∣
h=1

= ω1(x) =
ω1(x)
Im τ

The first terms in J (x, p) combine to π(dx − dx̄)b/ Im τ , thereby
reproducing the contributions ∼ (Im τ)−1 to the non-meromorphic
Brown-Levin connection.

The last term in J (x, p) reproduces the Kronecker-Eisenstein series by:

Ψ1(x, p;B)
∣∣∣
h=1

= ω1(x)−H(x, p;B)B1
∣∣∣
h=1

= adb Ω(x−p, adb|τ)
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Expansion of the Connection
The connection J may be expanded in words with r+1 letters in the basis
(aI, bI):

J (x, p) = π(dx ωI(x)− dx̄ ω̄I(x))bI + π dx
∞∑
r=1

∂xΦ
I1···Ir

J(x) Y JK BI1 · · · BIr bK

+ dx
∞∑
r=1

(
∂xΦ

I1···Ir
J(x)− ∂xG I1···Ir−1(x, p)δIrJ

)
BI1 · · · BIr aJ

Like before, the flat connection J (x, p) integrates to a homotopy-invariant
path-ordered exponential Γ(x, y; p):

Γ(x, y; p) = P exp
∫ x

y
J (t, p)

For example, for words with at most two letters in the basis (aI, bI):

Γ(x, y; p) = 1+ aIΓI(x, y; p) + bIΓI(x, y; p)

+ aIaJΓIJ(x, y; p) + bIbJΓIJ(x, y; p)

+ aIbJΓI J(x, y; p) + bIaJΓI J(x, y; p) + · · ·
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Polylogarithms for Words without bI

The polylogarithms associated with words w that do not involve any of the
letters bI are given by the following simple formula:

ΓI1I2···Ir (x, y; p) =
∫ x

y
ωI1(t1)

∫ t1

y
ωI2(t2) · · ·

∫ tr−1

y
ωIr (tr)

which we’ll refer to as iterated Abelian integrals.

These polylogarithms are independent of the marked point p.

They obey the differential equations:

∂xΓI1I2···Ir (x, y; p) = ωI1(x)ΓI2···Ir (x, y; p)

For the case h = 1, we simply obtain:

Γ11 · · · 1︸ ︷︷ ︸
r

(x, y; z)
∣∣
h=1 =

1
r!
(x−y)r
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Low Letter Count Polylogarithms

Next let us consider some cases involving the letters bI. For the
single-letter word bI, we obtain:

ΓI(x, y; p) = π

∫ x

y
(ωI − ω̄I)

For double-letter words with at least one letter bI, we obtain:

ΓIJ(x, y; p) = π

∫ x

y

(
dt

(
∂tΦ

I
K(t)YKJ − ∂tΦ

J
K(t)YKI

)
+ π

(
ωI(t)− ω̄I(t)

) ∫ t

y
(ωJ − ω̄J)

)
ΓJ I(x, y; p) =

∫ x

y

(
dt ∂tΦJ I(t)− dt ∂tG(t, p)δJI + π

(
ωJ(t)− ω̄J(t)

) ∫ t

y
ωI

)
ΓI
J(x, y; p) =

∫ x

y

(
−dt ∂tΦJ I(t) + dt ∂tG(t, p)δJI + πωI(t)

∫ t

y
(ωJ − ω̄J)

)
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Meromorphic Variants of Polylogarithms

Lastly, let’s explore an instance showcasing where the meromorphic
variants of polylogarithms live in our function space.
Consider again the following higher-genus polylogarithm:

ΓI
J(x, y; p) =

∫ x

y
dt

(
−∂tΦ

J
I(t) + δJI∂tG(t, p) + πωI(t)Y JK

(
ΓK(t, y; p)− ΓK(t, y; p)

)
Upon specializing to genus h = 1 and setting p = y = 0, this reproduces the
Brown-Levin polylogarithm Γ(ab; p|τ) = −Γ̃

(
1
0 ; p|τ

)
.

The integrand with respect to t in the equation above can be viewed as a
higher-genus uplift of the Kronecker-Eisenstein kernel g(1)(t|τ):

gJ I(t, y; p) = ∂tΦ
J
I(t)− δJI∂tG(t, p)− 2πiωI(t)Y JK Im

∫ t

y
ωK

One may verify that indeed (for t ̸= p):

∂t̄g
J
I(t, y; p) = 0
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Conclusions and future directions
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Conclusions

We have presented an explicit construction of polylogarithms on
higher-genus compact Riemann surfaces.

Our construction relies on a flat connection whose path-ordered
exponential plays the role of a generating series for higher-genus
polylogarithms.

The flat connection takes values in the freely-generated Lie algebra
generated by elements aI and bI for I = 1, · · · , h, introduced by Enriquez
and Zerbini.

Our construction provides the first explicit proposal for a “complete” set of
integration kernels beyond genus one.

Sidenote: The resulting higher-genus polylogarithms may potentially also
be important for higher-loop gravitational calculations, depending on the
topology of the Feynman diagrams.
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Future Directions

Although we have strong evidence the function space of our polylogarithms
is closed under integration, we have not yet proven this conjecture.

In addition, there are various more technical roads to follow:

1. Obtaining the separating and non-separating degenerations of the
polylogarithms for arbitrary genera.

2. Determining the differential relations with respect to moduli variations
satisfied by higher-genus polylogarithms.

3. Identifying generalizations of the higher-genus modular graph tensors that
close under complex-structure variations and degenerations.

4. Re-formulation of higher-genus string amplitudes in terms of the integration
kernels and polylogarithms constructed in this work.
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Thank you for listening!
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Modular Transformations

A new canonical basis Ã and B̃ is obtained by applying a modular
transformation M ∈ Sp(2h,Z), such that MtJM = J.

Under a modular transformation, we have:

ω̃ = ω (CΩ+ D)−1, Ω̃ = (AΩ+ B)(CΩ+ D)−1

Ỹ =
(
Ω̄Ct + Dt

)−1 Y (CΩ+ D)−1

The moduli space of compact Riemann surfaces of genus h will be denoted
byMh.

The moduli spaceMh for h = 1, 2, 3 may be identified with Hh/Sp(2h,Z)
provided we remove from the Siegel upper half spaceHh for h = 2, 3 all
elements which correspond to disconnected surfaces, and take into account
the effect of automorphisms including the involution on the hyper-elliptic
locus for h = 3.

For h ≥ 4, the moduli spaceMh is a complex co-dimension 1
2 (h− 2)(h− 3)

subspace of Hh/Sp(2h,Z) known as the Schottky locus.
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Definition of Modular Tensors
Modular tensors are defined on Torelli space, the moduli space of compact
Riemann surfaces with a choice of canonical homology basis of A and B
cycles.
They generalize modular forms at genus one by replacing the automorphy
factor (Cτ + D) of SL(2,Z) with an automorphy tensor Q and its inverse
R = Q−1:

Q = Q(M,Ω) = CΩ+ D

R = R(M,Ω) = (CΩ+ D)−1

The composition law for the automorphy tensors is:

Q(M1M2,Ω) = Q
(
M1, (A2Ω+ B2)(C2Ω+ D2)−1

)
Q(M2,Ω)

The tensors ωI, ωI, YIJ, and its inverse Y IJ transform as follows under a
modular transformation:

ω̃I = ωI′RI
′

I ỸIJ = YI′J′ R̄I
′

I RJ
′

J

ω̃J = Q̄J J′ ωJ
′

Ỹ IJ = QI I′ Q̄J J′ Y I
′J′
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Definition of Modular Tensors

A modular tensor T of arbitrary rank transforms as follows:

T̃ I1,··· ,In;J1,··· ,Jn̄(Ω̃) = QI1 I′1 · · · Q
In
I′n Q̄

J1
J′1 · · · Q̄

Jn̄
J′n̄ T

I′1,··· ,I
′
n;J

′
1,··· ,J

′
n̄(Ω)

The tensors YIJ and Y IJ may be used to lower and raise indices, respectively,
and can be made to compensate any anti-holomorphic automorphy factor.

The tensor U exclusively transforms with holomorphic automorphy factors
QIi I′i and R

J′i Ji :

Ũ I1,··· ,InJ1,··· ,Jn̄ (Ω̃) = Q
I1
I′1 · · · Q

In
I′nR

J′1 J1 · · · RJ
′
n̄ Jn̄ U

I′1,··· ,I
′
n

J′1,··· ,J
′
n̄
(Ω)

Symmetrization, anti-symmetrization, and removal of the trace by
contracting with factors of YIJ or δJI may be used to extract irreducible
tensors.
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Modular Properties of the Brown-Levin Construction
Lastly, let us consider the modular properties of the Brown-Levin
construction. Consider a modular transformation on the modulus τ , z, and α
given by:

τ → τ̃ =
Aτ + B
Cτ + D

, z→ z̃ =
z

Cτ + D
, α → α̃ =

α

Cτ + D
where A,B, C,D ∈ Z with AD− BC = 1.
The Kronecker-Eisenstein series Ω and the functions f (n) transform as
modular forms of weight (1, 0) and (n, 0), respectively:

Ω(z̃, α̃|τ̃) = (Cτ + D)Ω(z, α|τ),

f (n)(z̃|τ̃) = (Cτ + D)nf (n)(z|τ)

These transformation properties can be established by using the
transformation properties of the Jacobi θ-function:

θ1(z̃, α̃|τ̃) = ϵ(Cτ + D)
1
2 eiπCz

2/(Cτ+D)θ1(z|τ), ϵ8 = 1

Or the modular invariance of the functions gn(z|τ) along with the relation

f (n)(z|τ) = −∂nz gn(z|τ)
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Modular Properties of the Brown-Levin Construction

The modular properties of the Brown-Levin connection and polylogarithms
are most transparent by assigning the following transformation law to the
generators a, b:

a→ ã = (Cτ + D)a+ 2πiCb, b→ b̃ =
b

Cτ + D

This choice renders the flat connection JBL modular invariant under the
transformation.

The extra contribution 2πiCb to ã is engineered to compensate the
transformation of the first term in the expression for the connection:

π dz̃
Im τ̃

b̃ =
Cτ̄ + D
Cτ + D

π dz
Im τ

b
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Modular Transformations of Generating Functions

To obtain tensorial modular transformations properties for the generating
function, the modular transformations of its components must be
accompanied by the following transformation properties for the algebra
generators BJ :

B̃J = BJ′RJ
′

J

H̃J(x; B̃) = HJ′(x;B)RJ
′

J

Ψ̃J(x, p; B̃) = ΨJ′(x, p;B)RJ
′

J

The generating function H(x, p;B) is then invariant.
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Modular Invariance of the Connection

Under a modular transformation M ∈ Sp(2h,Z), which acts on ω̄I, BI, HI, and
ΨI, and on the Lie algebra generators aI and bI by:

aI → ãI = QI J aJ + 2πi CIJ bJ

bI → b̃I = bJ RJ I

The connection J (x, p) is invariant.

In the basis (âI, bI) of generators of the Lie algebra L, the connection
J (x, p) takes on a simplified form:

J (x, p) = −π dx̄ ω̄I(x) bI + dxΨI(x, p;B) âI

The connection J (x, p) is manifestly invariant under Sp(2h,Z).
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Shuffle Algebra for Multiple Polylogarithms

Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:

G(s1, s2, ..., sk; z) · G(sk+1, ..., sr ; z) =
∑

shuffles σ

G(sσ(1), sσ(2), ..., sσ(r); z),

where the sum runs over all permutations σ which are shuffles of (1, . . . , k)
and (k + 1, . . . , r), preserving the relative order of 1, 2, ..., k and of
k + 1, ..., r.

A simple example of the shuffle product of two multiple polylogarithms is:

G(s1; z) · G(s2; z) = G(s1, s2; z) + G(s2, s1; z).

The proof of the shuffle product formula relies on the integral
representation of multiple polylogarithms. In fact, a shuffle algebra
structure holds for all the homotopy-invariant iterated integrals which we
consider.

Martijn Hidding 9 / 14



Removing Trailing Zeros
Multiple polylogarithms with trailing zeroes do not have a Taylor expansion
in z around z = 0, but logarithmic singularities at z = 0.
We can use the shuffle product to remove trailing zeros, separating these
logarithmic terms, such that the rest has a regular expansion around z = 0.
For example, for G (s1, 0; z) with s1 ̸= 0, we have:

G (s1, 0; z) = G (0; z)G (s1; z)− G (0, s1; z) .

Both G(s1; z) and G(0, s1; z) are free of trailing zeros. We then define the
special cases:

G(0; z) = log(z) G
(
0⃗n; z

)
=
1
n!

log(z)n,

where 0⃗n denotes a sequence of n zeros. These definitions follow the
tangential basepoint prescription:∫ x

0+ε

dt
t

= log(x)− log(ϵ) → log(x)

for a prescribed tangent vector (in C) with |ε| ≪ 1.
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The Arakelov Green Function

The Arakelov Green function G(x, y|Ω) on Σ× Σ is a single-valued version
of the Green function, defined by: [D’Hoker, Green, Pioline, arXiv:1712.06135]

[G. Faltings, Ann. Math., 119(2), 1984]

∂x̄∂xG(x, y|Ω) = −πδ(x, y) + πκ(x) ,
∫
Σ

κ(x)G(x, y|Ω) = 0

The string Green function is given in terms of the prime form E(x, y) by:

G(x, y) = − log |E(x, y)|2 + 2π
(
Im

∫ x

y
ωI

)(
Im

∫ x

y
ωI

)
The prime form E(x, y) is a unique form that is holomorphic in x and y and
vanishes linearly as x approaches y.

An explicit formula for G(x, y) may then be given in terms of the
non-conformally invariant string Green function G(x, y):

G(x, y) = G(x, y)− γ(x)− γ(y) + γ0
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The Arakelov Green Function

The functions γ(x) and γ0 are given by:

γ(x) =
∫
Σ

κ(z)G(x, z) γ0 =

∫
Σ

κγ

The Kähler form κ is given by the pull-back to Σ under the Abel map of the
unique translation invariant Kähler form on the Jacobian variety
J(Σ) = Ch/(Zh +ΩZh), normalized to unit volume:

κ =
i
2h

ωI ∧ ω̄I = κ(z) d2z
∫
Σ

κ = 1

Both κ and G(x, y) are conformally invariant.
The Arakelov Green function also obeys the following derivatives:

∂x∂yG(x, y) = −∂x∂y ln E(x, y) + π ωI(x)ωI(y)

∂x∂ȳG(x, y) = π δ(x, y)− π ωI(x) ω̄I(y)
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Polylogarithms In The Hatted Basis

In the basis (âI, bI), the expansion is given by:

Γ(x, y; p) = 1+ âIΓ̂I(x, y; p) + bIΓ̂I(x, y; p)

+ âIâJΓ̂IJ(x, y; p) + bIbJΓ̂IJ(x, y; p)

+ âIbJΓ̂I J(x, y; p) + bIâJΓ̂I J(x, y; p) + · · ·

Identifying term by term in both expansions gives the relations ΓI = Γ̂I and
ΓIJ = Γ̂IJ, as well as the following relations:

Γ̂I = ΓI − πY IJ ΓJ

Γ̂I J = ΓI J − πY IK ΓKJ

Γ̂I
J = ΓI

J − π ΓIK YKJ

Γ̂IJ = ΓIJ − πY IK ΓKJ − π ΓIK YKJ + π2 Y IK ΓKL YLJ

The polylogarithms Γ̂(x, y; p) in the basis (âI, bI) are modular tensors by the
Sp(2h,Z) invariance of the connection J (x, p).
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Simplified Representations
The polylogarithms with upper indices admit simplified representations in
terms of the iterated abelian integrals, their complex conjugates and
contractions with Y IJ .
For words with a single letter bI we have:

ΓI(x, y; p) = πY IJ
(
ΓJ(x, y; p)− ΓJ(x, y; p)

)
For two-letter words that contain at least one bI, we have:

ΓI
J(x, y; p) = πY JKΓIK(x, y; p) +

∫ x

y
dt

(
−∂tΦ

J
I(t) + δJI∂tG(t, p)− πωI(t)Y JKΓK(t, y; p)

)
ΓI J(x, y; p) = πY IK

(
ΓKJ(x, y; p)− ΓJ(x, y; p)ΓK(x, y; p)

)
+

∫ x

y
dt

(
∂tΦ

I
J(t)− δIJ∂tG(t, p) + πωJ(t)Y IKΓK(t, y; p)

)
ΓIJ(x, y; p) = π2Y IKY JL

(
ΓKL(x, y; p) + ΓKL(x, y; p)− ΓK(x, y; p)ΓL(x, y; p)

)
+ π

∫ x

y
dt

(
∂tΦ

I
K(t)YKJ − ∂tΦ

J
K(t)YKI

+ πωJ(t)Y IKΓK(t, y; p)− πωI(t)Y JKΓK(t, y; p)
)
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