Generalizing Polylogarithms to Riemann Surfaces of Arbitrary Genus

Conference talk @ Nordita 2023

Martijn Hidding (Uppsala University)

Based on 2306.08644 together with E. D'Hoker and O. Schlotterer

27 July 2023

Organization of the Talk

1. Introduction
2. Review of polylogarithms at genus zero and one
3. A brief overview of the geometry of higher-genus Riemann surfaces
4. Construction of higher-genus polylogarithms
5. Conclusion and future directions

Introduction

Introduction

- Polylogarithms play an important role in theoretical physics, including quantum field theory and string theory.
- Much of the literature on polylogarithms has focused on genus zero and genus one Riemann surfaces, with higher-genus surfaces less understood.
- Proposals for higher-genus polylogarithm function spaces exist, but without explicit formulas for use in physics.
[Enriquez, 1112.0864]
[Enriquez, Zerbini, 2110.09341]
[Enriquez, Zerbini, 2212.03119]
- Today, we will explore a new construction of higher-genus polylogarithms.
- Our method includes two key steps:
- We create a new set of integration kernels using convolutions of certain functions defined on higher-genus Riemann surfaces.
- With these kernels, we build a generating function, which helps define our higher-genus polylogarithms which are closed under taking primitives.

String amplitudes motivation

- String perturbation theory involves expanding in the string coupling constant g_{s}, which in turn is an expansion based on the genus of the string world-sheet.
[Figure taken from PhD thesis of J. Gerken]

$$
\begin{aligned}
& \mathcal{A}_{\text {closed }}=g_{s}^{-2} \int_{\mathcal{M}_{0,4}}+\int_{\mathcal{M}_{1,4}}+g_{s}^{2}+\infty \\
& \mathcal{A}_{\text {open }}=g_{s}^{-1} \int_{\mathcal{M}_{0,4}}+g_{\mathcal{M}_{1,4}}+\infty
\end{aligned}
$$

- Furthermore, typically we also expand in the inverse string tension α^{\prime}, which corresponds to low energy and weak coupling regimes.
- The resulting function space of these expansions is that of polylogarithms, (or single-valued combinations thereof.)

String amplitudes and special functions

- Different types of special functions emerge depending on whether we are considering open/closed strings, and depending on the genus:
Open string

Higher genus curves in Feynman integrals

- The appearance of hyperelliptic curves in Feynman integrals has also been observed in a number of publications. See for example:
- R. Huang and Y. Zhang, "On Genera of Curves from High-loop Generalized Unitarity Cuts," JHEP 04 (2013), 080 [arXiv:1302.1023 [hep-ph]].
- A. Georgoudis and Y. Zhang, "Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves," JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].

The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].

- C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, "Motivic geometry of two-loop Feynman integrals," [arXiv:2302.14840 [math.AG]].
- R. Marzucca, A. J. McLeod, B. Page, S. Pögel, S. Weinzierl, "Genus Drop in Hyperelliptic Feynman Integrals," [arXiv:2307.11497 [hep-th]]. See also Andrew's talk earlier at the workshop!

Review of polylogarithms at genus zero and one

Building Polylogarithms as Iterated Integrals

- We want to construct polylogarithms, using iterated integrals, on a compact Riemann surface, Σ, with genus h.
- The polylogarithms we construct should have these qualities:

1. Homotopy Invariance: The polylogarithms should retain their value when we smoothly change the path of integration, keeping the endpoints constant.
2. Logarithmic Branch-Cuts: The integration kernels (or the 'hearts' of these integrals) should only have simple poles, meaning our integrals should show just logarithmic irregularities at branch points.
3. Closed Under Integration: Our function space should remain intact under integration, and in total, form a basis for all possible iterated integrals on Σ.

Homotopy-Invariant Iterated Integrals on a Surface

- Let's consider the differential equation: $d \boldsymbol{\Gamma}=\mathcal{J} \boldsymbol{\Gamma}$.
- If we want the equation to be integrable, we need $d^{2}=0$. This leads us to the Maurer-Cartan equation for the connection \mathcal{J} :

$$
d \mathcal{J}-\mathcal{J} \wedge \mathcal{J}=0
$$

- We give a special name to such a connection - we call it flat. The solution Γ to our differential equation can be obtained by the path-ordered exponential over any open path \mathcal{C} between points $z_{0}, z \in \Sigma$:

$$
\boldsymbol{\Gamma}(\mathcal{C})=\mathrm{P} \exp \int_{\mathcal{C}} \mathcal{J}(\cdot)=\mathrm{P} \exp \int_{0}^{1} d t J(t)
$$

- Let's denote $\mathcal{J}=J(t) d t$, following a path \mathcal{C} where $t \in[0,1], \mathcal{C}(0)=z_{0}$, and $\mathcal{C}(1)=z$. Using physics conventions, we position $J(t)$ to the left of $J\left(t^{\prime}\right)$ for $t>t^{\prime}$:

$$
\mathrm{P} \exp \int_{\mathcal{C}} \mathcal{J}(\cdot)=1+\int_{0}^{1} d t J(t)+\int_{0}^{1} d t \int_{0}^{t} d t^{\prime} J(t) J\left(t^{\prime}\right)+\ldots
$$

Homotopy-Invariant Iterated Integrals on a Surface

- The 'flatness' of our connection \mathcal{J} ensures that $\boldsymbol{\Gamma}(\mathcal{C})$ stays the same, even when we tweak the path \mathcal{C} a bit.
- We'll call such integrals homotopy-invariant.
- Be aware, paths $\boldsymbol{\Gamma}(\mathcal{C})$ might still give different results for z_{0} and z when the path circles around marked points (poles of \mathcal{J}) on Σ.
- Later on, we'll see that our connection \mathcal{J} and $\boldsymbol{\Gamma}$ are valued in a Lie algebra and its universal enveloping algebra, respectively.
- We will derive polylogarithms on surfaces of any genus from these path-ordered exponentials by examining the coefficients in words of the Lie algebra generators.

Genus 0: MPLs and Generating Series

- Multiple polylogarithms (MPLs) are iterated integrals of rational forms $d z /(z-s)$ with $z, s \in \mathbb{C}$, on the Riemann sphere $\mathbb{C P}^{1}$.
[A.B. Goncharov, Math. Res. Lett. 5 (1998) 497]
- They are defined recursively by:

$$
G\left(s_{1}, s_{2}, \cdots, s_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-s_{1}} G\left(s_{2}, \cdots, s_{n} ; t\right)
$$

where we have the special case $G(\emptyset ; z)=1$. The integer $n \geq 0$ is referred to as the transcendental weight.

- Iterated integrals such as MPLs satisfy shuffle relations, for example:

$$
G\left(s_{1} ; z\right) \cdot G\left(s_{2} ; z\right)=G\left(s_{1}, s_{2} ; z\right)+G\left(s_{2}, s_{1} ; z\right) .
$$

- We define the special case $G(0 ; z)=\log (z)$, which serves as a regularization prescription when the last parameters are zeros.

Closure of MPLs Under Integration

- Any integral of a rational function times a multiple polylogarithm (MPL) can be expressed in terms of MPLs.
- This is achieved by partial fractioning the rational function and/or using integration by parts (IBP) identities. For example:

$$
\frac{1}{\left(x-s_{1}\right)\left(x-s_{2}\right)}=\frac{1}{\left(s_{1}-s_{2}\right)}\left(\frac{1}{\left(x-s_{1}\right)}-\frac{1}{\left(x-s_{2}\right)}\right)
$$

- After partial fractioning, we distinguish the following cases:

$$
\int_{0}^{z} d t \frac{1}{(t-b)^{k}} G(\vec{s} ; t), \quad \int_{0}^{z} d t G(\vec{s} ; t), \quad \int_{0}^{z} d t t^{k} G(\vec{s} ; t)
$$

where $0<k \neq 1$. We then use IBP identities to iteratively reduce the value of k. For example:

$$
\int_{0}^{z} d t \frac{1}{(t+1)^{2}} G(0 ; t)=\frac{z}{1+z} G(0 ; z)-G(-1 ; z)
$$

Generating Series

- A generating series for the polylogarithms can be constructed from the Knizhnik-Zamolodchikov (KZ) connection:

$$
\mathcal{J}_{\mathrm{KZ}}(z)=\sum_{i=1}^{m} \frac{d z}{z-s_{i}} e_{i}
$$

- The elements e_{1}, \cdots, e_{m} are generators of a free Lie algebra \mathcal{L} associated with the marked points s_{1}, \cdots, s_{m}.
- Choosing endpoints $z_{0}=0$ and $z_{1}=z$, we can organize the expansion of the path-ordered exponential in terms of the generators e_{1}, \cdots, e_{m} :

$$
\begin{aligned}
\mathrm{P} \exp \int_{0}^{z} \mathcal{J}_{\mathrm{KZ}}(\cdot)=1 & +\sum_{i=1}^{m} e_{i} G\left(s_{i} ; z\right)+\sum_{i=1}^{m} \sum_{j=1}^{m} e_{i} e_{j} G\left(s_{i} s_{j} ; z\right) \\
& +\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{m} e_{i} e_{j} e_{k} G\left(s_{i} s_{j} s_{k} ; z\right)+\cdots
\end{aligned}
$$

Genus 1: Elliptic Multiple Polylogarithms

- Next, consider a compact genus-one surface, Σ, with modulus τ, denoted as a lattice by $\Sigma=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.
- For a surface with genus $h \geq 1$, there are two key options for constructing a connection:
[Brown, Levin, arXiv:1110.6917]
[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]
[Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

1. A connection that is single-valued on Σ, but non-meromorphic (due to \bar{z}-dependence), with at most simple poles.
2. A meromorphic connection that has at most simple poles, but is not single-valued (and lives on the universal cover of Σ). This can be obtained with a minor tweak of the first construction.

- The Brown-Levin construction opts for the first choice.
- Interestingly, the construction of elliptic multiple polylogarithms at genus 1 is quite different from the genus 0 case. Notably, there is an infinite set of integration kernels at genus one, even for a single marked point z.

The Brown-Levin Construction

- Brown and Levin pioneered a method of homotopy-invariant iterated integrals at genus one. [Brown, Levin, arXiv:1110.6917]
- The key element to their construction is the so-called Kronecker-Eisenstein (KE-) series:

$$
\Omega(z, \alpha \mid \tau)=\exp \left(2 \pi i \alpha \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \frac{\vartheta_{1}^{\prime}(0 \mid \tau) \vartheta_{1}(z+\alpha \mid \tau)}{\vartheta_{1}(z \mid \tau) \vartheta_{1}(\alpha \mid \tau)}=\sum_{n=0}^{\infty} \alpha^{n-1} f^{(n)}(z \mid \tau)
$$

- The KE-series is single-valued on the torus, has a simple pole at $z=0$ and satisfies the following differential relation (for $z \neq 0$):

$$
\partial_{\bar{z}} \Omega(z, \alpha \mid \tau)=-\frac{\pi \alpha}{\operatorname{Im} \tau} \Omega(z, \alpha \mid \tau)
$$

- They then constructed the flat connection $\mathcal{J}_{\mathrm{BL}}(z \mid \tau)$, which is valued in the Lie algebra \mathcal{L}, generated by elements a, b :

$$
\mathcal{J}_{\mathrm{BL}}(z \mid \tau)=\frac{\pi}{\operatorname{Im} \tau}(d z-d \bar{z}) b+d z \operatorname{ad}_{b} \Omega\left(z, \operatorname{ad}_{b} \mid \tau\right) a
$$

- Note that we have put $\alpha \rightarrow \operatorname{ad}_{b}=[b, o]$. Flatness can be proven using that $d_{z}=d z \partial_{z}+d \bar{z} \partial_{\bar{z}}$, and using the above differential equation.

Homotopy-Invariant Iterated Integrals

- We may write down homotopy-invariant iterated integrals on the torus by expanding the path-ordered exponential in terms of words in a, b :

$$
\begin{aligned}
\mathrm{P} \exp \int_{0}^{z} \mathcal{J}_{\mathrm{BL}}(\cdot \mid \tau)= & 1+a \Gamma(a ; z \mid \tau)+b \Gamma(b ; z \mid \tau) \\
& +a b \Gamma(a b ; z \mid \tau)+b a \Gamma(b a ; z \mid \tau)+\ldots
\end{aligned}
$$

- The resulting coefficient functions $\Gamma(\mathfrak{w} ; z \mid \tau)$ are homotopy-invariant iterated integrals, referred to as elliptic polylogarithms.
- Also note that while the connection is single-valued on the torus, the integrals are not and have monodromies along the \mathfrak{A} - and \mathfrak{B}-cycles.
- In the physics literature we typically see the following functions:

$$
\tilde{\Gamma}\left(\begin{array}{llll}
n_{1} & n_{2} & \cdots & n_{r} \\
w_{1} & w_{2} & \cdots & w_{r}
\end{array} ; z \mid \tau\right)=\int_{0}^{z} d z_{1} g^{\left(n_{1}\right)}\left(z_{1}-w_{1} \mid \tau\right) \tilde{\Gamma}\left(\begin{array}{ccc}
n_{2} & \cdots & n_{r} \\
w_{2} & \cdots & w_{r}
\end{array} ; z_{1} \mid \tau\right)
$$

which are a meromorphic variant of the elliptic polylogarithms that were constructed above. Let us briefly relate the two types of functions.

Meromorphic Variant

- We can define a meromorphic counterpart of the doubly-periodic Kronecker-Eisenstein series and its expansion coefficients $g^{(n)}(z \mid \tau)$:

$$
\frac{\vartheta_{1}^{\prime}(0 \mid \tau) \vartheta_{1}(z+\alpha \mid \tau)}{\vartheta_{1}(z \mid \tau) \vartheta_{1}(\alpha \mid \tau)}=\sum_{n=0}^{\infty} \alpha^{n-1} g^{(n)}(z \mid \tau)
$$

- The meromorphic integration kernels $g^{(n)}(z \mid \tau)$ are multiple-valued on the torus, and actually live on the universal covering space, which is \mathbb{C}.
- Brown-Levin polylogarithms associated with words $\mathfrak{w} \rightarrow a b \cdots b$ reduce to a single integral over the meromorphic kernels. For example:

$$
\Gamma(a b ; z \mid \tau)=\int_{0}^{z} d t\left(2 \pi i \frac{\operatorname{Im} t}{\operatorname{Im} \tau}-f^{(1)}(t \mid \tau)\right)=-\int_{0}^{z} d t g^{(1)}(t \mid \tau)=-\tilde{\Gamma}\left({ }_{0}^{1} ; z \mid \tau\right)
$$

- More generally, $\Gamma(a b \cdots b ; z \mid \tau)$ can be expressed as:

$$
\Gamma(a \underbrace{b \cdots b}_{n} ; z \mid \tau)=(-1)^{n} \int_{0}^{z} d t g^{(n)}(t \mid \tau)=(-1)^{n} \tilde{\Gamma}\left(\left.\begin{array}{l}
n \\
0
\end{array} z \right\rvert\, \tau\right)
$$

Closure under integration

- For the MPLs, we saw that partial fraction identities were essential for splitting up a product of integration kernels.
- We need similar identities for the function space to close under integration at genus one. For example, we might encounter an integral of the type:

$$
\int_{0}^{z} \mathrm{~d} t f^{\left(n_{1}\right)}\left(t-a_{1}\right) f^{\left(n_{2}\right)}\left(t-a_{2}\right)
$$

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

- The so-called Fay identities generalize the partial fraction relations. They are generated by:

$$
\begin{aligned}
\Omega\left(z_{1}, \alpha_{1}, \tau\right) \Omega\left(z_{2}, \alpha_{2}, \tau\right)= & \Omega\left(z_{1}, \alpha_{1}+\alpha_{2}, \tau\right) \Omega\left(z_{2}-z_{1}, \alpha_{2}, \tau\right) \\
& +\Omega\left(z_{2}, \alpha_{1}+\alpha_{2}, \tau\right) \Omega\left(z_{1}-z_{2}, \alpha_{1}, \tau\right)
\end{aligned}
$$

- For example we have that:

$$
\begin{aligned}
f^{(1)}(t-x) f^{(1)}(t)= & f^{(1)}(t-x) f^{(1)}(x)-f^{(1)}(t) f^{(1)}(x) \\
& +f^{(2)}(t)+f^{(2)}(x)+f^{(2)}(t-x)
\end{aligned}
$$

Alternative Construction via Convolutions

- An alternative construction of the functions $f^{(k)}(z \mid \tau)$ is in terms of the scalar Green function $g(z \mid \tau)$ on Σ. The Green function is defined by:

$$
\partial_{\bar{z}} \partial_{z} g(z \mid \tau)=-\pi \delta(z)+\frac{\pi}{\operatorname{Im} \tau}, \quad \int_{\Sigma} d^{2} z g(z \mid \tau)=0
$$

- It can be expressed in terms of the Jacobi theta function ϑ_{1} and the Dedekind eta-function η as follows:

$$
g(z \mid \tau)=-\ln \left|\frac{\vartheta_{1}(z \mid \tau)}{\eta(\tau)}\right|^{2}-\pi \frac{(z-\bar{z})^{2}}{2 \operatorname{Im} \tau}
$$

- We define the function $f^{(1)}(z \mid \tau)$ as the derivative of the Green's function:

$$
f^{(1)}(z \mid \tau)=-\partial_{z} g(z \mid \tau)
$$

- Subsequently, we can define higher dimensional convolutions of f recursively as follows:

$$
f^{(k)}(z \mid \tau)=-\int_{\Sigma} \frac{d^{2} x}{\operatorname{lm} \tau} \partial_{x} g(x \mid \tau) f^{(k-1)}(x-z \mid \tau), \quad k \geq 2
$$

- We will see in the following that similar convolutions underlie our higher-genus generalizations of these kernels.

Constructing a flat connection at higher genus

- In the next part, we will focus on how we can construct a flat connection at a higher-genus. This will involve:

1. A brief overview of higher-genus Riemann surfaces.
2. A short review of the Arakelov Green's function.
3. Derivation of higher-genus analogues of Kronecker-Eisenstein kernels.
4. Definition of the flat connection at higher-genus.

- After this, we will introduce higher-genus polylogarithms by computing the path-ordered exponential of our connection and extracting the component integrals.

Brief overview of higher-genus Riemann surfaces

Topology of a Compact Riemann Surface Σ

- The topology of a compact Riemann surface Σ without boundary is specified by its genus h.
- The homology group $H_{1}(\Sigma, \mathbb{Z})$ is isomorphic to $\mathbb{Z}^{2 h}$ and supports an anti-symmetric non-degenerate intersection pairing denoted by \mathfrak{J}.

A choice of canonical homology basis on a compact genus-two Riemann surface Σ.

- A canonical homology basis of cycles $\mathfrak{A}_{/}$and $\mathfrak{B} \jmath$ with $I, J=1, \cdots, h$ has symplectic intersection matrix $\mathfrak{J}\left(\mathfrak{A}_{l}, \mathfrak{B}_{j}\right)=-\mathfrak{J}\left(\mathfrak{B}_{J}, \mathfrak{A}_{l}\right)=\delta_{J}$, and $\mathfrak{J}\left(\mathfrak{A}_{l}, \mathfrak{A}_{\jmath}\right)=\mathfrak{J}\left(\mathfrak{B}_{l}, \mathfrak{B}_{\jmath}\right)=0$.
- A new canonical basis $\tilde{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$ is obtained by applying a modular transformation $M \in \operatorname{Sp}(2 h, \mathbb{Z})$, such that $M^{\dagger} \mathfrak{J} M=\mathfrak{J}$.

Canonical Basis of Holomorphic Abelian Differentials

- A canonical basis of holomorphic Abelian differentials $\omega_{\text {/ }}$ may be normalized on \mathfrak{A}-cycles:

$$
\oint_{\mathfrak{A}_{1}} \omega_{J}=\delta_{l J} \quad \oint_{\mathfrak{B}_{l}} \omega_{J}=\Omega_{\| J}
$$

- The complex variables $\Omega_{\| J}$ denote the components of the period matrix Ω of the surface Σ.
- By the Riemann relations, Ω is symmetric, and has positive definite imaginary part:

$$
\Omega^{t}=\Omega \quad Y=\operatorname{lm} \Omega>0
$$

- We will use the matrix $Y_{J J}=\operatorname{Im} \Omega_{\| J}$ and its inverse $Y^{J J}=\left((\operatorname{Im} \Omega)^{-1}\right)^{J}$ to raise and lower indices:

$$
\boldsymbol{\omega}^{\prime}=Y^{\prime J} \boldsymbol{\omega}_{J} \quad \overline{\boldsymbol{\omega}}^{\prime}=Y^{I J} \overline{\boldsymbol{\omega}}_{J} \quad Y^{I K} Y_{K J}=\delta_{J}^{\prime}
$$

The Arakelov Green Function

- The Arakelov Green function $\mathcal{G}(x, y \mid \Omega)$ on $\Sigma \times \Sigma$ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135] [G. Faltings, Ann. Math., 119(2), 1984]

$$
\partial_{\bar{x}} \partial_{x} \mathcal{G}(x, y \mid \Omega)=-\pi \delta(x, y)+\pi \kappa(x), \quad \int_{\Sigma} \kappa(x) \mathcal{G}(x, y \mid \Omega)=0
$$

where the Kähler form κ is given by:

$$
\boldsymbol{\kappa}=\frac{i}{2 h} \boldsymbol{\omega}_{l} \wedge \overline{\boldsymbol{\omega}}^{\prime}=\kappa(z) d^{2} \boldsymbol{z} \quad \int_{\Sigma} \kappa=1
$$

- In what follows we will drop the explicit dependence on the moduli Ω.
- At genus one the (Arakelov) Green function only depends on a difference of points $\left.\mathcal{G}(x, y)\right|_{h=1}=\left.\mathcal{G}(x-y)\right|_{h=1}$.
- However, this translation invariance is absent on a Riemann surface Σ of genus $h>1$.

The Interchange Lemma

- The tensor $\Phi^{\prime}{ }_{\jmath}(x)$, introduced by Kawazumi, compensates for the lack of translation invariance at higher genus: [Kawazumi, MCM2016] [Kawazumi, 2017]

$$
\Phi_{J}^{\prime}(x)=\int_{\Sigma} d^{2} z \mathcal{G}(x, z) \bar{\omega}^{\prime}(z) \omega_{J}(z)
$$

- Note that the trace of $\Phi^{\prime}(x)$ vanishes by the definition of the Arakelov Green function.
- In particular, the so-called interchange lemma provides a substitute for the absence of translation invariance:

$$
\partial_{x} \mathcal{G}(x, y) \omega_{J}(y)+\partial_{y} \mathcal{G}(x, y) \omega_{J}(x)-\partial_{x} \Phi_{J}^{\prime}(x) \omega_{l}(y)-\partial_{y} \phi_{J}^{\prime}(y) \omega_{l}(x)=0
$$

[E. D’Hoker et al., arXiv:2008.08687 [hep-th]]

Higher Convolution of the Arakelov Green Function

- Inspired by the alternative construction of the Kronecker-Eisenstein kernels through convolutions, we define the tensors $\Phi^{I_{1} \cdots I_{r}}(x)$ and $\mathcal{G}^{I_{1} \cdots I_{s}}(x, y)$:

$$
\begin{aligned}
\Phi^{l_{1} \cdots I_{r}}(x) & =\int_{\Sigma} d^{2} z \mathcal{G}(x, z) \bar{\omega}^{I_{1}}(z) \partial_{z} \Phi^{l_{2} \cdots I_{r}}(z) \\
\mathcal{G}^{I_{1} \cdots I_{s}}(x, y) & =\int_{\Sigma} d^{2} z \mathcal{G}(x, z) \bar{\omega}^{I_{1}}(z) \partial_{z} \mathcal{G}^{I_{2} \cdots I_{S}}(z, y) \quad(s \geq 1)
\end{aligned}
$$

- At genus one, the derivatives of the tensor $\mathcal{G}^{I_{1} \cdots I_{s}}$ for $I_{1}=\cdots=I_{s}=1$ equal the Kronecker-Eisenstein integration kernels $f^{(s+1)}$:

$$
\left.\partial_{x} \mathcal{G}^{\mathcal{I}_{1} \cdots \mathcal{I}_{s}}(x, y)\right|_{h=1}=-f^{(s+1)}(x-y \mid \tau)
$$

- The trace $\Phi^{I_{1} \cdots I_{r}}{ }_{I_{r}}=0$ for arbitrary genus implies that Φ-tensors for arbitrary $r \geq 1$ vanish identically for genus one.
- In the next part: we will construct generating functions of our kernels, and combine them into a flat connection.

Construction of higher-genus polylogarithms

Generating Functions

- Let us introduce a non-commutative algebra freely generated by B_{l} for $I=1, \cdots, h$ (loosely inspired by the approach of Enriquez and Zerbini arXiv:2110.09341).
- Next, we fix an arbitrary auxiliary marked point p on the Riemann surface Σ and introduce the following generating functions:

$$
\begin{aligned}
\mathcal{H}(x, p ; B) & =\partial_{x} \mathcal{G}(x, p)+\sum_{r=1}^{\infty} \partial_{x} \mathcal{G}^{l_{1} I_{2} \cdots I_{r}}(x, p) B_{l_{1}} B_{l_{2}} \cdots B_{l_{r}} \\
\mathcal{H}_{J}(x ; B) & =\omega_{J}(x)+\sum_{r=1}^{\infty} \partial_{x} \Phi^{l_{1} l_{2} \cdots l_{r}}(x) B_{l_{1}} B_{l_{2}} \cdots B_{l_{r}}
\end{aligned}
$$

- By forming the combination $\Psi_{J}(x, p ; B)=\mathcal{H}_{J}(x ; B)-\mathcal{H}(x, p ; B) B_{J}$, we obtain a compact antiholomorphic derivative:

$$
\partial_{\bar{x}} \Psi_{J}(x, p ; B)=-\pi \bar{\omega}^{\prime}(x) B_{l} \Psi_{J}(x, p ; B)
$$

for $x \neq p$, which generalizes the genus-one differential relation for Ω.

The Flat Connection

- Next, we extend to a Lie algebra \mathcal{L} freely generated by elements a^{\prime} and $b_{\text {, }}$ for $I=1, \cdots, h$ and set $B_{l}=\operatorname{ad}_{b_{l}}=\left[b_{l}, \cdot\right]$.
- Our connection $\mathcal{J}(x, p)$, on a Riemann surface Σ of arbitrary genus h with a marked point $p \in \Sigma$ and valued in the Lie algebra \mathcal{L} is then given by:

$$
\mathcal{J}(x, p)=-\pi d \bar{x} \bar{\omega}^{\prime}(x) b_{l}+\pi d x \mathcal{H}^{\prime}(x ; B) b_{l}+d x \Psi_{l}(x, p ; B) a^{\prime}
$$

- Working out $d_{x}=d x \partial_{x}+d \bar{x} \partial_{\bar{x}}$, we may show that:

$$
d_{x} \mathcal{J}(x, p)-\mathcal{J}(x, p) \wedge \mathcal{J}(x, p)=\pi d \bar{x} \wedge d x \delta(x, p)\left[b_{l}, a^{\prime}\right]
$$

proving that the connection is flat (away from $x=p$).

Reduction to the Brown-Levin Connection

- To prove that the connection $\mathcal{J}(x, p)$ reduces to the non-holomorphic single-valued Brown-Levin connection at genus one, we relabel $a^{1}=a$ and $b_{1}=b$.
- Since the tensor Φ^{\prime}, and its higher-rank versions all vanish identically at genus one, the generating function $\mathcal{H}^{1}(x ; B)$ reduces to:

$$
\left.\mathcal{H}^{1}(x ; B)\right|_{h=1}=\omega^{1}(x)=\frac{\omega_{1}(x)}{\operatorname{Im} \tau}
$$

- The first terms in $\mathcal{J}(x, p)$ combine to $\pi(d x-d \bar{x}) b / \operatorname{Im} \tau$, thereby reproducing the contributions $\sim(\operatorname{Im} \tau)^{-1}$ to the non-meromorphic Brown-Levin connection.
- The last term in $\mathcal{J}(x, p)$ reproduces the Kronecker-Eisenstein series by:

$$
\left.\Psi_{1}(x, p ; B)\right|_{h=1}=\omega_{1}(x)-\left.\mathcal{H}(x, p ; B) B_{1}\right|_{h=1}=\operatorname{ad}_{b} \Omega\left(x-p, \operatorname{ad}_{b} \mid \tau\right)
$$

Expansion of the Connection

- The connection \mathcal{J} may be expanded in words with $r+1$ letters in the basis $\left(a^{\prime}, b_{l}\right)$:

$$
\begin{aligned}
\mathcal{J}(x, p)= & \pi\left(d x \omega^{\prime}(x)-d \bar{x} \bar{\omega}^{\prime}(x)\right) b_{l}+\pi d x \sum_{r=1}^{\infty} \partial_{x} \Phi^{l_{1} \cdots I_{r}}(x) Y^{J K} B_{l_{1}} \cdots B_{l_{r}} b_{K} \\
& +d x \sum_{r=1}^{\infty}\left(\partial_{x} \Phi^{l_{1} \cdots I_{r}}(x)-\partial_{x} \mathcal{G}^{I_{1} \cdots I_{r-1}}(x, p) \delta_{J}^{l_{J}}\right) B_{l_{1}} \cdots B_{l_{r}} a^{J}
\end{aligned}
$$

- Like before, the flat connection $\mathcal{J}(x, p)$ integrates to a homotopy-invariant path-ordered exponential $\boldsymbol{\Gamma}(x, y ; p)$:

$$
\boldsymbol{\Gamma}(x, y ; p)=\mathrm{P} \exp \int_{y}^{x} \mathcal{J}(t, p)
$$

- For example, for words with at most two letters in the basis $\left(a^{\prime}, b_{l}\right)$:

$$
\begin{aligned}
\Gamma(x, y ; p)= & 1+a^{\prime} \Gamma_{l}(x, y ; p)+b_{l} \Gamma^{\prime}(x, y ; p) \\
& +a^{\prime} a^{\prime} \Gamma_{ノ J}(x, y ; p)+b_{l} b_{J} \Gamma^{\prime}(x, y ; p) \\
& +a^{\prime} b_{J} \Gamma_{l}^{\prime}(x, y ; p)+b_{l} a^{\prime} \Gamma^{\prime}(x, y ; p)+\cdots
\end{aligned}
$$

Polylogarithms for Words without b_{1}

- The polylogarithms associated with words \mathfrak{w} that do not involve any of the letters $b_{\text {}}$, are given by the following simple formula:

$$
\Gamma_{l_{1} 1_{2} \ldots l_{r}}(x, y ; p)=\int_{y}^{x} \boldsymbol{\omega}_{l_{1}}\left(t_{1}\right) \int_{y}^{t_{1}} \boldsymbol{\omega}_{l_{2}}\left(t_{2}\right) \cdots \int_{y}^{t_{r-1}} \boldsymbol{\omega}_{l_{r}}\left(t_{r}\right)
$$

which we'll refer to as iterated Abelian integrals.

- These polylogarithms are independent of the marked point p.
- They obey the differential equations:

$$
\partial_{x} \Gamma_{l_{1} l_{2} \ldots l_{r}}(x, y ; p)=\omega_{l_{1}}(x) \Gamma_{l_{2} \ldots l_{r}}(x, y ; p)
$$

- For the case $h=1$, we simply obtain:

$$
\left.\Gamma_{\underbrace{11 \ldots 1}_{r}}(x, y ; z)\right|_{h=1}=\frac{1}{r!}(x-y)^{r}
$$

Low Letter Count Polylogarithms

- Next let us consider some cases involving the letters b_{1}. For the single-letter word b_{l}, we obtain:

$$
\Gamma^{\prime}(x, y ; p)=\pi \int_{y}^{x}\left(\omega^{\prime}-\bar{\omega}^{\prime}\right)
$$

- For double-letter words with at least one letter b_{l}, we obtain:
$\Gamma^{I J}(x, y ; p)=\pi \int_{y}^{x}\left(d t\left(\partial_{t} \Phi^{\prime}{ }_{K}(t) Y^{K J}-\partial_{t} \Phi^{J}{ }_{K}(t) Y^{K l}\right)+\pi\left(\boldsymbol{\omega}^{\prime}(t)-\bar{\omega}^{\prime}(t)\right) \int_{y}^{t}\left(\omega^{J}-\bar{\omega}^{J}\right)\right)$
$\Gamma^{J}{ }_{l}(x, y ; p)=\int_{y}^{x}\left(d t \partial_{t} \Phi_{l}^{J}(t)-d t \partial_{t} \mathcal{G}(t, p) \delta_{l}^{J}+\pi\left(\omega^{J}(t)-\bar{\omega}^{J}(t)\right) \int_{y}^{t} \omega_{l}\right)$
$\Gamma_{l}^{J}(x, y ; p)=\int_{y}^{x}\left(-d t \partial_{t} \Phi^{J}(t)+d t \partial_{t} \mathcal{G}(t, p) \delta_{l}^{J}+\pi \omega_{l}(t) \int_{y}^{t}\left(\omega^{J}-\bar{\omega}^{J}\right)\right)$

Meromorphic Variants of Polylogarithms

- Lastly, let's explore an instance showcasing where the meromorphic variants of polylogarithms live in our function space.
- Consider again the following higher-genus polylogarithm:

$$
\Gamma_{l}^{J}(x, y ; p)=\int_{y}^{x} d t\left(-\partial_{t} \Phi_{l}^{J}(t)+\delta_{l}^{J} \partial_{t} \mathcal{G}(t, p)+\pi \omega_{l}(t) Y^{J K}\left(\Gamma_{K}(t, y ; p)-\overline{\Gamma_{K}(t, y ; p)}\right)\right.
$$

- Upon specializing to genus $h=1$ and setting $p=y=0$, this reproduces the Brown-Levin polylogarithm $\Gamma(a b ; p \mid \tau)=-\tilde{\Gamma}\left({ }_{0}^{1} ; p \mid \tau\right)$.
- The integrand with respect to t in the equation above can be viewed as a higher-genus uplift of the Kronecker-Eisenstein kernel $g^{(1)}(t \mid \tau)$:

$$
g_{l}^{\prime}(t, y ; p)=\partial_{t} \Phi_{l}^{J}(t)-\delta_{l}^{J} \partial_{t} \mathcal{G}(t, p)-2 \pi i \omega_{l}(t) Y^{K} \operatorname{Im} \int_{y}^{t} \boldsymbol{\omega}_{K}
$$

- One may verify that indeed (for $t \neq p$):

$$
\partial_{t} g^{\prime}(t, y ; p)=0
$$

Conclusions and future directions

Conclusions

- We have presented an explicit construction of polylogarithms on higher-genus compact Riemann surfaces.
- Our construction relies on a flat connection whose path-ordered exponential plays the role of a generating series for higher-genus polylogarithms.
- The flat connection takes values in the freely-generated Lie algebra generated by elements a^{\prime} and b_{l} for $I=1, \cdots, h$, introduced by Enriquez and Zerbini.
- Our construction provides the first explicit proposal for a "complete" set of integration kernels beyond genus one.
- Sidenote: The resulting higher-genus polylogarithms may potentially also be important for higher-loop gravitational calculations, depending on the topology of the Feynman diagrams.

Future Directions

- Although we have strong evidence the function space of our polylogarithms is closed under integration, we have not yet proven this conjecture.
- In addition, there are various more technical roads to follow:

1. Obtaining the separating and non-separating degenerations of the polylogarithms for arbitrary genera.
2. Determining the differential relations with respect to moduli variations satisfied by higher-genus polylogarithms.
3. Identifying generalizations of the higher-genus modular graph tensors that close under complex-structure variations and degenerations.
4. Re-formulation of higher-genus string amplitudes in terms of the integration kernels and polylogarithms constructed in this work.

Thank you for listening!

Backup Slides

Modular Transformations

- A new canonical basis $\tilde{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$ is obtained by applying a modular transformation $M \in \operatorname{Sp}(2 h, \mathbb{Z})$, such that $M^{\dagger} \mathfrak{J} M=\mathfrak{J}$.
- Under a modular transformation, we have:

$$
\begin{aligned}
& \tilde{\omega}=\omega(C \Omega+D)^{-1}, \quad \tilde{\Omega}=(A \Omega+B)(C \Omega+D)^{-1} \\
& \tilde{Y}=\left(\bar{\Omega} C^{t}+D^{t}\right)^{-1} Y(C \Omega+D)^{-1}
\end{aligned}
$$

- The moduli space of compact Riemann surfaces of genus h will be denoted by \mathcal{M}_{h}.
- The moduli space \mathcal{M}_{h} for $h=1,2,3$ may be identified with $\mathcal{H}_{h} / S p(2 h, \mathbb{Z})$ provided we remove from the Siegel upper half space \mathcal{H}_{h} for $h=2,3$ all elements which correspond to disconnected surfaces, and take into account the effect of automorphisms including the involution on the hyper-elliptic locus for $h=3$.
- For $h \geq 4$, the moduli space \mathcal{M}_{h} is a complex co-dimension $\frac{1}{2}(h-2)(h-3)$ subspace of $\mathcal{H}_{h} / \operatorname{Sp}(2 h, \mathbb{Z})$ known as the Schottky locus.

Definition of Modular Tensors

- Modular tensors are defined on Torelli space, the moduli space of compact Riemann surfaces with a choice of canonical homology basis of \mathfrak{A} and \mathfrak{B} cycles.
- They generalize modular forms at genus one by replacing the automorphy factor $(C \tau+D)$ of $S L(2, \mathbb{Z})$ with an automorphy tensor Q and its inverse $R=Q^{-1}$:

$$
\begin{aligned}
& Q=Q(M, \Omega)=C \Omega+D \\
& R=R(M, \Omega)=(C \Omega+D)^{-1}
\end{aligned}
$$

- The composition law for the automorphy tensors is:

$$
Q\left(M_{1} M_{2}, \Omega\right)=Q\left(M_{1},\left(A_{2} \Omega+B_{2}\right)\left(C_{2} \Omega+D_{2}\right)^{-1}\right) Q\left(M_{2}, \Omega\right)
$$

- The tensors $\omega_{l}, \omega^{I}, Y_{l /}$, and its inverse $Y^{l J}$ transform as follows under a modular transformation:

$$
\begin{aligned}
& \tilde{\boldsymbol{\omega}}_{l}=\boldsymbol{\omega}_{l} R^{\prime \prime}{ }_{l} \\
& \tilde{Y}_{I J}=Y_{I^{\prime}, ~} \bar{R}^{\prime \prime}{ }_{I} R^{R^{\prime}}{ }^{\prime} \\
& \tilde{\omega}^{J}=\bar{Q}^{\prime}{ }_{\prime}, \omega^{J^{\prime}} \\
& \tilde{Y}^{\prime \prime}=Q^{\prime}{ }_{1}, \bar{Q}^{\prime}{ }_{\prime}, Y^{\prime \prime} J^{\prime}
\end{aligned}
$$

Definition of Modular Tensors

- A modular tensor \mathcal{T} of arbitrary rank transforms as follows:
- The tensors $Y_{I J}$ and $Y^{I J}$ may be used to lower and raise indices, respectively, and can be made to compensate any anti-holomorphic automorphy factor.
- The tensor \mathcal{U} exclusively transforms with holomorphic automorphy factors $Q^{I_{i}}{ }_{i}^{\prime}$ and $R_{i}^{J_{j}}{ }_{j_{i}}$:
- Symmetrization, anti-symmetrization, and removal of the trace by contracting with factors of $Y_{l J}$ or δ_{l}^{J} may be used to extract irreducible tensors.

Modular Properties of the Brown-Levin Construction

- Lastly, let us consider the modular properties of the Brown-Levin construction. Consider a modular transformation on the modulus τ, z, and α given by:

$$
\tau \rightarrow \tilde{\tau}=\frac{A \tau+B}{C \tau+D}, \quad z \rightarrow \tilde{z}=\frac{z}{C \tau+D}, \quad \alpha \rightarrow \tilde{\alpha}=\frac{\alpha}{C \tau+D}
$$

where $A, B, C, D \in \mathbb{Z}$ with $A D-B C=1$.

- The Kronecker-Eisenstein series Ω and the functions $f^{(n)}$ transform as modular forms of weight $(1,0)$ and $(n, 0)$, respectively:

$$
\begin{aligned}
\Omega(\tilde{z}, \tilde{\alpha} \mid \tilde{\tau}) & =(C \tau+D) \Omega(z, \alpha \mid \tau), \\
f^{(n)}(\tilde{z} \mid \tilde{\tau}) & =(C \tau+D)^{n} f^{(n)}(z \mid \tau)
\end{aligned}
$$

- These transformation properties can be established by using the transformation properties of the Jacobi θ-function:

$$
\theta_{1}(\tilde{z}, \tilde{\alpha} \mid \tilde{\tau})=\epsilon(C \tau+D)^{\frac{1}{2}} e^{i \pi C z^{2} /(C \tau+D)} \theta_{1}(z \mid \tau), \quad \epsilon^{8}=1
$$

- Or the modular invariance of the functions $g_{n}(z \mid \tau)$ along with the relation

$$
f^{(n)}(z \mid \tau)=-\partial_{z}^{n} g_{n}(z \mid \tau)
$$

Modular Properties of the Brown-Levin Construction

- The modular properties of the Brown-Levin connection and polylogarithms are most transparent by assigning the following transformation law to the generators a, b :

$$
a \rightarrow \tilde{a}=(C \tau+D) a+2 \pi i C b, \quad b \rightarrow \tilde{b}=\frac{b}{C_{\tau}+D}
$$

- This choice renders the flat connection $\mathcal{J}_{\text {BL }}$ modular invariant under the transformation.
- The extra contribution $2 \pi i C b$ to \tilde{a} is engineered to compensate the transformation of the first term in the expression for the connection:

$$
\frac{\pi d \tilde{z}}{\operatorname{lm} \tilde{\tau}} \tilde{b}=\frac{C \bar{\tau}+D}{C \tau+D} \frac{\pi d z}{\operatorname{Im} \tau} b
$$

Modular Transformations of Generating Functions

- To obtain tensorial modular transformations properties for the generating function, the modular transformations of its components must be accompanied by the following transformation properties for the algebra generators B_{j} :

$$
\begin{aligned}
\tilde{B}_{J} & =B_{J^{\prime}} R^{\prime}{ }_{J} \\
\tilde{\mathcal{H}}_{J}(x ; \tilde{B}) & =\mathcal{H}_{\prime^{\prime}}(x ; B) R^{\prime^{\prime}}{ }_{J} \\
\tilde{\Psi}_{J}(x, p ; \tilde{B}) & =\Psi_{J^{\prime}}(x, p ; B) R^{R^{\prime}}
\end{aligned}
$$

- The generating function $\mathcal{H}(x, p ; B)$ is then invariant.

Modular Invariance of the Connection

- Under a modular transformation $M \in \operatorname{Sp}(2 h, \mathbb{Z})$, which acts on $\bar{\omega}^{\prime}, B_{l}, \mathcal{H}_{l}$, and Ψ_{l}, and on the Lie algebra generators a^{\prime} and b_{l} by:

$$
\begin{aligned}
& \left.a^{\prime} \rightarrow \tilde{a}^{\prime}=Q^{\prime}\right\lrcorner a^{\prime}+2 \pi i C^{\prime J} b_{\jmath} \\
& b_{l} \rightarrow \tilde{b}_{I}=b_{\jmath} R_{l}^{\prime}
\end{aligned}
$$

- The connection $\mathcal{J}(x, p)$ is invariant.
- In the basis $\left(\hat{a}^{\prime}, b_{l}\right)$ of generators of the Lie algebra \mathcal{L}, the connection $\mathcal{J}(x, p)$ takes on a simplified form:

$$
\mathcal{J}(x, p)=-\pi d \bar{x} \bar{\omega}^{\prime}(x) b_{l}+d x \Psi_{l}(x, p ; B) \hat{a}^{\prime}
$$

- The connection $\mathcal{J}(x, p)$ is manifestly invariant under $\operatorname{Sp}(2 h, \mathbb{Z})$.

Shuffle Algebra for Multiple Polylogarithms

- Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:

$$
G\left(s_{1}, s_{2}, \ldots, s_{k} ; z\right) \cdot G\left(s_{k+1}, \ldots, s_{r} ; z\right)=\sum_{\text {shuffles } \sigma} G\left(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(r)} ; z\right)
$$

where the sum runs over all permutations σ which are shuffles of $(1, \ldots, k)$ and ($k+1, \ldots, r$), preserving the relative order of $1,2, \ldots, k$ and of $k+1, \ldots, r$.

- A simple example of the shuffle product of two multiple polylogarithms is:

$$
G\left(s_{1} ; z\right) \cdot G\left(s_{2} ; z\right)=G\left(s_{1}, s_{2} ; z\right)+G\left(s_{2}, s_{1} ; z\right) .
$$

- The proof of the shuffle product formula relies on the integral representation of multiple polylogarithms. In fact, a shuffle algebra structure holds for all the homotopy-invariant iterated integrals which we consider.

Removing Trailing Zeros

- Multiple polylogarithms with trailing zeroes do not have a Taylor expansion in z around $z=0$, but logarithmic singularities at $z=0$.
- We can use the shuffle product to remove trailing zeros, separating these logarithmic terms, such that the rest has a regular expansion around $z=0$.
- For example, for $G\left(s_{1}, 0 ; z\right)$ with $s_{1} \neq 0$, we have:

$$
G\left(s_{1}, 0 ; z\right)=G(0 ; z) G\left(s_{1} ; z\right)-G\left(0, s_{1} ; z\right) .
$$

- Both $G\left(s_{1} ; z\right)$ and $G\left(0, s_{1} ; z\right)$ are free of trailing zeros. We then define the special cases:

$$
G(0 ; z)=\log (z)
$$

$$
G\left(\vec{o}_{n} ; z\right)=\frac{1}{n!} \log (z)^{n},
$$

where $\overrightarrow{0}_{n}$ denotes a sequence of n zeros. These definitions follow the tangential basepoint prescription:

$$
\int_{0+\varepsilon}^{x} \frac{d t}{t}=\log (x)-\log (\epsilon) \rightarrow \log (x)
$$

for a prescribed tangent vector (in \mathbb{C}) with $|\varepsilon| \ll 1$.

The Arakelov Green Function

- The Arakelov Green function $\mathcal{G}(x, y \mid \Omega)$ on $\Sigma \times \Sigma$ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135]
[G. Faltings, Ann. Math., 119(2), 1984]

$$
\partial_{\bar{x}} \partial_{x} \mathcal{G}(x, y \mid \Omega)=-\pi \delta(x, y)+\pi \kappa(x), \quad \int_{\Sigma} \kappa(x) \mathcal{G}(x, y \mid \Omega)=0
$$

- The string Green function is given in terms of the prime form $E(x, y)$ by:

$$
G(x, y)=-\log |E(x, y)|^{2}+2 \pi\left(\operatorname{lm} \int_{y}^{x} \omega_{l}\right)\left(\operatorname{lm} \int_{y}^{x} \omega^{\prime}\right)
$$

- The prime form $E(x, y)$ is a unique form that is holomorphic in x and y and vanishes linearly as x approaches y.
- An explicit formula for $\mathcal{G}(x, y)$ may then be given in terms of the non-conformally invariant string Green function $G(x, y)$:

$$
\mathcal{G}(x, y)=G(x, y)-\gamma(x)-\gamma(y)+\gamma_{0}
$$

The Arakelov Green Function

- The functions $\gamma(x)$ and γ_{0} are given by:

$$
\gamma(x)=\int_{\Sigma} \kappa(z) G(x, z) \quad \gamma_{0}=\int_{\Sigma} \kappa \gamma
$$

- The Kähler form κ is given by the pull-back to Σ under the Abel map of the unique translation invariant Kähler form on the Jacobian variety $J(\Sigma)=\mathbb{C}^{h} /\left(\mathbb{Z}^{h}+\Omega \mathbb{Z}^{h}\right)$, normalized to unit volume:

$$
\boldsymbol{\kappa}=\frac{i}{2 h} \boldsymbol{\omega}_{l} \wedge \bar{\omega}^{\prime}=\kappa(z) d^{2} z \quad \int_{\Sigma} \kappa=1
$$

- Both κ and $\mathcal{G}(x, y)$ are conformally invariant.
- The Arakelov Green function also obeys the following derivatives:

$$
\begin{aligned}
\partial_{x} \partial_{y} \mathcal{G}(x, y) & =-\partial_{x} \partial_{y} \ln E(x, y)+\pi \omega_{l}(x) \omega^{\prime}(y) \\
\partial_{x} \partial_{\bar{y}} \mathcal{G}(x, y) & =\pi \delta(x, y)-\pi \omega_{l}(x) \bar{\omega}^{\prime}(y)
\end{aligned}
$$

Polylogarithms In The Hatted Basis

- In the basis $\left(\hat{a}^{\prime}, b_{l}\right)$, the expansion is given by:

$$
\begin{aligned}
\Gamma(x, y ; p)= & 1+\hat{a}^{\prime} \hat{\Gamma}_{l}(x, y ; p)+b_{l} \hat{\Gamma}^{\prime}(x, y ; p) \\
& +\hat{a}^{\prime} \hat{a}^{\prime} \hat{\Gamma}_{J J}(x, y ; p)+b_{l} b_{J} \hat{\Gamma}^{J}(x, y ; p) \\
& +\hat{a}^{\prime} b_{J} \hat{\Gamma}_{l}^{J}(x, y ; p)+b_{l} \hat{a}^{\prime} \hat{\Gamma}_{J}^{\prime}(x, y ; p)+\cdots
\end{aligned}
$$

- Identifying term by term in both expansions gives the relations $\Gamma_{l}=\hat{\Gamma}_{l}$ and $\Gamma_{I J}=\hat{\Gamma}_{I /}$, as well as the following relations:

$$
\begin{aligned}
& \hat{\Gamma}^{\prime}=\Gamma^{\prime}-\pi Y^{\prime J} \Gamma_{J} \\
& \hat{\Gamma}_{J}^{\prime}=\Gamma_{J}^{\prime}-\pi Y^{\prime K} \Gamma_{K J} \\
& \hat{\Gamma}_{l}^{J}=\Gamma_{l}^{J}-\pi \Gamma_{I K} Y^{K J} \\
& \hat{\Gamma}^{\prime J}=\Gamma^{\prime J}-\pi Y^{\prime K} \Gamma_{K}^{J}-\pi \Gamma^{\prime}{ }_{K} Y^{K J}+\pi^{2} Y^{I K} \Gamma_{K L} Y^{\nu}
\end{aligned}
$$

- The polylogarithms $\hat{\Gamma}(x, y ; p)$ in the basis $\left(\hat{a}^{\prime}, b_{l}\right)$ are modular tensors by the $\operatorname{Sp}(2 h, \mathbb{Z})$ invariance of the connection $\mathcal{J}(x, p)$.

Simplified Representations

- The polylogarithms with upper indices admit simplified representations in terms of the iterated abelian integrals, their complex conjugates and contractions with $Y^{\prime J}$.
- For words with a single letter b_{1} we have:

$$
\Gamma^{\prime}(x, y ; p)=\pi Y^{\prime \prime}\left(\Gamma_{J}(x, y ; p)-\overline{\Gamma_{J}(x, y ; p)}\right)
$$

- For two-letter words that contain at least one b_{l}, we have:

$$
\begin{aligned}
\Gamma_{l}^{\prime}(x, y ; p)= & \pi Y^{J K} \Gamma_{I K}(x, y ; p)+\int_{y}^{x} d t\left(-\partial_{t} \Phi_{l}^{\prime}(t)+\delta_{l}^{\prime} \partial_{t} \mathcal{G}(t, p)-\pi \omega_{l}(t) Y^{J K} \overline{\Gamma_{K}(t, y ; p)}\right) \\
\Gamma_{J}^{\prime}(x, y ; p)= & \pi Y^{I K}\left(\Gamma_{K J}(x, y ; p)-\Gamma_{J}(x, y ; p) \overline{\Gamma_{K}(x, y ; p)}\right) \\
& +\int_{y}^{x} d t\left(\partial_{t} \Phi_{J}^{\prime}(t)-\delta_{J}^{\prime} \partial_{t} \mathcal{G}(t, p)+\pi \omega_{J}(t) Y^{I K} \overline{\Gamma_{K}(t, y ; p)}\right)
\end{aligned}
$$

$$
\Gamma^{\prime \prime}(x, y ; p)=\pi^{2} Y^{\prime K} y^{\mu L}\left(\Gamma_{K L}(x, y ; p)+\overline{\Gamma_{K L}(x, y ; p)}-\overline{\Gamma_{K}(x, y ; p)} \Gamma_{L}(x, y ; p)\right)
$$

$$
+\pi \int_{y}^{x} d t\left(\partial_{t} \Phi^{\prime}{ }_{K}(t) Y^{K J}-\partial_{t} \Phi^{J}{ }_{K}(t) Y^{K I}\right.
$$

$$
\left.+\pi \omega^{J}(t) Y^{I K} \overline{\Gamma_{K}(t, y ; p)}-\pi \omega^{\prime}(t) Y^{J K} \overline{\Gamma_{K}(t, y ; p)}\right)
$$

