Generalizing Polylogarithms to Riemann Surfaces of Arbitrary Genus

Conference talk @ Nordita 2023

Martijn Hidding (Uppsala University)

Based on 2306.08644 together with E. D'Hoker and O. Schlotterer

27 July 2023

- 1. Introduction
- 2. Review of polylogarithms at genus zero and one
- 3. A brief overview of the geometry of higher-genus Riemann surfaces
- 4. Construction of higher-genus polylogarithms
- 5. Conclusion and future directions

Introduction

- **Polylogarithms** play an important role in theoretical physics, including quantum field theory and string theory.
- Much of the literature on polylogarithms has focused on genus zero and genus one Riemann surfaces, with higher-genus surfaces less understood.
 - Proposals for higher-genus polylogarithm function spaces exist, but without explicit formulas for use in physics. [Enriquez, 2erbini, 2110.09341]
 [Enriquez, Zerbini, 2212.03119]
- Today, we will explore a **new** construction of **higher-genus polylogarithms**.
- Our method includes two key steps:
 - We create a new set of **integration kernels** using **convolutions** of certain functions defined on higher-genus Riemann surfaces.
 - With these kernels, we build a **generating function**, which helps define our **higher-genus polylogarithms** which are **closed under taking primitives**.

String amplitudes motivation

String perturbation theory involves expanding in the string coupling constant g_s, which in turn is an expansion based on the genus of the string world-sheet.
 [Figure taken from PhD thesis of J. Gerken]

- Furthermore, typically we also expand in the **inverse string tension** α' , which corresponds to low energy and weak coupling regimes.
- The resulting function space of these expansions is that of **polylogarithms**, (or single-valued combinations thereof.)

String amplitudes and special functions

• Different types of special functions emerge depending on whether we are considering **open/closed** strings, and depending on the **genus**:

Higher genus curves in Feynman integrals

- The appearance of hyperelliptic curves in Feynman integrals has also been observed in a number of publications. See for example:
- R. Huang and Y. Zhang, "On Genera of Curves from High-loop Generalized Unitarity Cuts," JHEP 04 (2013), 080 [arXiv:1302.1023 [hep-ph]].
- A. Georgoudis and Y. Zhang, "Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves," JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].

The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].

- C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, "Motivic geometry of two-loop Feynman integrals," [arXiv:2302.14840 [math.AG]].
- *R. Marzucca, A. J. McLeod, B. Page, S. Pögel, S. Weinzierl, "Genus Drop in Hyperelliptic Feynman Integrals," [arXiv:2307.11497 [hep-th]].* See also Andrew's talk earlier at the workshop!

Review of polylogarithms at genus zero and one

Building Polylogarithms as Iterated Integrals

- We want to construct polylogarithms, using iterated integrals, on a compact Riemann surface, Σ, with genus h.
- The polylogarithms we construct should have these qualities:
 - 1. **Homotopy Invariance**: The polylogarithms should retain their value when we smoothly change the path of integration, keeping the endpoints constant.
 - 2. **Logarithmic Branch-Cuts**: The integration kernels (or the 'hearts' of these integrals) should only have simple poles, meaning our integrals should show just logarithmic irregularities at branch points.
 - 3. **Closed Under Integration**: Our function space should remain intact under integration, and in total, form a basis for all possible iterated integrals on Σ .

Homotopy-Invariant Iterated Integrals on a Surface

- Let's consider the differential equation: $d\mathbf{\Gamma} = \mathcal{J}\mathbf{\Gamma}$.
- If we want the equation to be **integrable**, we need $d^2 = 0$. This leads us to the Maurer-Cartan equation for the connection \mathcal{J} :

$$d\mathcal{J} - \mathcal{J} \wedge \mathcal{J} = 0$$

• We give a special name to such a connection - we call it **flat**. The solution Γ to our differential equation can be obtained by the path-ordered exponential over any **open path** C between points $z_0, z \in \Sigma$:

$$\mathbf{\Gamma}(\mathcal{C}) = \mathsf{P} \exp \int_{\mathcal{C}} \mathcal{J}(\cdot) = \mathsf{P} \exp \int_{0}^{1} dt J(t)$$

• Let's denote $\mathcal{J} = J(t)dt$, following a path \mathcal{C} where $t \in [0, 1]$, $\mathcal{C}(0) = z_0$, and $\mathcal{C}(1) = z$. Using **physics conventions**, we position J(t) to the **left** of J(t') for t > t':

$$\mathsf{P}\exp\int_{\mathcal{C}}\mathcal{J}(\cdot)=1+\int_0^1 dt\,J(t)+\int_0^1 dt\int_0^t dt'\,J(t)J(t')+\ldots$$

- The 'flatness' of our connection \mathcal{J} ensures that $\Gamma(\mathcal{C})$ stays the same, even when we tweak the path \mathcal{C} a bit.
- We'll call such integrals homotopy-invariant.
- Be aware, paths $\Gamma(C)$ might still give different results for z_0 and z when the path circles around marked points (poles of \mathcal{J}) on Σ .
- Later on, we'll see that our connection *J* and **Γ** are valued in a Lie algebra and its **universal enveloping algebra**, respectively.
- We will derive **polylogarithms** on surfaces of any genus from these path-ordered exponentials by examining the coefficients in words of the Lie algebra generators.

Genus 0: MPLs and Generating Series

• Multiple polylogarithms (MPLs) are **iterated integrals** of rational forms dz/(z - s) with $z, s \in \mathbb{C}$, on the Riemann sphere \mathbb{CP}^1 .

[A.B. Goncharov, Math. Res. Lett. 5 (1998) 497]
 They are defined recursively by: [A.B. Goncharov, math.AG/0103059]

$$G(s_1,s_2,\cdots,s_n;z)=\int_0^z\frac{dt}{t-s_1}G(s_2,\cdots,s_n;t)$$

where we have the special case $G(\emptyset; z) = 1$. The integer $n \ge 0$ is referred to as the **transcendental weight**.

• Iterated integrals such as MPLs satisfy shuffle relations, for example:

$$G(s_1; z) \cdot G(s_2; z) = G(s_1, s_2; z) + G(s_2, s_1; z).$$

• We define the special case $G(0; z) = \log(z)$, which serves as a **regularization prescription** when the last parameters are zeros.

Closure of MPLs Under Integration

- Any integral of a rational function times a multiple polylogarithm (MPL) can be expressed in terms of MPLs.
- This is achieved by partial fractioning the rational function and/or using integration by parts (IBP) identities. For example:

$$\frac{1}{(x-s_1)(x-s_2)} = \frac{1}{(s_1-s_2)} \left(\frac{1}{(x-s_1)} - \frac{1}{(x-s_2)}\right)$$

• After partial fractioning, we distinguish the following cases:

$$\int_{0}^{z} dt \frac{1}{(t-b)^{k}} G(\vec{s};t), \qquad \int_{0}^{z} dt G(\vec{s};t), \qquad \int_{0}^{z} dt t^{k} G(\vec{s};t)$$

where $0 < k \neq 1$. We then use **IBP identities** to **iteratively reduce** the value of *k*. For example:

$$\int_0^z dt \, \frac{1}{(t+1)^2} G(0;t) = \frac{z}{1+z} G(0;z) - G(-1;z)$$

Generating Series

• A generating series for the polylogarithms can be constructed from the Knizhnik-Zamolodchikov (KZ) connection:

$$\mathcal{J}_{\mathrm{KZ}}(z) = \sum_{i=1}^{m} \frac{dz}{z - s_i} e_i$$

- The elements e_1, \dots, e_m are generators of a free Lie algebra \mathcal{L} associated with the marked points s_1, \dots, s_m .
- Choosing endpoints z₀ = 0 and z₁ = z, we can organize the expansion of the path-ordered exponential in terms of the generators e₁, ..., e_m:

$$P \exp \int_0^z \mathcal{J}_{KZ}(\cdot) = 1 + \sum_{i=1}^m e_i G(s_i; z) + \sum_{i=1}^m \sum_{j=1}^m e_i e_j G(s_i s_j; z)$$
$$+ \sum_{i=1}^m \sum_{j=1}^m \sum_{k=1}^m e_i e_j e_k G(s_i s_j s_k; z) + \cdots$$

Genus 1: Elliptic Multiple Polylogarithms

- Next, consider a compact genus-one surface, Σ, with modulus τ, denoted as a lattice by Σ = C/(Z + τZ).
- For a surface with genus h ≥ 1, there are two key options for constructing a connection: [Brown, Levin, arXiv:1110.6917]

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535] [Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

- 1. A connection that is **single-valued** on Σ , but **non-meromorphic** (due to \overline{z} -dependence), with at most **simple poles**.
- A meromorphic connection that has at most simple poles, but is not single-valued (and lives on the universal cover of Σ). This can be obtained with a minor tweak of the first construction.
- The **Brown-Levin construction** opts for the first choice.
- Interestingly, the construction of elliptic multiple polylogarithms at genus 1 is quite different from the genus 0 case. Notably, there is an **infinite set of integration kernels** at genus one, even for **a single marked point** *z*.

The Brown-Levin Construction

- Brown and Levin pioneered a method of homotopy-invariant iterated integrals at genus one. [Brown, Levin, arXiv:1110.6917]
- The key element to their construction is the so-called Kronecker-Eisenstein (KE-) series:

$$\Omega(z,\alpha|\tau) = \exp\left(2\pi i\alpha \frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \frac{\vartheta_1'(0|\tau)\vartheta_1(z+\alpha|\tau)}{\vartheta_1(z|\tau)\vartheta_1(\alpha|\tau)} = \sum_{n=0}^{\infty} \alpha^{n-1} f^{(n)}(z|\tau)$$

• The KE-series is **single-valued** on the torus, has a **simple pole at** z = 0 and satisfies the following **differential relation** (for $z \neq 0$):

$$\partial_{\overline{z}}\Omega(z,\alpha|\tau) = -\frac{\pi \, \alpha}{\operatorname{Im} \tau} \, \Omega(z,\alpha|\tau)$$

• They then constructed the **flat connection** $\mathcal{J}_{BL}(z|\tau)$, which is valued in the Lie algebra \mathcal{L} , generated by elements *a*, *b*:

$$\mathcal{J}_{\mathrm{BL}}(\boldsymbol{z}|\tau) = \frac{\pi}{\mathrm{Im}\,\tau} \left(d\boldsymbol{z} - d\bar{\boldsymbol{z}} \right) \boldsymbol{b} + d\boldsymbol{z} \, \mathrm{ad}_{\boldsymbol{b}} \, \Omega\big(\boldsymbol{z}, \mathrm{ad}_{\boldsymbol{b}}|\tau\big) \, \boldsymbol{a}$$

• Note that we have put $\alpha \to ad_b = [b, \circ]$. Flatness can be proven using that $d_z = dz\partial_z + d\overline{z}\partial_{\overline{z}}$, and using the above differential equation.

Homotopy-Invariant Iterated Integrals

• We may write down **homotopy-invariant iterated integrals** on the torus by expanding the path-ordered exponential in terms of words in *a*, *b*:

$$\mathsf{P} \exp \int_0^z \mathcal{J}_{\mathrm{BL}}(\cdot|\tau) = 1 + a \, \Gamma(a; z|\tau) + b \, \Gamma(b; z|\tau) \\ + a b \, \Gamma(ab; z|\tau) + b a \, \Gamma(ba; z|\tau) + \dots$$

- The resulting coefficient functions Γ(w; z|τ) are homotopy-invariant iterated integrals, referred to as elliptic polylogarithms.
- Also note that while the connection is single-valued on the torus, the integrals are **not** and have monodromies along the \mathfrak{A} and \mathfrak{B} -cycles.
- In the physics literature we typically see the following functions:

$$\tilde{\Gamma}\left(\begin{smallmatrix}n_{1}&n_{2}&\cdots&n_{r}\\w_{1}&w_{2}&\cdots&w_{r}\end{smallmatrix};z|\tau\right)=\int_{0}^{z}dz_{1}\,g^{(n_{1})}(z_{1}-w_{1}|\tau)\,\tilde{\Gamma}\left(\begin{smallmatrix}n_{2}&\cdots&n_{r}\\w_{2}&\cdots&w_{r}\end{smallmatrix};z_{1}|\tau\right)$$

which are a **meromorphic** variant of the elliptic polylogarithms that were constructed above. Let us briefly relate the two types of functions.

Martijn Hidding

Meromorphic Variant

 We can define a meromorphic counterpart of the doubly-periodic Kronecker-Eisenstein series and its expansion coefficients g⁽ⁿ⁾(z|τ):

$$\frac{\vartheta_1'(0|\tau)\vartheta_1(z+\alpha|\tau)}{\vartheta_1(z|\tau)\vartheta_1(\alpha|\tau)} = \sum_{n=0}^{\infty} \alpha^{n-1} g^{(n)}(z|\tau)$$

- The meromorphic integration kernels g⁽ⁿ⁾(z|τ) are multiple-valued on the torus, and actually live on the universal covering space, which is C.
- Brown-Levin polylogarithms associated with words w → ab · · · b reduce to a single integral over the meromorphic kernels. For example:

$$\Gamma(ab; z|\tau) = \int_0^z dt \left(2\pi i \frac{\mathrm{Im}\,t}{\mathrm{Im}\,\tau} - f^{(1)}(t|\tau) \right) = -\int_0^z dt \, g^{(1)}(t|\tau) = -\tilde{\Gamma}\big(\frac{1}{0}; z|\tau \big)$$

• More generally, $\Gamma(ab \cdots b; z|\tau)$ can be expressed as:

$$\Gamma(a\underbrace{b\cdots b}_{n};z|\tau) = (-1)^{n} \int_{0}^{z} dt g^{(n)}(t|\tau) = (-1)^{n} \widetilde{\Gamma}({}_{0}^{n};z|\tau)$$

Closure under integration

- For the MPLs, we saw that partial fraction identities were essential for splitting up a product of integration kernels.
- We need similar identities for the **function space to close under integration** at genus one. For example, we might encounter an integral of the type:

$$\int_0^z \, \mathrm{d}t f^{(n_1)} \, (t-a_1) f^{(n_2)} \, (t-a_2)$$

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

• The so-called **Fay identities** generalize the partial fraction relations. They are generated by:

$$\Omega(z_1, \alpha_1, \tau) \Omega(z_2, \alpha_2, \tau) = \Omega(z_1, \alpha_1 + \alpha_2, \tau) \Omega(z_2 - z_1, \alpha_2, \tau) + \Omega(z_2, \alpha_1 + \alpha_2, \tau) \Omega(z_1 - z_2, \alpha_1, \tau)$$

• For example we have that:

$$f^{(1)}(t-x)f^{(1)}(t) = f^{(1)}(t-x)f^{(1)}(x) - f^{(1)}(t)f^{(1)}(x) + f^{(2)}(t) + f^{(2)}(x) + f^{(2)}(t-x)$$

Alternative Construction via Convolutions

An alternative construction of the functions f^(k)(z|τ) is in terms of the scalar Green function g(z|τ) on Σ. The Green function is defined by:

$$\partial_{\overline{z}}\partial_z g(z|\tau) = -\pi\delta(z) + \frac{\pi}{\operatorname{Im}\tau}, \quad \int_{\Sigma} d^2z \, g(z|\tau) = 0$$

• It can be expressed in terms of the Jacobi theta function ϑ_1 and the Dedekind eta-function η as follows:

$$g(z|\tau) = -\ln \left|\frac{\vartheta_1(z|\tau)}{\eta(\tau)}\right|^2 - \pi \frac{(z-\bar{z})^2}{2 \, \ln \tau}$$

• We define the function $f^{(1)}(z|\tau)$ as the derivative of the Green's function:

$$f^{(1)}(z|\tau) = -\partial_z g(z|\tau)$$

 Subsequently, we can define higher dimensional convolutions of f recursively as follows:

$$f^{(k)}(z| au) = -\int_{\Sigma} rac{d^2x}{\operatorname{Im} au} \, \partial_x g(x| au) f^{(k-1)}(x-z| au), \quad k\geq 2$$

• We will see in the following that **similar convolutions underlie** our higher-genus generalizations of these kernels.

- In the next part, we will focus on how we can construct a flat connection at a higher-genus. This will involve:
- 1. A brief overview of higher-genus Riemann surfaces.
- 2. A short review of the Arakelov Green's function.
- 3. Derivation of higher-genus analogues of Kronecker-Eisenstein kernels.
- 4. Definition of the flat connection at higher-genus.
- After this, we will introduce higher-genus polylogarithms by computing the path-ordered exponential of our connection and extracting the component integrals.

Brief overview of higher-genus Riemann surfaces

Topology of a Compact Riemann Surface Σ

- The topology of a compact Riemann surface Σ without boundary is specified by its genus h.
- The homology group H₁(Σ, Z) is isomorphic to Z^{2h} and supports an anti-symmetric non-degenerate intersection pairing denoted by *ζ*.

A choice of canonical homology basis on a compact genus-two Riemann surface Σ .

- A canonical homology basis of cycles \mathfrak{A}_I and \mathfrak{B}_J with $I, J = 1, \dots, h$ has symplectic intersection matrix $\mathfrak{J}(\mathfrak{A}_I, \mathfrak{B}_J) = -\mathfrak{J}(\mathfrak{B}_J, \mathfrak{A}_I) = \delta_{IJ}$, and $\mathfrak{J}(\mathfrak{A}_I, \mathfrak{A}_J) = \mathfrak{J}(\mathfrak{B}_I, \mathfrak{B}_J) = 0$.
- A new canonical basis $\tilde{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$ is obtained by applying a modular transformation $M \in Sp(2h, \mathbb{Z})$, such that $M^t \mathfrak{J} M = \mathfrak{J}$.

Canonical Basis of Holomorphic Abelian Differentials

 A canonical basis of holomorphic Abelian differentials ω_l may be normalized on A-cycles:

$$\oint_{\mathfrak{A}_I} oldsymbol{\omega}_J = \delta_{IJ} \qquad \oint_{\mathfrak{B}_I} oldsymbol{\omega}_J = \Omega_{IJ}$$

- The complex variables Ω_{IJ} denote the components of the **period matrix** Ω of the surface Σ .
- By the **Riemann relations**, Ω is **symmetric**, and has **positive definite imaginary part**:

$$\Omega^t = \Omega \qquad Y = \operatorname{Im} \Omega > 0$$

• We will use the matrix $Y_{IJ} = \text{Im } \Omega_{IJ}$ and its **inverse** $Y^{IJ} = ((\text{Im } \Omega)^{-1})^{IJ}$ to **raise** and **lower** indices:

$$\omega' = Y'' \omega_J$$
 $\bar{\omega}' = Y'' \bar{\omega}_J$ $Y'' K_{KJ} = \delta'_J$

The Arakelov Green Function

The Arakelov Green function G(x, y|Ω) on Σ × Σ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135]
 [G. Faltings, Ann. Math., 119(2), 1984]

$$\partial_{\overline{x}}\partial_{x}\mathcal{G}(x,y|\Omega) = -\pi\delta(x,y) + \pi\kappa(x), \qquad \int_{\Sigma}\kappa(x)\mathcal{G}(x,y|\Omega) = 0$$

where the **Kähler form** κ is given by:

$$\kappa = rac{i}{2h}\omega_I \wedge ar{\omega}^I = \kappa(z) \, d^2 z \qquad \int_{\Sigma} \kappa = 1$$

- In what follows we will drop the explicit dependence on the moduli Ω.
- At genus one the (Arakelov) Green function only depends on a difference of points G(x, y)|_{h=1} = G(x − y)|_{h=1}.
- However, this translation invariance is absent on a Riemann surface Σ of genus h > 1.

The Interchange Lemma

 The tensor Φ^I_J(x), introduced by Kawazumi, compensates for the lack of translation invariance at higher genus: [Kawazumi, MCM2016] [Kawazumi, 2017]

$$\Phi^{I}_{J}(x) = \int_{\Sigma} d^{2}z \, \mathcal{G}(x,z) \, \bar{\omega}^{I}(z) \omega_{J}(z)$$

- Note that the **trace** of $\Phi^{I}_{J}(x)$ **vanishes** by the definition of the Arakelov Green function.
- In particular, the so-called interchange lemma provides a substitute for the absence of translation invariance:

$$\partial_{x}\mathcal{G}(x,y)\,\omega_{J}(y) + \partial_{y}\mathcal{G}(x,y)\,\omega_{J}(x) - \partial_{x}\Phi^{J}{}_{J}(x)\,\omega_{I}(y) - \partial_{y}\Phi^{J}{}_{J}(y)\,\omega_{I}(x) = 0$$

[E. D'Hoker et al., arXiv:2008.08687 [hep-th]]

Higher Convolution of the Arakelov Green Function

• Inspired by the alternative construction of the Kronecker-Eisenstein kernels through convolutions, we define the **tensors** $\Phi^{l_1 \cdots l_r}(x)$ and $\mathcal{G}^{l_1 \cdots l_s}(x, y)$:

$$\Phi^{l_1\cdots l_r}{}_J(x) = \int_{\Sigma} d^2 z \, \mathcal{G}(x,z) \, \bar{\omega}^{l_1}(z) \, \partial_z \Phi^{l_2\cdots l_r}{}_J(z) \quad (r \ge 2)$$
$$\mathcal{G}^{l_1\cdots l_s}(x,y) = \int_{\Sigma} d^2 z \, \mathcal{G}(x,z) \, \bar{\omega}^{l_1}(z) \, \partial_z \mathcal{G}^{l_2\cdots l_s}(z,y) \quad (s \ge 1)$$

• At genus one, the derivatives of the tensor $\mathcal{G}^{I_1 \cdots I_s}$ for $I_1 = \cdots = I_s = 1$ equal the Kronecker-Eisenstein integration kernels $f^{(s+1)}$:

$$\partial_x \mathcal{G}^{l_1 \cdots l_s}(x, y) \big|_{h=1} = -f^{(s+1)}(x-y|\tau)$$

- The trace $\Phi^{l_1 \cdots l_r}_{l_r} = 0$ for arbitrary genus implies that Φ -tensors for arbitrary $r \ge 1$ vanish identically for genus one.
- In the next part: we will construct generating functions of our kernels, and combine them into a flat connection.

Construction of higher-genus polylogarithms

Generating Functions

- Let us introduce a non-commutative algebra freely generated by B_l for $l = 1, \dots, h$ (loosely inspired by the approach of Enriquez and Zerbini arXiv:2110.09341).
- Next, we fix an arbitrary auxiliary marked point *p* on the Riemann surface Σ and introduce the following generating functions:

$$\mathcal{H}(x,p;B) = \partial_x \mathcal{G}(x,p) + \sum_{r=1}^{\infty} \partial_x \mathcal{G}^{l_1 l_2 \cdots l_r}(x,p) B_{l_1} B_{l_2} \cdots B_{l_r}$$
$$\mathcal{H}_J(x;B) = \omega_J(x) + \sum_{r=1}^{\infty} \partial_x \Phi^{l_1 l_2 \cdots l_r} J(x) B_{l_1} B_{l_2} \cdots B_{l_r}$$

• By forming the **combination** $\Psi_J(x, p; B) = \mathcal{H}_J(x; B) - \mathcal{H}(x, p; B)B_J$, we obtain a compact antiholomorphic derivative:

$$\partial_{\bar{x}}\Psi_J(x,p;B) = -\pi \bar{\omega}^J(x) B_J \Psi_J(x,p;B)$$

for $x \neq p$, which generalizes the genus-one differential relation for Ω .

.

- Next, we **extend** to a Lie algebra \mathcal{L} **freely generated** by elements a^{l} and b_{l} for $l = 1, \dots, h$ and set $B_{l} = ad_{b_{l}} = [b_{l}, \cdot]$.
- Our connection *J*(*x*, *p*), on a Riemann surface Σ of arbitrary genus *h* with a marked point *p* ∈ Σ and valued in the Lie algebra *L* is then given by:

$$\mathcal{J}(x,p) = -\pi \, d ar{x} \, ar{\omega}^{\prime}(x) \, b_{I} + \pi \, dx \, \mathcal{H}^{\prime}(x;B) \, b_{I} + dx \, \Psi_{I}(x,p;B) \, a^{\prime}$$

• Working out $d_x = dx \partial_x + d\bar{x} \partial_{\bar{x}}$, we may show that:

$$d_x \mathcal{J}(x,p) - \mathcal{J}(x,p) \wedge \mathcal{J}(x,p) = \pi d\overline{x} \wedge dx \, \delta(x,p) \left[b_l, a^l
ight]$$

proving that the connection is **flat** (away from x = p).

Reduction to the Brown-Levin Connection

- To prove that the connection J(x, p) reduces to the non-holomorphic single-valued Brown-Levin connection at genus one, we relabel a¹ = a and b₁ = b.
- Since the tensor Φ^I_J and its higher-rank versions all vanish identically at genus one, the generating function H¹(x; B) reduces to:

$$\mathcal{H}^{1}(x;B)\Big|_{h=1} = \omega^{1}(x) = \frac{\omega_{1}(x)}{\operatorname{Im} \tau}$$

- The first terms in $\mathcal{J}(x,p)$ combine to $\pi(dx d\bar{x})b/\operatorname{Im} \tau$, thereby reproducing the contributions $\sim (\operatorname{Im} \tau)^{-1}$ to the non-meromorphic Brown-Levin connection.
- The last term in $\mathcal{J}(x, p)$ reproduces the Kronecker-Eisenstein series by:

$$\Psi_1(x,p;B)\Big|_{h=1} = \omega_1(x) - \mathcal{H}(x,p;B)B_1\Big|_{h=1} = \mathrm{ad}_b\,\Omega(x-p,\mathrm{ad}_b|\tau)$$

Expansion of the Connection

• The connection \mathcal{J} may be **expanded in words** with r+1 letters in the basis (a^l, b_l) :

$$\mathcal{J}(x,p) = \pi (dx \,\omega^{l}(x) - d\bar{x} \,\bar{\omega}^{l}(x))b_{l} + \pi \,dx \sum_{r=1}^{\infty} \partial_{x} \Phi^{l_{1}\cdots l_{r}}{}_{J}(x) \,Y^{JK} B_{l_{1}}\cdots B_{l_{r}} \,b_{K}$$
$$+ \,dx \sum_{r=1}^{\infty} \left(\partial_{x} \Phi^{l_{1}\cdots l_{r}}{}_{J}(x) - \partial_{x} \mathcal{G}^{l_{1}\cdots l_{r-1}}(x,p) \delta^{l_{r}}_{J} \right) B_{l_{1}}\cdots B_{l_{r}} \,d^{l}$$

• Like before, the flat connection $\mathcal{J}(x, p)$ integrates to a homotopy-invariant path-ordered exponential $\Gamma(x, y; p)$:

$$\mathbf{\Gamma}(x,y;p) = \mathsf{P}\exp\int_{y}^{x}\mathcal{J}(t,p)$$

• For example, for words with at most two letters in the basis (a^{l}, b_{l}) :

$$\Gamma(x,y;p) = 1 + a' \Gamma_l(x,y;p) + b_l \Gamma^l(x,y;p) + a' a' \Gamma_{ll}(x,y;p) + b_l b_l \Gamma^{ll}(x,y;p) + a' b_l \Gamma_l^{ll}(x,y;p) + b_l a' \Gamma^{ll}(x,y;p) + \cdots$$

Polylogarithms for Words without b_1

 The polylogarithms associated with words w that do not involve any of the letters b_l are given by the following simple formula:

$${\sf F}_{l_1l_2\cdots l_r}(x,y;
ho)=\int_y^x\omega_{l_1}(t_1)\int_y^{t_1}\omega_{l_2}(t_2)\cdots\int_y^{t_{r-1}}\omega_{l_r}(t_r)$$

which we'll refer to as iterated Abelian integrals.

- These polylogarithms are **independent of the marked point** *p*.
- They obey the differential equations:

$$\partial_x \Gamma_{l_1 l_2 \cdots l_r}(x, y; p) = \omega_{l_1}(x) \Gamma_{l_2 \cdots l_r}(x, y; p)$$

• For the case h = 1, we simply obtain:

$$\Gamma_{\underbrace{11\cdots 1}_{r}}(x,y;z)\big|_{h=1}=\frac{1}{r!}(x-y)^{r}$$

Low Letter Count Polylogarithms

 Next let us consider some cases involving the letters b_l. For the single-letter word b_l, we obtain:

$$\Gamma'(x,y;p) = \pi \int_y^x (\omega' - \bar{\omega}')$$

• For **double-letter words** with **at least one letter** *b*_{*l*}, we obtain:

$$\Gamma^{IJ}(\mathbf{x}, \mathbf{y}; p) = \pi \int_{\mathbf{y}}^{\mathbf{x}} \left(dt \left(\partial_t \Phi^{I}_{K}(t) \mathbf{Y}^{KJ} - \partial_t \Phi^{J}_{K}(t) \mathbf{Y}^{KI} \right) + \pi \left(\omega^{I}(t) - \bar{\omega}^{I}(t) \right) \int_{\mathbf{y}}^{t} \left(\omega^{J} - \bar{\omega}^{J} \right) \right)$$

$$\Gamma^{J}_{I}(\mathbf{x}, \mathbf{y}; p) = \int_{\mathbf{y}}^{\mathbf{x}} \left(dt \, \partial_t \Phi^{J}_{I}(t) - dt \, \partial_t \mathcal{G}(t, p) \delta^{J}_{I} + \pi \left(\omega^{J}(t) - \bar{\omega}^{J}(t) \right) \int_{\mathbf{y}}^{t} \omega_{I} \right)$$

$$\Gamma^{J}_{I}(\mathbf{x}, \mathbf{y}; p) = \int_{\mathbf{y}}^{\mathbf{x}} \left(-dt \, \partial_t \Phi^{J}_{I}(t) + dt \, \partial_t \mathcal{G}(t, p) \delta^{J}_{I} + \pi \omega_{I}(t) \int_{\mathbf{y}}^{t} \left(\omega^{J} - \bar{\omega}^{J} \right) \right)$$

Meromorphic Variants of Polylogarithms

- Lastly, let's explore an instance showcasing where the **meromorphic** variants of polylogarithms live in our function space.
- Consider again the following higher-genus polylogarithm:

$$\Gamma_{I}^{J}(x,y;p) = \int_{y}^{x} dt \left(-\partial_{t} \Phi_{I}^{J}(t) + \delta_{I}^{J} \partial_{t} \mathcal{G}(t,p) + \pi \omega_{I}(t) Y^{JK} \left(\Gamma_{K}(t,y;p) - \overline{\Gamma_{K}(t,y;p)} \right) \right)$$

- Upon specializing to genus h = 1 and setting p = y = 0, this reproduces the Brown-Levin polylogarithm $\Gamma(ab; p|\tau) = -\tilde{\Gamma}(\frac{1}{0}; p|\tau)$.
- The integrand with respect to *t* in the equation above can be viewed as a higher-genus uplift of the Kronecker-Eisenstein kernel g⁽¹⁾(t|τ):

$$g^{J}_{I}(t,y;p) = \partial_{t}\Phi^{J}_{I}(t) - \delta^{J}_{I}\partial_{t}\mathcal{G}(t,p) - 2\pi i\omega_{I}(t)Y^{JK} \operatorname{Im} \int_{y}^{t} \omega_{K}$$

• One may verify that indeed (for $t \neq p$):

$$\partial_{\overline{t}}g^{J}(t,y;p)=0$$

Conclusions and future directions

- We have presented an explicit construction of **polylogarithms** on **higher-genus** compact Riemann surfaces.
- Our construction relies on a flat connection whose path-ordered exponential plays the role of a generating series for higher-genus polylogarithms.
- The flat connection takes values in the **freely-generated Lie algebra generated by elements** a^{l} **and** b_{l} for $l = 1, \dots, h$, introduced by Enriquez and Zerbini.
- Our construction provides the first explicit proposal for a "complete" set of integration kernels beyond genus one.
- Sidenote: The resulting higher-genus polylogarithms may potentially also be important for higher-loop gravitational calculations, depending on the topology of the Feynman diagrams.

Future Directions

- Although we have strong evidence the function space of our polylogarithms is closed under integration, we have not yet proven this conjecture.
- In addition, there are various more technical roads to follow:
 - 1. Obtaining the **separating and non-separating degenerations** of the polylogarithms for arbitrary genera.
 - 2. Determining the **differential relations with respect to moduli variations** satisfied by higher-genus polylogarithms.
 - 3. Identifying generalizations of the **higher-genus modular graph tensors** that close under complex-structure variations and degenerations.
 - 4. **Re-formulation** of higher-genus string amplitudes in terms of the integration kernels and polylogarithms constructed in this work.

Thank you for listening!

Backup Slides

Modular Transformations

- A new canonical basis $\tilde{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$ is obtained by applying a modular transformation $M \in Sp(2h, \mathbb{Z})$, such that $M^t \mathfrak{J} M = \mathfrak{J}$.
- Under a modular transformation, we have:

$$\begin{split} \tilde{\omega} &= \omega \left(C\Omega + D \right)^{-1}, \quad \tilde{\Omega} &= (A\Omega + B)(C\Omega + D)^{-1} \\ \tilde{Y} &= \left(\bar{\Omega}C^t + D^t \right)^{-1} \, Y \left(C\Omega + D \right)^{-1} \end{split}$$

- The moduli space of compact Riemann surfaces of genus h will be denoted by M_h.
- The moduli space \mathcal{M}_h for h = 1, 2, 3 may be identified with $\mathcal{H}_h/Sp(2h, \mathbb{Z})$ provided we remove from the **Siegel upper half space** \mathcal{H}_h for h = 2, 3 all elements which correspond to disconnected surfaces, and take into account the effect of automorphisms including the involution on the hyper-elliptic locus for h = 3.
- For $h \ge 4$, the moduli space \mathcal{M}_h is a complex co-dimension $\frac{1}{2}(h-2)(h-3)$ subspace of $\mathcal{H}_h/Sp(2h,\mathbb{Z})$ known as the **Schottky locus**.

Definition of Modular Tensors

- Modular tensors are defined on Torelli space, the moduli space of compact Riemann surfaces with a choice of canonical homology basis of \mathfrak{A} and \mathfrak{B} cycles.
- They generalize modular forms at genus one by replacing the automorphy factor $(C\tau + D)$ of $SL(2, \mathbb{Z})$ with an automorphy tensor Q and its inverse $R = Q^{-1}$:

$$Q = Q(M, \Omega) = C\Omega + D$$

$$R = R(M, \Omega) = (C\Omega + D)^{-1}$$

• The composition law for the automorphy tensors is:

$$Q(M_1M_2,\Omega) = Q(M_1,(A_2\Omega+B_2)(C_2\Omega+D_2)^{-1})Q(M_2,\Omega)$$

 The tensors ω_I, ω^I, Y_I, and its inverse Y^I transform as follows under a modular transformation:

$$\begin{split} \tilde{\boldsymbol{\omega}}_{l} &= \boldsymbol{\omega}_{l'} \boldsymbol{\mathcal{R}}^{l'}{}_{l} \qquad \qquad \tilde{\boldsymbol{Y}}_{lJ} &= \boldsymbol{Y}_{l'J'} \boldsymbol{\bar{\mathcal{R}}}^{l'}{}_{l} \boldsymbol{\mathcal{R}}^{l'}{}_{J} \\ \tilde{\boldsymbol{\omega}}^{J} &= \bar{\boldsymbol{Q}}^{J}{}_{J'} \boldsymbol{\omega}^{J'} \qquad \qquad \tilde{\boldsymbol{Y}}^{IJ} &= \boldsymbol{Q}^{J}{}_{l'} \boldsymbol{\bar{\mathcal{Q}}}^{J}{}_{J'} \boldsymbol{Y}^{l'J'} \end{split}$$

• A modular tensor \mathcal{T} of arbitrary rank transforms as follows:

$$\tilde{\mathcal{T}}^{l_1,\cdots,l_n;l_1,\cdots,l_{\bar{n}}}(\tilde{\Omega}) = \mathcal{Q}^{l_1}{}_{l_1'} \cdots \mathcal{Q}^{l_n}{}_{l_n'} \bar{\mathcal{Q}}^{l_1}{}_{l_1'} \cdots \bar{\mathcal{Q}}^{l_{\bar{n}}}{}_{l_{\bar{n}}'} \mathcal{T}^{l_1',\cdots,l_n';l_1',\cdots,l_{\bar{n}}'}(\Omega)$$

- The tensors *Y*₁ and *Y*¹ may be used to lower and raise indices, respectively, and can be made to compensate any anti-holomorphic automorphy factor.
- The tensor \mathcal{U} exclusively transforms with holomorphic automorphy factors $Q^{l_{i_{l'_i}}}$ and $R^{l'_{i_{j_i}}}$:

$$\tilde{\mathcal{U}}^{l_1,\cdots,l_n}_{J_1,\cdots,J_{\bar{n}}}(\tilde{\Omega}) = \mathcal{Q}^{l_1}{}_{l_1'} \cdots \mathcal{Q}^{l_n}{}_{l_n'}\mathcal{R}^{J_1'}{}_{J_1} \cdots \mathcal{R}^{J_{\bar{n}}'}{}_{\bar{n}_{\bar{n}}}\mathcal{U}^{J_1',\cdots,J_n'}_{J_{\bar{1}}'}(\Omega)$$

• Symmetrization, anti-symmetrization, and removal of the trace by contracting with factors of Y_{IJ} or δ_I^J may be used to extract irreducible tensors.

Modular Properties of the Brown-Levin Construction

• Lastly, let us consider the **modular properties** of the Brown-Levin construction. Consider a modular transformation on the modulus τ , z, and α given by:

$$au o ilde{ au} = rac{A au + B}{C au + D}, \quad z o ilde{z} = rac{z}{C au + D}, \quad \alpha o ilde{lpha} = rac{lpha}{C au + D}$$

where $A, B, C, D \in \mathbb{Z}$ with AD - BC = 1.

• The Kronecker-Eisenstein series Ω and the functions $f^{(n)}$ transform as **modular forms of weight** (1,0) **and** (n,0), respectively:

$$egin{aligned} \Omega(ilde{z}, ilde{lpha}| ilde{ au}) &= (C au+D)\Omega(z,lpha| au), \ f^{(n)}(ilde{z}| ilde{ au}) &= (C au+D)^n f^{(n)}(z| au). \end{aligned}$$

 These transformation properties can be established by using the transformation properties of the Jacobi θ-function:

$$\theta_1(\tilde{z},\tilde{\alpha}|\tilde{\tau}) = \epsilon (C\tau + D)^{\frac{1}{2}} e^{i\pi C z^2/(C\tau + D)} \theta_1(z|\tau), \quad \epsilon^8 = 1$$

• Or the **modular invariance of the functions** $g_n(z|\tau)$ along with the relation

$$f^{(n)}(z| au) = -\partial_z^n g_n(z| au)$$

• The **modular properties** of the Brown-Levin connection and polylogarithms are most transparent by assigning the following **transformation law** to the generators *a*, *b*:

$$a
ightarrow ilde{a}=(C au+D)a+2\pi i Cb, \quad b
ightarrow ilde{b}=rac{b}{C au+D}$$

- This choice renders the flat connection \mathcal{J}_{BL} modular invariant under the transformation.
- The **extra contribution** $2\pi iCb$ to \tilde{a} is engineered to compensate the transformation of the first term in the expression for the connection:

$$\frac{\pi \, d\tilde{z}}{\mathrm{Im} \, \tilde{\tau}} \, \tilde{b} = \frac{C \bar{\tau} + D}{C \tau + D} \, \frac{\pi \, dz}{\mathrm{Im} \, \tau} \, b$$

• To obtain tensorial modular transformations properties for the generating function, the modular transformations of its components must be accompanied by the following transformation properties for the algebra generators *B_J*:

$$\begin{split} \tilde{B}_{J} &= B_{J'} \mathcal{R}^{J'}{}_{J} \\ \tilde{\mathcal{H}}_{J}(x;\tilde{B}) &= \mathcal{H}_{J'}(x;B) \mathcal{R}^{J'}{}_{J} \\ \tilde{\Psi}_{J}(x,p;\tilde{B}) &= \Psi_{J'}(x,p;B) \mathcal{R}^{J'}{}_{J} \end{split}$$

• The generating function $\mathcal{H}(x, p; B)$ is then invariant.

Modular Invariance of the Connection

• Under a modular transformation $M \in Sp(2h, \mathbb{Z})$, which acts on $\bar{\omega}^l$, B_l , \mathcal{H}_l , and Ψ_l , and on the Lie algebra generators a^l and b_l by:

$$a^{\prime}
ightarrow \tilde{a}^{\prime} = Q^{\prime}{}_{J} a^{J} + 2\pi i C^{\prime J} b_{J}$$

 $b_{I}
ightarrow \tilde{b}_{I} = b_{J} R^{\prime}{}_{I}$

- The connection $\mathcal{J}(x,p)$ is invariant.
- In the basis (\hat{a}^l, b_l) of generators of the Lie algebra \mathcal{L} , the connection $\mathcal{J}(x, p)$ takes on a simplified form:

$$\mathcal{J}(x,p) = -\pi \, d\bar{x} \, \bar{\omega}^{\prime}(x) \, b_{\prime} + dx \, \Psi_{\prime}(x,p;B) \, \hat{a}^{\prime}$$

• The connection $\mathcal{J}(x, p)$ is manifestly invariant under $Sp(2h, \mathbb{Z})$.

Shuffle Algebra for Multiple Polylogarithms

• Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:

$$G(s_1, s_2, ..., s_k; z) \cdot G(s_{k+1}, ..., s_r; z) = \sum_{\text{shuffles } \sigma} G(s_{\sigma(1)}, s_{\sigma(2)}, ..., s_{\sigma(r)}; z),$$

where the sum runs over all permutations σ which are **shuffles** of (1, ..., k) and (k + 1, ..., r), **preserving the relative order** of 1, 2, ..., k and of k + 1, ..., r.

• A simple example of the shuffle product of two multiple polylogarithms is:

$$G(s_1; z) \cdot G(s_2; z) = G(s_1, s_2; z) + G(s_2, s_1; z).$$

• The proof of the shuffle product formula relies on the integral representation of multiple polylogarithms. In fact, a shuffle algebra structure holds for **all the homotopy-invariant iterated integrals** which we consider.

Removing Trailing Zeros

- Multiple polylogarithms with trailing zeroes do not have a Taylor expansion in *z* around *z* = 0, but logarithmic singularities at *z* = 0.
- We can use the shuffle product to remove trailing zeros, separating these logarithmic terms, such that the rest has a regular expansion around z = 0.
- For example, for $G(s_1, 0; z)$ with $s_1 \neq 0$, we have:

$$G(s_1, 0; z) = G(0; z) G(s_1; z) - G(0, s_1; z).$$

Both G(s₁; z) and G(0, s₁; z) are free of trailing zeros. We then define the special cases:

$$G(0;z) = \log(z) \qquad \qquad G\left(\vec{0}_n;z\right) = \frac{1}{n!}\log(z)^n,$$

where \vec{O}_n denotes a sequence of *n* zeros. These definitions follow the **tangential basepoint prescription**:

$$\int_{0+arepsilon}^x rac{dt}{t} = \log(x) - \log(\epsilon) o \log(x)$$

for a prescribed tangent vector (in \mathbb{C}) with $|\varepsilon| \ll 1$.

The Arakelov Green Function

 The Arakelov Green function G(x, y|Ω) on Σ × Σ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135]
 [G. Faltings, Ann. Math., 119(2), 1984]

$$\partial_{\overline{x}}\partial_{x}\mathcal{G}(x,y|\Omega) = -\pi\delta(x,y) + \pi\kappa(x), \qquad \int_{\Sigma}\kappa(x)\mathcal{G}(x,y|\Omega) = 0$$

• The string Green function is given in terms of the prime form E(x, y) by:

$$G(x,y) = -\log |E(x,y)|^2 + 2\pi \left(\operatorname{Im} \int_y^x \omega_l \right) \left(\operatorname{Im} \int_y^x \omega^l \right)$$

- The prime form *E*(*x*, *y*) is a unique form that is **holomorphic** in *x* and *y* and **vanishes linearly** as *x* approaches *y*.
- An explicit formula for G(x, y) may then be given in terms of the non-conformally invariant string Green function G(x, y):

$$\mathcal{G}(x,y) = \mathcal{G}(x,y) - \gamma(x) - \gamma(y) + \gamma_0$$

The Arakelov Green Function

• The functions $\gamma(x)$ and γ_0 are given by:

$$\gamma(x) = \int_{\Sigma} \kappa(z) \mathsf{G}(x, z) \qquad \gamma_0 = \int_{\Sigma} \kappa \gamma$$

The Kähler form κ is given by the pull-back to Σ under the Abel map of the unique translation invariant Kähler form on the Jacobian variety
 J(Σ) = C^h/(Z^h + ΩZ^h), normalized to unit volume:

$$\kappa = rac{i}{2h} \omega_I \wedge ar \omega' = \kappa(z) \, d^2 z \qquad \int_{\Sigma} \kappa = 1$$

- Both κ and $\mathcal{G}(x, y)$ are **conformally invariant**.
- The Arakelov Green function also obeys the following derivatives:

$$\partial_{x}\partial_{y}\mathcal{G}(x,y) = -\partial_{x}\partial_{y}\ln E(x,y) + \pi \omega_{l}(x) \omega^{l}(y)$$

$$\partial_{x}\partial_{\overline{y}}\mathcal{G}(x,y) = \pi \,\delta(x,y) - \pi \,\omega_{l}(x) \,\bar{\omega}^{l}(y)$$

Polylogarithms In The Hatted Basis

• In the basis (\hat{a}^l, b_l) , the expansion is given by:

$$\begin{split} \mathbf{\Gamma}(x,y;p) &= 1 + \hat{a}^{I}\hat{\Gamma}_{I}(x,y;p) + b_{I}\hat{\Gamma}^{I}(x,y;p) \\ &+ \hat{a}^{I}\hat{a}^{I}\hat{\Gamma}_{II}(x,y;p) + b_{I}b_{J}\hat{\Gamma}^{II}(x,y;p) \\ &+ \hat{a}^{I}b_{J}\hat{\Gamma}_{I}^{I}(x,y;p) + b_{J}\hat{a}^{I}\hat{\Gamma}^{I}_{J}(x,y;p) + \cdots \end{split}$$

• Identifying term by term in both expansions gives the relations $\Gamma_I = \hat{\Gamma}_I$ and $\Gamma_{II} = \hat{\Gamma}_{II}$, as well as the following relations:

$$\begin{split} \hat{\Gamma}^{I} &= \Gamma^{I} - \pi Y^{II} \Gamma_{J} \\ \hat{\Gamma}^{I}_{J} &= \Gamma^{I}_{J} - \pi Y^{IK} \Gamma_{KJ} \\ \hat{\Gamma}^{J}_{I} &= \Gamma^{J}_{I} - \pi \Gamma_{IK} Y^{KJ} \\ \hat{\Gamma}^{II} &= \Gamma^{II} - \pi Y^{IK} \Gamma_{K}^{J} - \pi \Gamma^{I}_{K} Y^{KJ} + \pi^{2} Y^{IK} \Gamma_{KL} Y^{LJ} \end{split}$$

• The polylogarithms $\hat{\Gamma}(x, y; p)$ in the basis (\hat{a}^l, b_l) are **modular tensors** by the $Sp(2h, \mathbb{Z})$ **invariance** of the connection $\mathcal{J}(x, p)$.

Simplified Representations

- The polylogarithms with upper indices admit simplified representations in terms of the iterated abelian integrals, their complex conjugates and contractions with Y^U.
- For words with a **single letter** *b*₁ we have:

$$\Gamma^{I}(x,y;p) = \pi Y^{II}(\Gamma_{I}(x,y;p) - \overline{\Gamma_{I}(x,y;p)})$$

• For two-letter words that contain at least one b_l, we have:

$$\begin{split} \Gamma_{I}^{J}(x,y;p) &= \pi Y^{JK} \Gamma_{IK}(x,y;p) + \int_{y}^{x} dt \left(-\partial_{t} \Phi^{J}{}_{I}(t) + \delta^{J}_{I} \partial_{t} \mathcal{G}(t,p) - \pi \omega_{I}(t) Y^{JK} \overline{\Gamma_{K}(t,y;p)} \right) \\ \Gamma_{J}^{I}(x,y;p) &= \pi Y^{IK} \left(\Gamma_{KJ}(x,y;p) - \Gamma_{J}(x,y;p) \overline{\Gamma_{K}(x,y;p)} \right) \\ &+ \int_{y}^{x} dt \left(\partial_{t} \Phi^{I}{}_{J}(t) - \delta^{J}_{J} \partial_{t} \mathcal{G}(t,p) + \pi \omega_{J}(t) Y^{IK} \overline{\Gamma_{K}(t,y;p)} \right) \\ \Gamma^{IJ}(x,y;p) &= \pi^{2} Y^{IK} Y^{JL} \left(\Gamma_{KL}(x,y;p) + \overline{\Gamma_{KL}(x,y;p)} - \overline{\Gamma_{K}(x,y;p)} \Gamma_{L}(x,y;p) \right) \\ &+ \pi \int_{y}^{x} dt \left(\partial_{t} \Phi^{I}{}_{K}(t) Y^{KJ} - \partial_{t} \Phi^{J}{}_{K}(t) Y^{KI} \right) \\ &+ \pi \omega^{J}(t) Y^{IK} \overline{\Gamma_{K}(t,y;p)} - \pi \omega^{I}(t) Y^{JK} \overline{\Gamma_{K}(t,y;p)} \right) \end{split}$$