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Introduction



Introduction

@ Polylogarithms play an important role in theoretical physics, including
quantum field theory and string theory.

@ Much of the literature on polylogarithms has focused on genus zero and
genus one Riemann surfaces, with higher-genus surfaces less understood.

e Proposals for higher-genus polylogarithm function spaces exist, but without
explicit formulas for use in physics. [Enriquez, 1112.0864]
[Enriquez, Zerbini, 2110.09341] [Enriquez, Zerbini, 2212.03119]

@ Today, we will explore a new construction of higher-genus polylogarithms.
@ Our method includes two key steps:

e We create a new set of integration kernels using convolutions of certain
functions defined on higher-genus Riemann surfaces.

e With these kernels, we build a generating function, which helps define our
higher-genus polylogarithms which are closed under taking primitives.
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String amplitudes motivation

@ String perturbation theory involves expanding in the string coupling
constant g, which in turn is an expansion based on the genus of the string
world-sheet. [Figure taken from PhD thesis of J. Gerken]

Closed - gs / / + gS/
A= [()+ [ () ref (S )
Mig

@ Furthermore, typically we also expand in the inverse string tension o/,
which corresponds to low energy and weak coupling regimes.

@ The resulting function space of these expansions is that of polylogarithms,
(or single-valued combinations thereof.)
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String amplitudes and special functions

@ Different types of special functions emerge depending on whether we are
considering open/closed strings, and depending on the genus:

Open string Closed string

(MPL’s) e (sv. MPLs)
g=0 '

(eMPLs) eMGF’s
g=1 (= sv. eMPL’s)

Higher-genus Single-valued
g=2, polylogs analogues:
g>=2 (this talk) To be explored
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Higher genus curves in Feynman integrals

@ The appearance of hyperelliptic curves in Feynman integrals has also been
observed in a number of publications. See for example:

@ R. Huang and Y. Zhang, “On Genera of Curves from High-loop Generalized Unitarity Cuts,” JHEP 04
(2013), 080 [arXiv:1302.1023 [hep-ph]].

@ A. Georgoudis and Y. Zhang, “Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves,”
JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].

k2

\ my
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ki /

The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].
@ C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, “Motivic geometry of two-loop Feynman
integrals,” [arXiv:2302.14840 [math.AG]].

@ R. Marzucca, A. J. McLeod, B. Page, S. Pégel, S. Weinzierl, “Genus Drop in Hyperelliptic Feynman
Integrals,” [arXiv:2307.11497 [hep-th]]. See also Andrew’s talk earlier at the workshop!
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Review of polylogarithms at genus zero and one
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Building Polylogarithms as Iterated Integrals

@ We want to construct polylogarithms, using iterated integrals, on a compact
Riemann surface, X, with genus h.

@ The polylogarithms we construct should have these qualities:

1. Homotopy Invariance: The polylogarithms should retain their value
when we smoothly change the path of integration, keeping the
endpoints constant.

2. Logarithmic Branch-Cuts: The integration kernels (or the ’hearts’ of
these integrals) should only have simple poles, meaning our integrals
should show just logarithmic irregularities at branch points.

3. Closed Under Integration: Our function space should remain intact
under integration, and in total, form a basis for all possible iterated
integrals on X.
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Homotopy-Invariant Iterated Integrals on a Surface

@ Let’s consider the differential equation: dI = JT.

@ If we want the equation to be integrable, we need d? = 0. This leads us to
the Maurer-Cartan equation for the connection 7

dg —-JNT =0

@ We give a special name to such a connection - we call it flat. The solution '
to our differential equation can be obtained by the path-ordered
exponential over any open path C between points zp,z € ¥:

re) = Pexp/cj(-) _ Pexp/o at (1)

@ Let’s denote 7 = J(t)dt, following a path C where t € [0, 1], C(0) = zp, and
C(1) = z. Using physics conventions, we position J(t) to the left of J(t') for
t>t:

Pexp/cj(~) = 1+/01 dtJ(t)+/01 dt/otdt'l(t)J(t’)—i-...

Martijn Hidding 10/39



Homotopy-Invariant Iterated Integrals on a Surface

@ The ‘flatness’ of our connection J ensures that I'(C) stays the same, even
when we tweak the path C a bit.

@ We'll call such integrals homotopy-invariant.

@ Be aware, paths I'(C) might still give different results for zo and z when the
path circles around marked points (poles of 7) on .

@ Later on, we'll see that our connection 7 and I’ are valued in a Lie algebra
and its universal enveloping algebra, respectively.

@ We will derive polylogarithms on surfaces of any genus from these
path-ordered exponentials by examining the coefficients in words of the Lie
algebra generators.
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Genus 0: MPLs and Generating Series

@ Multiple polylogarithms (MPLs) are iterated integrals of rational forms
dz/(z — s) with z,s € C, on the Riemann sphere CP".
[A.B. Goncharov, Math. Res. Lett. 5 (1998) 497]
@ They are defined recursively by: [A.B. Goncharov, math.AG/0103059]

v4
G(s1,52,- - ,sn;Z):/ —— G(s2,--+ ,5mt)
o =51

where we have the special case G((); z) = 1. The integer n > 0 is referred to
as the transcendental weight.

@ lterated integrals such as MPLs satisfy shuffle relations, for example:
G(51;2) - G(52;2) = G(51,52;2) + G(S2, 51; 2).
@ We define the special case G(0; z) = log(z), which serves as a regularization

prescription when the last parameters are zeros.
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Closure of MPLs Under Integration

@ Any integral of a rational function times a multiple polylogarithm (MPL) can
be expressed in terms of MPLs.

@ This is achieved by partial fractioning the rational function and/or using
integration by parts (IBP) identities. For example:

1 1 ( 11 )
(x—s1)(x—s2)  (s1—52) \(x—51) (x—s52)

@ After partial fractioning, we distinguish the following cases:

V4 1 V4 V4
/dt -G (5:1), /dtG(?;t), /dttkc(f;t)
o (t—0b) 0 0

where 0 < k # 1. We then use IBP identities to iteratively reduce the value
of k. For example:

z

/OZ dt(tfl)zc(o; )= 1 6(0:2)  6(~1;2)
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Generating Series

@ A generating series for the polylogarithms can be constructed from the
Knizhnik-Zamolodchikov (KZ) connection:

m

Tz(2) = d ei

Z—5;
i=1 !

@ The elementsey,--- , e, are generators of a free Lie algebra £ associated
with the marked points s, - - - , Sp.

@ Choosing endpoints zop = 0 and z; = z, we can organize the expansion of
the path-ordered exponential in terms of the generators eq, - - - , ep:

m m

m
Pexp/ Jxz(: —1+Ze,65,, +ZZ€,€,G(SSJ,

i=1 j=1

m m m
ZzzeejekG SiSjSk;Z) 4+ -+

1 j=1 k=1
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Genus 1: Elliptic Multiple Polylogarithms

@ Next, consider a compact genus-one surface, X, with modulus 7, denoted as
a latticeby ¥ = C/(Z + 7).

@ For a surface with genus h > 1, there are two key options for constructing a
connection: [Brown, Levin, arXiv:1110.6917]
[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

[Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

1. A connection that is single-valued on X, but non-meromorphic (due to
z-dependence), with at most simple poles.

2. A meromorphic connection that has at most simple poles, but is not
single-valued (and lives on the universal cover of ¥). This can be obtained with
a minor tweak of the first construction.

@ The Brown-Levin construction opts for the first choice.

@ Interestingly, the construction of elliptic multiple polylogarithms at genus 1
is quite different from the genus 0 case. Notably, there is an infinite set of
integration kernels at genus one, even for a single marked point z.
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The Brown-Levin Construction

@ Brown and Levin pioneered a method of homotopy-invariant iterated
integrals at genus one. [Brown, Levin, arXiv:1110.6917]

@ The key element to their construction is the so-called Kronecker-Eisenstein
(KE-) series:

) — i Imz\ 9 (0|7)01(z+alr) > oL (57
Q(z, |)_exp<21 |mT> )0 ) —; f(z|r)

@ The KE-series is single-valued on the torus, has a simple pole at z = 0 and
satisfies the following differential relation (for z £ 0):

0:Q(z.al7) = — = Q(z,alr)

@ They then constructed the flat connection Jgy,(z|7), which is valued in the
Lie algebra £, generated by elements a, b:

Tov(zlT) = % (dz—dZ) b+ dzad, Q(z,ady|7) @
T
@ Note that we have put a« — ad, = [b, o]. Flatness can be proven using that

d; = dz0, + dz0s, and using the above differential equation.
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Homotopy-Invariant Iterated Integrals

@ We may write down homotopy-invariant iterated integrals on the torus by
expanding the path-ordered exponential in terms of words in a, b:

4
Pexp/ Isn(-|7) =1+al(a;z|7) + bT(b; z|T)
0
+abTl(ab;z|T) + bal (ba; z|T) + ...

@ The resulting coefficient functions I'(w; z|7) are homotopy-invariant
iterated integrals, referred to as elliptic polylogarithms.

@ Also note that while the connection is single-valued on the torus, the
integrals are not and have monodromies along the 2(- and B-cycles.

@ In the physics literature we typically see the following functions:

z
F(mm o wzr) = / dzy " (z1—wa|7) T (W2 0w za|7)
0

which are a meromorphic variant of the elliptic polylogarithms that were
constructed above. Let us briefly relate the two types of functions.
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Meromorphic Variant

@ We can define a meromorphic counterpart of the doubly-periodic
Kronecker-Eisenstein series and its expansion coefficients g(")(z|7):

HO(z+lr) S o
91(2) 01 (a7 =2 _a"g"n)

n=0

@ The meromorphic integration kernels g(")(z|7) are multiple-valued on the
torus, and actually live on the universal covering space, which is C.

@ Brown-Levin polylogarithms associated with words to — ab - - - b reduce to a
single integral over the meromorphic kernels. For example:

F(ab;z|7'):/ dt(  Im _f 1)(t|7'> / dt g (t|r) = —T(§:2|7)

@ More generally, I'(ab - - - b; z|7) can be expressed as:

F(ab b z|7) = (1)”/Ozdtg(”)(t7):(1)”r(g;z|7)

n
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Closure under integration

@ For the MPLs, we saw that partial fraction identities were essential for
splitting up a product of integration kernels.

@ We need similar identities for the function space to close under integration
at genus one. For example, we might encounter an integral of the type:

/z def) (¢ — ar) f1) (t — ay)
0

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]
@ The so-called Fay identities generalize the partial fraction relations. They
are generated by:
Q(Zl,al,T)Q(Zz,OQ,T) = Q(Zl,oq +oz2,7')Q(22 721,0&2,7')
—|—Q(22,0¢1 +O¢2,7‘)Q(21 —22,041,7')

@ For example we have that:

FO(E=x)f 0 (e) = FO (e = 0f D) = FOOF D (x)
+FO) + D00 + Ot - x)
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Alternative Construction via Convolutions

@ An alternative construction of the functions f(*)(z|7) is in terms of the scalar

Green function g(z|7) on X. The Green function is defined by:
0:0.9(zlr) = ~m0(@) + . [ Pzglalr) =0
)X

ImT

@ |t can be expressed in terms of the Jacobi theta function ¢J; and the
Dedekind eta-function 7 as follows:
V1(2]7)
n(7)
@ We define the function f(*)(z|7) as the derivative of the Green’s function:
1®(elr) = ~eg(zlr)

@ Subsequently, we can define higher dimensional convolutions of f
recursively as follows:

P (z-2)

" 2Im7T

g(zlr)=—1In

£l = = [ X gt D alr), k22

@ We will see in the following that similar convolutions underlie our
higher-genus generalizations of these kernels.
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Constructing a flat connection at higher genus

@ In the next part, we will focus on how we can construct a flat connection at
a higher-genus. This will involve:

1. A brief overview of higher-genus Riemann surfaces.

2. A short review of the Arakelov Green’s function.

3. Derivation of higher-genus analogues of Kronecker-Eisenstein kernels.

4. Definition of the flat connection at higher-genus.

@ After this, we will introduce higher-genus polylogarithms by computing the

path-ordered exponential of our connection and extracting the component
integrals.
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Brief overview of higher-genus Riemann surfaces
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Topology of a Compact Riemann Surface -

@ The topology of a compact Riemann surface ¥ without boundary is specified
by its genus h.

@ The homology group Hi(X,7Z) is isomorphic to Z?" and supports an
anti-symmetric non-degenerate intersection pairing denoted by J.

A choice of canonical homology basis on a compact genus-two Riemann surface X.

@ A canonical homology basis of cycles 2(; and B, with [,/ =1,--- /h has
symplectic intersection matrix J(2l;,B,) = —J(B,,2,) =y, and
I, ) =J(B,,8)) =0.

@ A new canonical basis 2{ and B is obtained by applying a modular
transformation M € Sp(2h,Z), such that M'JM = 3.
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Canonical Basis of Holomorphic Abelian Differentials

@ A canonical basis of holomorphic Abelian differentials w, may be
normalized on 2A-cycles:

j{ wy =9y j{ wy =y
Ql/ SBI

@ The complex variables Q; denote the components of the period matrix Q2 of
the surface X.

@ By the Riemann relations, €2 is symmetric, and has positive definite
imaginary part:

Q'=Q Y=ImQ>0

@ We will use the matrix Y, = Im Q; and its inverse Y” = ((Im Q)*l)u to raise
and lower indices:

w’ = Y”wj (IJI = YU(:JJ Y/K Y[(j = 5]/
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The Arakelov Green Function

@ The Arakelov Green function G(x,y|Q2) on X x X is a single-valued version
of the Green function, defined by:  [D'Hoker, Green, Pioline, arXiv:1712.06135]
[G. Faltings, Ann. Math., 119(2), 1984]

00L9(x.yI) =~ y) + 7). [ K()G(xyID) =0
b
where the Kahler form « is given by:

n:ﬁw,/\d)/:n(z)dzz /):nzl
@ In what follows we will drop the explicit dependence on the moduli 2.

@ At genus one the (Arakelov) Green function only depends on a difference of
points G(X,¥)lp—y = G(X = ¥)lp_s-

@ However, this translation invariance is absent on a Riemann surface ¥ of
genus h > 1.
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The Interchange Lemma

@ The tensor ®/;(x), introduced by Kawazumi, compensates for the lack of
translation invariance at higher genus:  [Kawazumi, MCM2016]  [Kawazumi,
2017]

d>’j(x):/Zdzzg(x,z)w’(z)wj(z)

@ Note that the trace of ®/;(x) vanishes by the definition of the Arakelov
Green function.

@ In particular, the so-called interchange lemma provides a substitute for the
absence of translation invariance:

0G(x, ) wi(y) + 8,G(x, y) wi(x) — %P (x) wily) — By ®s(y) wi(x) = 0

[E. D'Hoker et al., arXiv:2008.08687 [hep-th]]

Martijn Hidding 26/39



Higher Convolution of the Arakelov Green Function

@ Inspired by the alternative construction of the Kronecker-Eisenstein kernels
through convolutions, we define the tensors ®;(x) and G"*5(x, y):

ol /dzzg x,2) &"(2) 9,0y (2) (r>2)
Ghk(x,y) = Ldzzg(x,z)aﬂ(z) 8,6 (z,y) (s>1)

@ At genus one, the derivatives of the tensor G5 for l; = --- = I, = 1 equal
the Kronecker-Eisenstein integration kernels f(+1):

axgllmls(x7 y) ‘h:l = _f(5+1)(x_y|7)

@ The trace ¢+, = 0 for arbitrary genus implies that ®-tensors for arbitrary
r > 1 vanish identically for genus one.

@ In the next part: we will construct generating functions of our kernels, and
combine them into a flat connection.
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Construction of higher-genus polylogarithms
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Generating Functions

@ Let us introduce a non-commutative algebra freely generated by B, for
I=1,---,h (loosely inspired by the approach of Enriquez and Zerbini
arXiv:2110.09341).

@ Next, we fix an arbitrary auxiliary marked point p on the Riemann surface &
and introduce the following generating functions:

H(Xap; B) = axg(x7p) + Z axgh/z'“/r(X’ p)BI1B/2 T B/r
r=1

Hy(x;B) = wy(x) + Y """ (x)B,By, -+ B,
r=1

@ By forming the combination W,(x, p; B) = H,(x; B) — H(x, p; B)B;, we obtain
a compact antiholomorphic derivative:

oxV,(x, p; B) = —7@! (x) B Wy(x, p; B)

for x = p, which generalizes the genus-one differential relation for 2.
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The Flat Connection

@ Next, we extend to a Lie algebra £ freely generated by elements ¢’ and b,
for/=1,--- ,handset B, = ady, = [b}, ]

@ Our connection 7(x, p), on a Riemann surface X of arbitrary genus h with a
marked point p € ¥ and valued in the Lie algebra L is then given by:

T (x,p) = —mwdx &' (x) by + 7 dx H'(x; B) by 4 dx V(x, p; B) d'

@ Working out d,, = dx0y + dx0x, we may show that:
AT (x,p) — T(x,p) A T (x,p) = wdX A dx 5(x, p) [by, d]

proving that the connection is flat (away from x = p).

Martijn Hidding 30/39



Reduction to the Brown-Levin Connection

@ To prove that the connection [J(x, p) reduces to the non-holomorphic
single-valued Brown-Levin connection at genus one, we relabel a' = a and
by =b.

@ Since the tensor &/, and its higher-rank versions all vanish identically at
genus one, the generating function #(x; B) reduces to:

Hi(xB)|  =w'(x)= “1x)

@ The first terms in J(x, p) combine to m(dx — dx)b/ Im 7, thereby
reproducing the contributions ~ (Im7)~! to the non-meromorphic
Brown-Levin connection.

@ The last term in 7 (x, p) reproduces the Kronecker-Eisenstein series by:

Vy(x, p; B) T w1(x) — H(x, p; B)B1 T adp Q(x—p, ady|T)

Martijn Hidding 31/39



Expansion of the Connection

@ The connection J may be expanded in words with r+1 letters in the basis
(CII7 b/)I

JI(x,p) = m(dxw'(x) — dx&'(x))by + wdx Y 0,0" " (x) Y B), --- B, by
r=1

+adx ) (axdﬂf“’u(x) - axg’l'“’f*(x,p)é,”) BB, d
r=1
@ Like before, the flat connection J(x, p) integrates to a homotopy-invariant
path-ordered exponential [(x,y; p):

r(x,y;p) = Pexp/ J(t,p)
y

@ For example, for words with at most two letters in the basis (d', b)):

F(x,y;p) =1+dT(x,y;p) + bl (x,y; p)
+ddTy(x,y; p) + bibT(x,y; p)
+a bl (x,y;p) + bidTy(x,y;p) + - -
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Polylogarithms for Words without b,

@ The polylogarithms associated with words tv that do not involve any of the
letters b, are given by the following simple formula:

X ty tr—1
Chityt, (X, Y3 P) =/ wll(fl)/ wlz(fz)"'/ wy,(tr)
y y y

which we’ll refer to as iterated Abelian integrals.
@ These polylogarithms are independent of the marked point p.
@ They obey the differential equations:

ity (X, ¥: p) = wiy (X)T 1y, (X, ¥3 P)

@ For the case h = 1, we simply obtain:

1
M1...160:2) ], = ] (x=y)"
N~— '

M
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Low Letter Count Polylogarithms

@ Next let us consider some cases involving the letters b,. For the
single-letter word b,;, we obtain:

Pixyip) = [ (- @)

@ For double-letter words with at Lleast one letter b,, we obtain:

M(x,y;p) =m /X (dt (0: 'k () YK = 0,k () Y¥) + (! (2) — @'(1)) /t(w/ - o’)\
y y
r//(Xa)ﬁ ,D) = >

’ (dt () — dt DiG(t, p)o) + 7 (w(£) — &’(f)) / i
y

X

T

(dt B () + dt :G(t, p)&) + mew(t

~<\
El
\_/

r/J(Xay; p) =
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Meromorphic Variants of Polylogarithms

@ Lastly, let’s explore an instance showcasing where the meromorphic
variants of polylogarithms live in our function space.

@ Consider again the following higher-genus polylogarithm:

M/ (x.y:p) = / dt (~0:9//(t) + 510Gt p) + men(O)Y¥ (Tk(t,y:p) — Tt ¥:P) )
y

@ Upon specializing to genus h = 1 and setting p = y = 0, this reproduces the
Brown-Levin polylogarithm ['(ab; p|7) = —T (§; p|7).

@ The integrand with respect to t in the equation above can be viewed as a
higher-genus uplift of the Kronecker-Eisenstein kernel g™ (t|7):

t
gi(t,y;p) = 0, (1) — 50,G(t, p) — 2miw;(t) Y Im / wi
y
@ One may verify that indeed (for t # p):

afd/(tvy;p) =0
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Conclusions and future directions
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Conclusions

@ We have presented an explicit construction of polylogarithms on
higher-genus compact Riemann surfaces.

@ Our construction relies on a flat connection whose path-ordered
exponential plays the role of a generating series for higher-genus
polylogarithms.

@ The flat connection takes values in the freely-generated Lie algebra
generated by elements ¢’ and b, for / = 1, --- , h, introduced by Enriquez
and Zerbini.

@ Our construction provides the first explicit proposal for a “complete” set of
integration kernels beyond genus one.

@ Sidenote: The resulting higher-genus polylogarithms may potentially also
be important for higher-loop gravitational calculations, depending on the
topology of the Feynman diagrams.
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Future Directions

@ Although we have strong evidence the function space of our polylogarithms
is closed under integration, we have not yet proven this conjecture.

@ In addition, there are various more technical roads to follow:

1. Obtaining the separating and non-separating degenerations of the
polylogarithms for arbitrary genera.

2. Determining the differential relations with respect to moduli variations
satisfied by higher-genus polylogarithms.

3. ldentifying generalizations of the higher-genus modular graph tensors that
close under complex-structure variations and degenerations.

4. Re-formulation of higher-genus string amplitudes in terms of the integration
kernels and polylogarithms constructed in this work.
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Thank you for listening!
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Modular Transformations

@ A new canonical basis 2{ and B is obtained by applying a modular
transformation M € Sp(2h,Z), such that M'JM = J.

@ Under a modular transformation, we have:

w(CQ+D)"t, Q= (AQ+B)(CQ+D)?

w =

V= (@c+0)tvca+n)t

@ The moduli space of compact Riemann surfaces of genus h will be denoted
by M.

@ The moduli space My, for h =1, 2,3 may be identified with H,/Sp(2h,Z)
provided we remove from the Siegel upper half space #, for h = 2,3 all
elements which correspond to disconnected surfaces, and take into account
the effect of automorphisms including the involution on the hyper-elliptic
locus for h = 3.

@ For h > 4, the moduli space M}, is a complex co-dimension %(h —-2)(h=73)
subspace of Hy,/Sp(2h,7Z) known as the Schottky locus.

Martijn Hidding 2/14



Definition of Modular Tensors

@ Modular tensors are defined on Torelli space, the moduli space of compact
Riemann surfaces with a choice of canonical homology basis of 2( and 5
cycles.

@ They generalize modular forms at genus one by replacing the automorphy
factor (Cr + D) of SL(2,Z) with an automorphy tensor Q and its inverse
R=0Q%:

0=0M,Q)=CQ+D
R=R(M,Q) = (CQ+D)?

@ The composition law for the automorphy tensors is:

Q(M1M;, Q) = Q(My, (A2 + B2)(C22 + D;) ) Q(M2, Q)

@ The tensors w;, w', Y}, and its inverse Y transform as follows under a
modular transformation:

’ ~ - ’

& =wrR' Yy=Y, R R,
— / ~ — 70

& =0y vW=aq,d,v"
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Definition of Modular Tensors

@ A modular tensor 7 of arbitrary rank transforms as follows:
Tl i (Y = ol oo Q) Oy . O T I
T Q) =y - QR Oy - Q) T Ln(Q)

@ The tensors Y, and Y” may be used to lower and raise indices, respectively,
and can be made to compensate any anti-holomorphic automorphy factor.

@ The tensor U exclusively transforms with holomorphic automorphy factors
Q'y and RY):

S IRER Ay | I 4 R N
(€)= Qhy - QR - an,ﬁuji__yj;(ﬂ)

@ Symmetrization, anti-symmetrization, and removal of the trace by
contracting with factors of Y or 6{ may be used to extract irreducible
tensors.
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Modular Properties of the Brown-Levin Construction

@ Lastly, let us consider the modular properties of the Brown-Levin
construction. Consider a modular transformation on the modulus 7, z, and «
given by:

AT+ B . z . «
T 7= =

cr+p Tt Gy Cr+D
where A, B,C,D € Z with AD — BC = 1.
@ The Kronecker-Eisenstein series  and the functions f(") transform as
modular forms of weight (1, 0) and (n, 0), respectively:
0(2,417) = (Cr + D)z, alr),
f@7) = (Cr + D)'f")(z]7)
@ These transformation properties can be established by using the
transformation properties of the Jacobi §-function:

01(2,8|7) = e(Cr + D) 1™ /(D)9 (z7), =1

@ Or the modular invariance of the functions g,(z|7) along with the relation
fO(2lr) = ~07gn(2I7)
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Modular Properties of the Brown-Levin Construction

@ The modular properties of the Brown-Levin connection and polylogarithms
are most transparent by assigning the following transformation law to the
generators a, b:

. . = b
a—a=(Cr+D)a+ 2wiCb, b—b= D

@ This choice renders the flat connection [Jg. modular invariant under the
transformation.

@ The extra contribution 27iCb to d is engineered to compensate the
transformation of the first term in the expression for the connection:
ndz; CT+Dmdz

Im7"'b_ Cr+DIm~
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Modular Transformations of Generating Functions

@ To obtain tensorial modular transformations properties for the generating
function, the modular transformations of its components must be
accompanied by the following transformation properties for the algebra
generators B;:

éj = Bj/Rj/j
H,(x; B) = Hy (x; BIR'
\Tj](xvp; B) = \Uf'(xap; B)R//J

@ The generating function H(x, p; B) is then invariant.

Martijn Hidding 7/14



Modular Invariance of the Connection

@ Under a modular transformation M € Sp(2h,Z), which acts on @', B;, H,, and
V,, and on the Lie algebra generators a and b, by:

ad—d =0,d+2xic"b
b/-)E/ijRj/

@ The connection J(x, p) is invariant.

@ In the basis (@, b)) of generators of the Lie algebra £, the connection
J(x, p) takes on a simplified form:

J(x,p) = —mwdx &' (x) by + dx V,(x, p; B) &

@ The connection J(x, p) is manifestly invariant under Sp(2h, 7).
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Shuffle Algebra for Multiple Polylogarithms

@ Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:
G(S1,52,-sSk:Z) * G(Sk1y ey Sr1 Z) = Z G(So(1)sSo(2)s -+ Sa(r)s Z),
shuffles o

where the sum runs over all permutations o which are shuffles of (1,...,k)
and (k+1,...,r), preserving the relative order of 1,2, ..., k and of
k+1,..r.

@ A simple example of the shuffle product of two multiple polylogarithms is:
G(S1;Z) . G(Sz;Z) = G(S1,52;Z) + G(Sz,Sl;Z).

@ The proof of the shuffle product formula relies on the integral
representation of multiple polylogarithms. In fact, a shuffle algebra
structure holds for all the homotopy-invariant iterated integrals which we
consider.
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Removing Trailing Zeros

@ Multiple polylogarithms with trailing zeroes do not have a Taylor expansion
in z around z = 0, but logarithmic singularities at z = 0.

@ We can use the shuffle product to remove trailing zeros, separating these
logarithmic terms, such that the rest has a regular expansion around z = 0.

@ For example, for G (s1,0; z) with s; # 0, we have:
G(51,0;2) =G(0;2)G(s51;2) — G(0,51;2).

@ Both G(s;;2) and G(0, s1; 2) are free of trailing zeros. We then define the
special cases:

G(0; ) = log(2) G (6n;z) - %Iog(Z)”,

where 5,, denotes a sequence of n zeros. These definitions follow the
tangential basepoint prescription:

/X % = |og(X) — |0g(€) — |Og(X)
O+e

for a prescribed tangent vector (in C) with |¢| < 1.
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The Arakelov Green Function

@ The Arakelov Green function G(x,y|Q2) on ¥ x X is a single-valued version
of the Green function, defined by:  [D’'Hoker, Green, Pioline, arXiv:1712.06135]
[G. Faltings, Ann. Math., 119(2), 1984]

0:0,G (%, y|Q) = —7(x, y) + 7h(x) | /z K()G(x,y|Q) = 0

@ The string Green function is given in terms of the prime form E(x, y) by:

G(x,y) = — log [E(x,y)[2 + 27 (Im /yxw,) (Im/yxw’>

@ The prime form E(x, y) is a unique form that is holomorphic in x and y and
vanishes linearly as x approaches y.

@ An explicit formula for G(x, y) may then be given in terms of the
non-conformally invariant string Green function G(x, y):

G(x,y) = G(x,y) —v(x) = v(y) + 10
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The Arakelov Green Function

@ The functions (x) and 7 are given by:

100 = [ 6@ 0= [ w0

@ The Kahler form « is given by the pull-back to ¥ under the Abel map of the
unique translation invariant Kahler form on the Jacobian variety
J(X) = C"/(Z" + QZ"), normalized to unit volume:

i
nzﬁw,/\@/:n(z)dzz /):n:

@ Both k and G(x, y) are conformally invariant.

@ The Arakelov Green function also obeys the following derivatives:

0Dy G(x,y) = =00y InE(x,y) + mwi(x) w'(y)
KOG (x,y) = md(x,y) — mwi(X) @' (y)
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Polylogarithms In The Hatted Basis

@ In the basis (@, b;), the expansion is given by:

F(y;p) = 1+aTi06y:p) + b (x.y: p)
+a'dTy(x,y; p) + bibs T (x,y; p)
+ ?J’b/f/(x,y; P) + bla'lflj(xa Y p) + -

@ Identifying term by term in both expansions gives the relations I'; = f, and

Iy = [y, as well as the following relations:

By,
=1 —=ny*rg
[/ =T/ —aly vy
A SV o Ry S R RV R L.

@ The polylogarithms f(x, y; p) in the basis (@, b;) are modular tensors by the

Sp(2h,Z) invariance of the connection 7 (x, p).
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Simplified Representations

@ The polylogarithms with upper indices admit simplified representations in
terms of the iterated abelian integrals, their complex conjugates and
contractions with Y”.

@ For words with a single letter b; we have:

M(x,y;p) = «Y"(T)(x,y;: p) = Ts(x,y: p))
@ For two-letter words that contain at least one b,, we have:

F/(x,y:p) = mY*Ti(x,y:p) + / dt (—arq’j/(t) + 610:G(t, p) — mwi(t) Y T (t, y; P))
y
T(x,y: p) = oY (Cu(x,y: p) — Ti(x,y: )Tk (X, y: p))

/ dt (a ®/y(t) — 6)0:G(t, p) + Twy (t) YTk (¢, y; p))

Mxyp) = YIKYJL(FKL X,y:P) + Tk (Y P) — Tk(, Vi P)TL(x.:p)
/ t(0:0k(t)YY — ()Y

+ md ()Y Tty p) — m! (YTt yip))
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