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Plan

Motivation

Probing and measuring chaos with particles, waves, strings and ‘black-holes’

Digression: RMT (Random Matrix Theory) and β-ensemble

HES (Highly Excited String) and DDF (Del Giudice, Di Vecchia, Fubini) operators

Chaos in the decay of HES into two light strings
Amplitude
Statistical analysis

Chaos in 4-point amplitudes with HES
HES dressing factor wrt Veneziano amplitude ...
high energy: fixed-angle vs Regge regime
chaotic behavior, transition to ’regular’ behavior

Conclusions and outlook
... No chaos in Veneziano, neither in Remmen ...
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Motivation

Chaotic behaviour is common in a wide range of processes, including humans
Energy spectrum of quantum Hamiltonian systems {En} (e.g. RMT) or better spacings

δn = En+1 − En

or even better, ratios

rn ≡ En+1 − En

En − En−1
=

δn+1

δn
, r̃n = min{rn,

1

rn
}

For our purposes: analogy with dependence of scattering amplitudes A(α) or better log
derivatives

F (α) ≡ d

dα
logA(α)

on some kinematical (angular) variable α

{zn} = {α : F (α) = 0}

spacings
δn = zn − zn+1

ratio’s

rn ≡ zn+1 − zn
zn − zn−1

=
δn+1

δn
, ... r̃n

Classical example: pinball scattering
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From classical to quantum chaos

Pinball scattering: high-sensitivity on initial condition, classical ‘deterministic’ chaos

Quantum Chaos: quantum version of Sinai billiard (square with disk removed) ... ergodic
[Bohigas, Giannoni, Schmit, ... ], Hadamard/Artin billiard ... deterministic chaos (Riemann surfaces
with g ≥ 2 or with cusps)
Chaos in the S-matrix ... ‘leaky torus’ [Gutzwiller] ... ζ function!
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Chaos and Riemann ζ function

Riemann hypothesis: all (infinite number) non-trivial zero’s on critical line zn = 1/2+ iyn,
normalized spacings

δ̄n =
yn − yn−1

2π
log

yn
2π

Probability Distribution Function (PDF): Wigner surmise

pW (δ̄) =
32

π2
δ̄2e−

4
π
δ̄2

GUE distribution (2×2, β = 2) of ratio’s rn = δ̄n+1/δ̄n

fGUE (r) =
81

√
3

4π

(r + r 2)2

(1 + r + r 2)4

with rpeak = 1√
2
and ⟨r⟩ = 4/π ≈ 1.273, well approximated by Log-Normal

fLN(r) =
1√

2πσ2r
exp

(
− [log(r)− µ]2

2σ2

)
with rpeak = exp(µ− σ2) and ⟨r⟩ = exp(µ+ 1

2
σ2), for µ = 0 and 2σ2 = π2 − 8
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Distribution of the first N = 2, 001, 052 zero’s of the ζ function

Table available online: [A. Odlyzko, “Tables of zeros of the Riemann zeta function,” http://www.dtc.umn.edu/ odlyzko/zeta tables]

Wigner surmise: distribution of ‘normalized’ spacings δ̄ between consecutive zero’s of
Riemann ζ function

GUE (blue) and Log-normal (orange) fits of ratio’s rn
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Wave scattering: ‘leaky’ torus

Leaky torus: upper half plane [M. C. Gutzwiller, Physica D: Nonlinear Phenomena 7, 341 (1983)]

(a): x = −1, (b): x=1, (c): (x − 1/2)2 + y 2 = 1/4, (d): (x + 1/2)2 + y 2 = 1/4
with (a)=(c), (b)=(d)
Phase shift of waves from y = ∞ to y = yout

F (k) =
Im[ζ(1 + 2ik)]

Re[ζ(1 + 2ik)]

∼ phase of ζ along z = 1, distribution of local extrema F ′(zn) = 0
Sample of N = 22, 618 extrema from k1 ≈ 3.19 to kN ≈ 12, 927: ⟨r⟩min = 1.394,
⟨r⟩max = 1.418, ⟨r⟩all = 1.944

Left: Function F (k).
Right: Average value of the ratio ⟨r⟩ as a function of number of zero’s N of dF/dk
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Leaky torus

Left: Distribution of the ratio r (first 10188 zero’s of dF/dk)
Right:Distribution of the ratio r (first 3720 maxima of F (k))

Left: Distribution of the ratio r (first 3720 minima of F (k))
Right: Distribution of the ratio r (first 7440 zero’s of dF/dk)
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Digression: Random Matrix Theory

Large number of nuclear resonances ... impossible to diagonalize the Hamiltonian.
Statistical approach: Porter-Thomas distribution, Wigner surmise ∼ eigenvalues of a
random matrix ... RMT ... excellent agreement with experimental data!
Three universality classes: GOE, GUE or GSE (for gaussian matrices), COE, CUE, CSE
(for circular ensembles λ = e iθ) [Dyson, Wishart, Metha, Gaudin, Berry ...]

Level repulsion: Coulomb gas V (xi , xj) = log |xi − xj |, β ensemble

Pβ,N(λ) = CNe
− β

2

∑
i λ

2
i

∏
1≤i<j≤N

|λi − λj |β

Special cases: GUE β = 2, GOE β = 1, GSE β = 4
For 3× 3 matrices and ratio r = (λ3 − λ2)/(λ2 − λ1)

fβ(r) =
3

3+3β
2 Γ(1 + β

2
)2

2πΓ(1 + β)

(r + r 2)β

(1 + r + r 2)1+
3
2
β

For N > 3 mild dependence on N.
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From particles and waves to ‘black holes’ and strings

Hard to find systems with a large number of ’states’ at weak coupling ... strings ... black
holes
Black Holes: scrambling, thermalization, ... information loss ...
Scrambling time ∼ Ehrenfest time, breakdown of semiclassical approximation
Holography [Festuccia, Liu 0506202] Butterfly effect [Shenker, Stanford 1306.0622]

Exponential growth of (OTOC) out-of-time-order correlator ... , [Kulaxizi, Ng, Parnachev 1812.03120,

Karlsson, Kulaxizi, Parnachev, Tad́ıc, 1904.00060]

Quantum Lyaponuv-like exponent ... (holographic) bound on chaos [Maldacena, Shenker, Stanford

1503.01409]

λL < 2πκBTH/ℏ

horizon: large red-shift ∼ exponentially large time delay vs photon-rings, chaotic behavior
of critical geodesics
NB: ‘merger’ when photon-rings coincide NOT horizons [Christodoulou, Ruffini]

‘classical’ Lyapunov exponent ... chaos at the rim of BH and fuzzball shadows [MB, Grillo,

Morales 2002.05574, MB, Consoli, Grillo, Morales 2011.0434]

λL <
Cd

bmin
≈ −ImωQNM

valid for (near)extremal ‘gravitating objects’ (BHs, branes, ... ECOs, fuzzballs)
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Why strings ?

(Open bosonic) strings: Regge resonances

α′M2 = N − 1

Very narrow at gs =, broadening and mixing effects even at small gs ... RMT?
Highly excited strings (HES): large N and many different harmonics ∼ random walks
String/BH correspondence: transition when string inside its ‘horizon’ [Horowitz, Polchinski; Damour,

Veneziano; Susskind, ...]

2GM = ℓs =
√
α′

Since G ≈ g 2
s α

′ and
√
α′M ≈

√
N need g 2

s = 1/
√
N... weak coupling

Test of the correspondence [Amati, Russo]: emission from an ensemble of excited strings at
mass/level N, get ‘expected’ black-body spectrum for (low-energy) emitted quanta
More recently [Firrotta, Rosenhaus; Firrotta] e.g. decay amplitude of a ‘micro-state’ at level N into a
‘micro-state’ at level N ′ < N with tachyon/photon (low-mass) emission with

Ek << MN′ < MN

... thermalization at

Teff = THag/
√
N , 2π

√
c

6
THag =

1√
α′
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Highly excited strings and DDF operators

Focus on open bosonic strings ... closed string: KLT/double copy
Spectrum α′M2

N = N − 1 with S ≤ N
Exponentially growing degeneracy ... Hagedorn / ‘CHardy-Ramanujan’ / Dedekind

dN ≈ e2π
√

c
6
N

Hard to identify BRST invariant vertex operators for N > 3 [Stieberger, Taylor; MB, Lopez, Richter;

Schlotterer; ...]

DDF [Del Giudice, Di Vecchia, Fubini] approach
Choose null momentum q (q2 = 0) and p (α′p2 = 1) such that 2α′pq = 1
Then pN = p − Nq on-shell at level N, ‘transverse’ DDF operators

Ai
n(q) =

∮
dz

2π
∂X ie inqX , [Ai

n,A
j
m] = nδijδn+m

Most general BRST invariant state

|{nk} : N =
∑
k

knk , pN⟩ =
∞∏
k=1

Aik
−k(q)|0, p⟩

Transverse ‘covariant’ polarizations: ζµk = λi
k(δ

µ
i − 2α′piq

µ) with ζk ·p = 0 = ζk ·q
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DDF construction

Physical picture: tachyon absorbing/emitting photons

4-point HTTT amplitude
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From low-mass to typical states ...

Low-mass: tachyon (N = 0), vector boson (N = 1), tensor boson (N = 2: n1 = 2 or
n2 = 1), ... integer partitions

N =
∞∑
k=1

k nk , J =
∞∑
k=1

nk

Leading Regge trajectory n1 = N = J ... very special / a-typical

Typical state γ⟨J⟩N =
√
N logN with γ = π

√
2
3
, Gumbel distribution

dN(J) = γ exp
(
−γ(J − ⟨J⟩N)− eγ(J−⟨J⟩N )

)
Coherent states [Skliros, Hindmarsch; Copeland; MB, Firrotta; Aldi, Addazi, Marcianò; ...] ... normal ordering

|C, λn; p⟩ = e
∑∞

k=1
1
k
λk ·A−k |p⟩ , VC = e

∑
k

1
k
ζ̂k ·Pk+

∑
k,n

1
2kn

ζ̂k ·ζ̂nSk,ne ipX

where ζ̂µk = e−ikqζµk and

ζk ·Pk =
k∑

h=1

i

(h−1)!
Zk−h(u

(k)
ℓ )ζk ·∂hX , Sk,n =

k∑
h=1

hZk−h(u
(k)
ℓ )Zn+h(u

(n)
ℓ ) = Sn,k

with u
(k)
ℓ = −ik

(ℓ−1)!
q·∂ℓX and cycle index polynomial Zk(uℓ) =

∑
nℓ:
∑

ℓ ℓnℓ=k

∏
ℓ=1,k

u
nℓ
ℓ

nℓ!ℓ
nℓ

15 / 33



Decay of a HES into two light particles (tachyons)

Simple, yet ‘generic’, HES (Highly Excited String) at level N(>> 1)

|H(J)
N ⟩ =

N∏
k=1

(λ·A−k(q))
nk |0, p⟩ =

N∏
k=1

(
λ· ∂

∂Jk

)nk

|C,Jk ; p⟩

with λk = λℓ = λ complex null polarisation λ·λ = 0 = p·λ = q·λ
Decay amplitude ∼ 3-point function on the disk

A(p1, p2, p3) = ⟨cVT (p1)cVT (p2)cVHES(p3)⟩

where c ghost (h = −1) and V ’s BRST invariant vertex operators.

If H
(S)
N had definite spin S

AHSTT = CS({nk})[λ·(p1 − p2)]
S
λ⊗S=HS

In the rest frame p⃗2 = −p⃗1, Legendre/Gegenbauer polynomial ... NO chaotic behaviour
Generic partitions of N, ‘random’ superposition of many different ‘spins’ N ≥ S ≥ J ...
chaotic behavior of angular distribution.
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Chaotic behavior of angular distribution of decay products

Decay amplitude [Gross, Rosenhaus; MB, Firrotta, Sonnenschein, Weissmann]

A
H
(J)
N

→TT
= (sinα)J

∞∏
m=1

[
sin(πm cos2

α

2
)
Γ(m cos2 α

2
)Γ(m sin2 α

2
)

Γ(m)

]nm

where cosα = 2α′q·pT (α ∼ π − α)
Consider logarithmic derivative

F (α) ≡ d

dα
logA(α) = J cotα− π

2
sinα

N∑
m=1

nm

m−1∑
k=1

m

m − k −m cos2 α
2

Setting z = cos2 α
2
, look for solutions of F (z) = 0: extrema (‘peaks’ of |A|)

Result: ratios rn of the spacings between consecutive peaks of the amplitude distributed
according to β-ensemble
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Statistical analysis

Selection of ‘generic’ state at level N: technical difficulties in selecting un-biased random
states i.e. non-trivial algorithm that generate random partitions at a given level N such
that all partitions be equally likely
a) Large N ∼10,000 ... sufficient number of zeros for single amplitude
b) Intermediate N ∼100 many different states ∼ union of many sets {rn}N(J)

Fit with β-ensemble or log-normal distributions:

β(N) = β0 +
β1

N
+ ...

with β0 = 1.68 up to slow log terms
Average ⟨rn⟩ increases slowly (logarithmically) with N
Mild dependence on J at fixed N
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Tables for HTT decay

N J Total number Points Per Average Fitted
of states in sample state ⟨rn⟩ β

50 11 17,475 46,354 24 1.206 3.36

75 15 552,767 69,247 34 1.247 2.81

100 18 11.1 × 106 92,251 46 1.271 2.55

150 23 1.90 × 109 139,428 70 1.307 2.26

200 28 158 × 109 184,705 90 1.333 2.09

300 37 295 × 1012 276,244 138 1.357 1.96

400 45 184 × 1015 370,123 186 1.372 1.88

800 70 1.08 × 1026 728,048 362 1.400 1.76

1600 109 4.22 × 1038 1,446,008 720 1.413 1.72

Dependence of ⟨r⟩ and β on N
for samples of 2000 states at each N and J = ⟨J⟩N

N Total number Points Per Average Fitted
of states in sample state ⟨rn⟩ β

50 204,226 215,980 22 1.194 3.58

60 966,467 261,619 26 1.213 3.27

80 15.8 × 106 352,526 34 1.244 2.87

100 191 × 106 441,100 44 1.266 2.62

150 40.9 × 109 668,831 66 1.301 2.32

200 3.97 × 1012 886,007 88 1.325 2.15

Dependence of ⟨r⟩ and β on N
for samples of 10,000 random partitions of N and J Gumbel-distributed
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Plots for HTT decay

J Total number Points Per Average Fitted
of states in sample state ⟨rn⟩ β

6 143,247 155,162 80 1.203 3.60

10 2.98 × 106 126,008 64 1.241 2.95

14 8.86 × 106 105,502 54 1.263 2.65

18 11.1 × 106 92,251 46 1.271 2.55

22 9.24 × 106 83,405 42 1.276 2.52

26 6.32 × 106 76,211 38 1.272 2.57

30 3.91 × 106 70,650 30 1.262 2.69

50 204,226 51,287 26 1.209 3.38

70 5604 31,060 16 1.197 3.50

Dependence of ⟨r⟩ and β on J for N = 100. For each J: 2000 random states.
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4-point amplitudes with HES

Simplest case: HES and 3 tachyons A(T ,T ,T ,H)
Use coherent states in DDF approach ‘as’ generating function

Agen(T ,T ,T , C;Jn) =

∫ 1

0

dz z−
s
2
−2(1− z)−

t
2
−2 e

Jn

(
T (2)
n (z)+T (3)

n (z)
)

where

T (2)
n (z) = zp2

(nq·p3)n−1

Γ(n)
2F1(1 + nq·p2, 1−n; 2−n(1+q·p3)|z)

T (3)
n (z) = p3

(nq·p3)n
nq·p3Γ(n) 2F1(nq·p2, 1−n; 1−n(1+q·p3)|z)

Project onto specific amplitude(s)

A(T (p1),T (p2),T (p3),H
(J)
N (q, p)) =

∏
n

(
ζ· d

dJn

)gn

Agen(T ,T ,T , C)
∣∣∣
Jn=0

with N =
∑

n ngn, J =
∑

n gn and ζn = ζm = ζ, as before
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Dressing Factor and ... chaos

AHES
gen (s, t) = AVen(s, t)e

∑
n JnOn

(
d
dξ

)
+
∑

n,m JnJmMn,m

(
d
dξ

)
1F1(−α′s−1;−α′s−α′t−2|ξ)

∣∣∣∣∣
ξ=0

Veneziano amplitude ...

AVen(s, t) =

∫ 1

0

dz z−α′s−2(1− z)−α′t−2 =
Γ(−α′s − 1)Γ(−α′t − 1)

Γ(−α′s − α′t − 2)

× Dressing Factor:

DHES =
∑
ℓ

Cℓ
(−α′s−1)ℓ

(−α′s−α′t−2)ℓ

a) Veneziano (or first Regge trajectory) ... NO chaos
b) dressing factor ... chaotic behavior
c) high energy (Mn,m sub-leading): fixed angle regime vs Regge regime
d) transition from chaotic to ’regular’ behavior
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HTTT amplitudes

Log-derivative of HTTT amplitude. Two generic ‘nearby’ partitions.

Distribution of rn for 500 random partitions of N = 100, with log-normal fit
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Chaotic behavior in the Regge regime (1)

Regge α′s >> α′|t| >> 1

Agen(T ,T ,T , C) =
∫ 1

0

dz z−
s
2
−2(1− z)−

t
2
−2 e

Jn

(
T (2)
n (z)+T (3)

n (z)
)

captured by leading behavior around z ≃ 1

T (3)
n

∣∣∣
z=1

= (−)n+1p3
Γ(n + nq·p1)

Γ(n)Γ(1 + nq·p1)

and

T (2)
n

∣∣∣
z=1

= (−)n+1p2
Γ(n + nq·p1)

Γ(n)Γ(1 + nq·p1)
and the amplitude simplifies to

ARegge = (−)N
∏
n

(
Γ(n+nq·p1)

Γ(n)Γ(1+nq·p1)
ζ·p1

)gn ∫ 1

0

dz (1− z)−t/2−2e−(s/2−2)(1−z)

that after integration yields

ARegge = (−)N(ζ·p1)JΓ
(
− t

2
−1

)
s

t
2
+1

∏
n

(
Γ(n+nq·p1)

Γ(n)Γ(1+nq·p1)

)gn
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Chaotic behavior in the Regge regime (2)

Setting t = −
(
s −

∑
j M

2
j

)
sin2

(
θ
2

)
Γ(n + nq·p1)

Γ(n)Γ(1 + nq·p1)
=

1

Γ(n)
Γ

(
n − n

sin θ + 1

)
Γ

(
n

sin θ + 1

)
sin

(
nπ

sin θ + 1

)
for s >> |t|: θ << 1, 1

1+sin θ
≃ 1− sin θ and

Γ(n + nq·p1)
Γ(n)Γ(1 + nq·p1)

≃ (−)n+1

Γ(n)
Γ(n sin θ)Γ(n−n sin θ) sin(nπ sin θ)

and finally, using ζ·p1 ≃
√
s,

ARegge = (−
√
s)JΓ

(
− t

2
−1

)
s

t
2
+1

∏
n

(
Γ(n sin θ)Γ(n−n sin θ)

Γ(n)
sin(nπ sin θ)

)gn

Barring overall dependence on s, very similar to 2-body decay after cos2 α
2
↔ 1

1+sin θ
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Chaotic behavior in the high energy fixed angle regime (1)

In the generating function

Agen(T ,T ,T , C) =
∫ 1

0

dz z−
s
2
−2(1− z)−

t
2
−2

∏
n

Wn(Jn; z)

with s >> 1, t >> 1 with s/t fixed, factor

Wn(Jn; z) = e
Jn

(
T (2)
n (z)+T (3)

n (z)
)

slowly varying, saddle point at z∗ = s
s+t

that yields

Af .a
gen ≃

∏
n

Wn(Jn;
s

s + t
) e−s log s−t log t+(s+t) log (s+t)

so that

Af .a ≃
∏
n

(
T (2)
n

(
s

s + t

)
+ T (3)

n

(
s

s + t

))gn

e−s log s−t log t+(s+t) log (s+t)
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Chaotic behavior in the high energy fixed angle regime (2)

Using kinematics in the fixed-angle regime

q·p2 = − 1

1 + sin θ
, q·p3 =

1− sin θ

1 + sin θ
= −2q·p2 − 1

ζ·p2 = −
√
s

2
+

√
s

2

cos θ

1 + sin θ
, ζ·p3 = −

√
s

cos θ

1 + sin θ

one has

T (2)
n (s, θ) =

√
s
(

cos θ
1+ sin θ

−1
) (

n 1−sin θ
1+sin θ

)
n−1

2Γ(n)[cos2( θ
2
)+

M2
tot
s

sin2( θ
2
)]

2F1(1−
n

1+ sin θ
, 1−n; 2− 2n

1+ sin θ
| 1
σ
)

with σ = cos2( θ
2
)+

M2
tot
s

sin2( θ
2
) and

T (3)
n (s, θ) = −

√
s

Γ(n)

cos θ
(
n 1−sin θ

1+sin θ

)
n

n(1− 2N
s
− sin θ)

2F1(−
n

1+ sin θ
, 1−n; 1− 2n

1+ sin θ
| 1
σ
)

Finally

Af .a ≃
∏
n

(
T (2)
n (s, θ) + T (3)

n (s, θ)
)gn

e−s f (θ)
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Fixed-Angle regime vs Regge regime

Dressing factor in fixed-angle regime: distributions of r and r̃
for 2000 random partitions of N = 100 and J = 18

Dressing factor in Regge regime: distributions of r and r̃
for 2000 random partitions of N = 100 and J = 18
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Transition from chaos to regular behavior

Spacings δn as a function of zn for two random states of N = 100
transition from random to regular behavior

Distribution of spacing ratios rn in the ranges θ ∈ (0.15, 0.45) (left) and θ ∈ (0.15, 0.75)
(right). In the latter, narrow peak at r = 1 on top of chaotic distribution.
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Summary

For 2-body decay processes: distribution of spacings of peaks well modelled by
β-ensemble, with the parameter β depending on the level N and the helicity J of
HES state.
For N = 50− 1600, β decreasing from 3.4 to 1.7, while ⟨r⟩ slow-monotonously
increasing with N.

For 4-point scattering amplitude: Veneziano (non-chaotic) times dressing factor
(‘chaotic’), depending on HES state.
High-energy: fixed-angle limit vs Regge regime.
For HES states with N = 100 GUE-like distributions for rn with β around 2.

Transition from chaotic to regular spacings as range of scattering angle from small
to large.

Chaotic behavior completely disappears for leading Regge trajectory or nearby states,
i.e. for HES with N ≈ J
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Outlook

Clarify (origin of) dependence of β on N and J ... more statistics

More amplitudes with one HES and amplitudes with two or more HES [Di Vecchia, Firrotta

w.i.p.]

Chaotic behaviour in other kinematical variables ... Coon amplitude and Remmen
amplitude

Coherent states as proxy’s of ‘spinning BHs’ ... (neutral) fuzzballs ... top stars [Bah,

Berti, Heidmann, Spinney; MB, Di Russo, Grillo, Morales, Sudano]

HmEST ... [MB, Di Russo w.i.p.]

Higher-loops
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Appendix 1: Random partitions of a large integer

As discussed in the talk, the number of partitions of an integer N grows exponentially in
√

N.
Since we cannot probe the full space of states, we need a reliable method of picking representative, generic states in a random way.
Picking a partition of a large integer N at random, which each partition having an equal probability of being chosen, is a non-trivial task. We present here
one algorithm that accomplishes this goal.
We represent a partition as a list nm , m = 1, 2, . . . N, where nm is the number of times that m occurs in the partition.
Rely on probabilistic algorithm presented in [Arratia:2016]. It relies on an observation by Fristedt [Fristedt:1993] on the asymptotic distributions of {nm}
for large N, namely that each nm has the geometric distribution

P(nm = k) = (1 − pm)k pm

with

pm = 1 − exp

(
−

mπ
√

6N

)
One can generate a random partition of N by drawing values of {nm}, m = 1, 2, . . . , N from the above distribution, until one reaches one that
corresponds to a partition of N. That is, until we get a set of {nm} that satisfy the constraint

∑
m mnm = N. The result of [Fristedt:1993] implies that

the partitions of N that will be reached by this algorithm will be uniformly distributed.
The downside of the algorithm is that it needs to reject many sets of {nm} until it reaches one that satisfies the constraint, with the expected number of

rejections being O(N3/4). By use of probabilistic algorithms one can improve the number of rejections to O(N1/4) or even O(1) [Arratia:2016].

The simpler, O(N1/4) algorithm is as follows:

1 Draw {nm} for m ≥ 2, with nm distributed according to (??).

2 Set k ≡ N −
∑N

m=2 mnm . If k < 0 restart from step 1.

3 Draw a random variable u ∈ (0, 1) from the uniform continuous distribution. If u < e
− kπ√

6N , reject the partition and return to step 1.

4 Set n1 = k to finish.

Step 3, where some partitions are rejected at a specifically chosen probability, assures that the probability to output a given partition is as before.
We can use a modification of the above algorithm to generate a partition of a given length J. We modify only step 1, where we start by choosing {nm}
such that nJ ≥ 1 and nm>J = 0. Then, the result after step 4 will be a partition of N where the maximum summand in the partition is mmax = J.
Then, taking the conjugate partition, we get a partition of N into J parts.
We have used several methods of picking random partitions. One is the brute force method: generate a list of all possible partitions of a given N (and J
when that is constrained), then, select random elements from the list with equal probability.
This is the simplest method at smaller N, but becomes impractical quickly as one increases N. For unconstrained partitions of N we have used
Mathematica’s built-in (as part of the Combinatorica package) RandomPartition function.

To produce constrained partitions, i.e. of large N with fixed J, we have used the algorithm described above in the cases where the brute force method was

unavailable.
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Appendix 2: Kinematical setup

p1 = (E1, pin, 0, 0⃗), p2 = (E2,−pin, 0, 0⃗)

p3 = −(E3, pout cos θ, pout sin θ, 0⃗), p = −(E4,−pout cos θ,−pout sin θ, 0⃗)

q =
(1, 0, 1, 0⃗)

E4 + sin θ pout
, λ =
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relevant scalar products

q·p1 = −
E1

sin θ pout + E4

=
−1

1 + 2N
s

+ 2 sin θ

√
2
s

+ 1
4

(
1 − 2N

s

)2 = q·p2

q·p3 =
E3 − pout sin θ

E4 + pout sin θ
=

1 − 2N
s

− 2 sin θ

√
2
s

+ 1
4

(
1 − 2N

s

)2
1 + 2N

s
+ 2 sin θ

√
2
s

+ 1
4

(
1 − 2N

s

)2
and

λ·p = pout cos θ =
√

s cos θ

√√√√ 2

s
+

1

4

(
1 −

2N

s

)2
= −λ·p3

λ·p1 = pin =
√

s

√
2

s
+

1

4
= −λ·p2

where for convenience Λ⃗ = 0⃗
Since ζ·pj = λ·pj − λ·p q·pj , it follows that
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the combination of these terms reflects the momentum conservation ζ·(p1 + p2 + p3) = 0.
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