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Over the past decade, we have seen scattering amplitudes emerge from

new mathematical structures in boundary kinematic space.

amplituhedron associahedron cosmological polytopes

conceptual advantage: focuses directly on observables

practical advantage: simplifies calculations



We can't directly observe the pre-Big Bang evolution of the universe,

but instead must infer it from spatial correlations on the future boundary.

time

How can we see “time evolution” from boundary correlators?



In de Sitter space, conformal symmetry implies that

boundary correlators satisty interesting, local differential equations.
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Is there a deeper reason for their existence beyond de Sitter?



Cosmological Wavefunction

Consider the wavefunction of conformally-coupled scalars in FRW.

VoV

<

with
1 1 A 0. ds
S = /d4:1:\/—g {—5(8@2 _ ER¢2 _ gng} e=20:
’ e=—1: flat
! e = —2 : radiation
ds® = a”(n)(=dn” + di%), a(n) x £ = —3: matter




Cosmological Wavefunction

Consider the wavefunction of conformally-coupled scalars in FRW.
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We can associate these Feynman diagrams with graphs, where bulk-to-

boundary propagators are truncated.
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Wavefunction in Minkowski

Flat-space wavefunction is described by rational functions with simple poles.

1
— (X1 +Y)(Xo + V) (X1 + Xo) < /\

X14+2Xo+ X35 +Y +Y’

T T G YY) (0 Y V) (G 1Y) (X1e + YY) (X3 + V) X103 <

It also has an interesting geometric origin (“cosmological polytopes”).
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Wavefunction in FRW

Wavefunction in FRW is related to the flat-space one as
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For example, a two-site graph has the integral representation
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This integral can be computed using the method of differential equations.



Family of Integrals

Consider a family of integrals with the same singularities.
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These integrals form a finite-dimensional vector space.

(Twisted) cohomology provides a geometric way to determine the size of

this vector space.

Aomoto, Kita [2011]
Mastrolia, Mizera [2018]



Master Integrals

The number of independent master integrals equals the number of bounded

regions defined by the singular divisors of the integrand.

L2

> L1 T1:ZC1

Blle——Xl + 1
BQZZIZQ——XQ——l
By =z 4+ 22 + X1 + Xo




Master Integrals

A good choice for the basis of integrals is given by the canonical forms of

bounded regions.
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Differential Equations

Taking the differential leads to first-order differential equations:
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The Solution

The solution after imposing appropriate boundary conditions is
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Graphical Representation

We may also express the differential equations graphically as

dp = (p = F) (s 4 F (o + (¢ — F) o) + F =9

dF = F (e—e— 4+ (F — 2Z) (e—ef8) + Z (=20

~ ~

dZ = 27 (==

with

€d10g(X1 — 1) ,
edlog(Xs — 1),

——x—eo 5dlog(X1 4+ 1) 7 ——o

B = cdlog(Xa+1), 6=
= cdlog(X, + Xo).



More Complex Example

A similar pattern holds for a three-site graph:
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The letters are given by connected tubings of a marked graph.
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More Complex Example

A similar pattern holds for a three-site graph:

Y Y’

X1 Xo X3

The sources are given by (disjoint) tubings that enclose at least one cross.
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Time Evolution as Boundary Flow

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.
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Time Evolution as Boundary Flow

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.



Time Evolution as Boundary Flow

Taking the differential of one of the source functions gives
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Time Evolution as Boundary Flow

Taking the differential of one of the source functions gives
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The equation can be predicted using simple graphical rules.



Time Evolution as Boundary Flow

Taking the differential of one of the source functions gives
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These graphical rules are universal, which can be used to predict the

differential equations for arbitrary tree graphs!




Space of Functions

The functions arising at tree level have an iterative structure.
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Beyond Single Graphs

A graph corresponds to a specific triangulation of a kinematic polygon.

If the scalars have a color charge (e.g. bi-adjoint qﬁg), then there are additional

triangulations corresponding to distinct permutations.
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Beyond Single Graphs

Letters are now represented by subpolygons with (dashed) internal edges.
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Sources are given by subpolygons with at least one dashed internal edge.
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Beyond Single Graphs

For example, taking the ki derivative of the 5-point function gives
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Beyond Single Graphs

The system of equations closes when the subpolygon is fully grown.
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Outlook

We have found a completely systematic, graphical way of deriving the

differential equations for cosmological correlators at tree level.

o o
| (o = . 4 L (e ) _

Many important questions still need to be addressed:

e loops?
e spin’

e massive particles?



