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Bootstrap approach to QFT

“Nature is as it is because this is the only possible Nature consistent with itself ” Geoffrey Chew

4 ™
Constrain observables using

symmetries and consistency conditions
\_ W,

Basic physical criteria for consistent scattering amplitudes:

e |orentz invariance

® Unitarity SST=1

® |[ocality i ~




Bootstrap approach to CFT

“Nature is as it is because this is the only possible Nature consistent with itself ” Geoffrey Chew

4 ™
Constrain observables using

symmetries and consistency conditions
. J

Correlation functions in CFTs are constrained non-perturbatively by:

® Conformal Symmetry

f Monte Carlo
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¢ Unitarity
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e Associative Operator Product
Expansion
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QFT applied to Gravity: AdS/CFT

a )
Quantum Gravity - (non-gravitational)
in AdSq. 1 - CFT in M
\_ J
Observables ?! —> Correlation functions

Constrained non-perturbatively by

CFTaq on the the Conformal Bootstrap:

boundary AW

e Conformal symmetry

e Unitarity

time

e Associative OPE

(0102) O3 = 01 (0203)




QFT applied to Gravity: AdS/CFT

CFTq4 0n the
boundary \

Can we extend this understanding to our own universe?



Amplifying Gravity at all scales

The maximally symmetric cousins of AdS

A > 0 de Sitter A = 0 Minkowski
T+ o
A
C§D".
-
e Cosmological scales e intermediate scales

e Primordial inflation



Amplifying Gravity at all scales

The maximally symmetric cousins of AdS

A > 0 de Sitter

I+

-
Cosmological Bootstrap

[Arkani-Hamed and Maldacena ’15]

[Arkani-Hamed and Benincasa ’'17]
[Arkani-Hamed, Baumann, Lee and Pimentel ’18]

[Sleight and Taronna ’19] [Pajer et al '20] [...]

awi

A = 0 Minkowski

Celestial
sphere

Celestial holography
[de Boer and Solodukhin '03]

[Strominger ’17] [Pasterski, Shao, Strominger ’17]
[Pasterski, Shao ’17] [...]



Amplifying Gravity at all scales

Hyperbolic slicing of M*+?

Euclidean AdSq.1

Idea: Apply holography to each slice!

[de Boer and Solodukhin '03]



Amplifying Gravity at all scales

Holography for all As on the same footing:

e In de Sitter [Sleight and Taronna 19, '20, '21]

3

f t

Boundary correlator in dS Witten diagram in EAdS

7 o Hyperbolic slicing of M2
— Decomposition of celestial correlators
into EAdS Witten diagrams

[lacobacci, Sleight and Taronna ’22, Sleight and Taronna ’23]

Euclidean AdSq.1

dS and Celestial correlators therefore have a similar analytic structure to their EAdS counterparts!
On a practical level, can use such identities to import technigues and understanding from AdS.




Outline

A <O

A>0



A <O



X 0

Anti-de Sitter space-time
AdSg.1 C R%? :

_ (X0)2 B (Xd+1)2 —I—; (Xi)2 — _R2.

It is manifest that

Isometry group: SO (d,2) = conformal group in M

Poincare coordinates: /

d82 _ Rids dZQ + nuydaj'udajy """" \W

z2 s \




Particles in AdS

[Particles in AdSq+1  «—— unitary irreducible representations of SO (d, 2) J

Labelled by a scaling dimension A and spin J. constrains A:
Im [A]
A Notes:
e ANeR
— » Re [A]

e Bounded from below A > g —1




Particles in AdS

[Particles in AdSq+1  «—— unitary irreducible representations of SO (d, 2) J

Labelled by a scaling dimension A and spin J. Can be realised by fields in AdSq.1:

(C2) = A (A —d)

Im [A] | (V2 — mz) p=0 << (C2—{(C2))p=0
mzRidS = A (A — d)

Boundary behaviour (A_ =d — AL):

I S > Re[A]

d fd
PR : A A_
R lim ¢ (2,2) = Oa, ()27 +0a_(2)2
z—0
" Dirichlet " Neuman
boundary condition boundary condition

N.B. A_ may be ruled out by unitarity

Oa, (z) transform as primary fields with scaling dimension AL in Minkowski CFTg4



AdS boundary correlators

i R

. B !
;%Z (A1+...+An)<gp1 (xlaz)”'QOn (xn7z)> — <OA1 (5131) OAn (Zlfn)>

_ Y

Feynman rules:

Bulk-to-bulk propagator, AL boundary condition:

Bulk-to- propagator, AL boundary condition:

>



A >0



de Sitter space-time .

dSqy1 C M2

0\ 2 — A 2
- (X°)"+ ) (X')" = R
i=1

Isometry group: SO (d+ 1,1) = conformal group in R
Poincaré coordinates: R* n=0

—dn? + dx?
7?2

sy

d32 — R?iS




Particles in dS

[Particles in dSa+1  «—— unitary irreducible representations of SO (d + 1, 1)}

Labelled by a scaling dimension A and spin J. Unitarity constrains A :

Im [A
A” A AL Notes:

e Both A, and A_ are unitary

Complementary Series

d

e /\ can be complex -




Particles in dS

[Particles in dSa+1  «—— unitary irreducible representations of SO (d + 1, 1)}

Labelled by a scaling dimension A and spin J. Can be realised by fields in dSq.1.

(C2) = A(d— A)

Im [A]

e (VP=m?)p=0 <+ (Coa—{C2))p=0

Complementary Series

—--o--- ——> Re[A] Boundary behaviour:

lim ¢ (n,7) = Oa, (X) 7™ +O0a_ (x) 0"

n—0
AN Vel
Determined by
the initial state

O, (X) transform as primary fields with scaling dimension AL in Euclidean CFT4



dS Boundary Correlators

INn-In formalism

lim <O’¢1 (X17 77) s @n (Xm 77) ’O>

n—0

A @2 (X27 77) @n (Xna 77)

P1 (x1,m) . n

g .
A
£
— branch : : + branch
(Anti-time-ordered) (time-ordered)

0] 0)

Take |0) to be the de Sitter vacuum which reduces to the Minkowski vacuum at early times.

( )



dS Boundary Correlators

INn-In formalism

lim <O’¢1 (X17 77) s @n (Xn7 77) ’O>
n—0

Feynman rules:

+ bulk-to- & bulk propagator:

+ bulk-to- propagator:

/

+

Sum contributions from each branch (+) of the time (in-in) contour!



From dS to Euclidean AdS

Euclidean AdS dS
/ Rd
....... R¢
------- /
________ B — .
Z2 =00 <« z=20
2 1 dx? —dn? + dx?
dS2 = Rids dz _|_2 = - d82 — RC%S 77 772
z

EAdS and dS are identified under:

Rags = 1Rqs z=1(-n)

time




From dS to Euclidean AdS

+ bulk-to- £ bulk propagator: [C.S. and M. Taronna ’19, 20, ’21]
m2
:e:F%rA-I-e:F%rA-l- _|_6$1§A_6$%A_
+ +
A
as ||+ branch + bulk-to- propagator:

\ 4

A 7
_ FEA

-

Y

— branch

One can then write an EAdS Lagrangian for dS correlators [di Pietro, Gorbenko and Komatsu '21]



From dS to EAdS, and back

dS boundry correlators are perturbatively recast as Witten diagrams in EAdS:

e.g. four-points

— E CAlj:... A+

A14... A+

Sum over boundary conditions
for exchanged particles

Notes:

e Contributions from both A+ modes

® A,4+ € Unitary Irreducible Representation of dS isometry

[Can use to import techniques, results and understanding from AdS to dS!j







Hyperbolic slicing of Minkowski space

(d+2)-dimensional Minkowski space M%"2 | coordinates X*, A=0,...d+1

Ay
Ar: X? = -t (EAdSg:1,radius t)

\/ D: X?=R? (dSg+1, radius R)

Q° =0
Conformal boundary:
D
Q°=0, Q=XQ, XeRT
Introduce projective coordinates:
E=0/Q°, i=1,...,d+1

SO (d + 1,1) acts on the celestial sphere as the Euclidean conformal group!



Minkowski boundary correlators

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

OA1 (Ql)
° 0A2 (Q2)
X; —Q; ti
OAn (Qn)

Celestial correlators then arise in the boundary limit X; — Q; !

Inverse

4400
/ i) /2+ 9B a )
o 1 ino 2



Minkowski boundary correlators

Radial of Minkowski correlators implements a radial reduction
onto the hyperbolic slicing:

OA1 (Ql)
° OAz (Q2)
. | © dt; A A A
= H lim — i <¢1(t1X1) : --¢n(tan)>
OAn (Qn)

Celestial correlators then arise in the boundary limit X; — Q; !

“Celestial” bulk-to-boundary propagator:

Q
o0 A
GV (X,Q) = lim LI (X tf/) = B / K™ (/X2

Y—QJO

Factorises into (analytically cont'd) EAdS bulk-boundary propagator + radial component!



From the Celestial Sphere to EAdS

Examples.

Free theory Celestial two point function:

. < dt -
(Oa, (Q1) Oa, (Q2)) = lim — tA2GIZf(tX, Q1)
X-)QQ 0 t
Qi can be null separated
Cn (m)

=020, -0, + 105 2moliAL = B2))

Form required by Conformal Symmetry




From the Celestial Sphere to EAdS

Examples.

Non-derivative vertex of scalars fields V (X) = g¢1 (X) ... ¢, (X)

Contact diagram:

(Oa(@1)...0n,(Qn)) = —ig / X GRN(X, Q) - G (X, Q).

(analytically cont'd)

A EAdS contact diagram
Gilat (X, Q) — Xs/ X KE&—A) <\/ X2 4+ i€> g
= Ra,.a, (Mm1,...,my) X

Radial integral. Encodes all mass dependence
(Can be evaluated as a Mellin-Barnes integral)

— (Celestial contact diagrams are proportional to their EAdS counterparts (like in dS)



From the Celestial Sphere to EAdS

[C.S. and M. Taronna ’23]

In general, for exchanges of particles of mass m;, 1=1,...,n
Oa, (@1) Q
* 0A3 (Q3) d . - _ _
. /WOO dA; A, : )
Oa, (Q2) — . o, Y Aq.. A, mi, , M,
it On. (Q4) d oo 271 271

Compare with de Sitter:

— z : CYAl:I: An:l:

A1:|: An:l:




Outlook

® Relation to definition of celestial correlators
as scattering amplitudes in a conformal basis?

— LSZ ( ) 2

e Celestial correlators defined as an extrapolation of bulk Minkowski correlators
give a definition of celestial correlators for theories without an S-matrix.

What lessons can we draw from Minkowski CFT?

@ dS and celestial correlators have a similar analytic structure to those in AdS.
What about non-perturbatively?

Analytic structure = ——  Conformal partial wave expansion

Conformal Partial Wave

Unitarity: pJ (A) >0

Non-perturbative Bootstrap of Euclidean CFTs dual to physics in Minkowski/de Sitter?



