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The two-body problem in general relativity

@ No exact solution is known for the two body problem
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@ The post-Minkowskian approximation (PM) has gained a
renewed attention after a remarkable state of the art

calculation (Bern, Cheung, Roiban, Shen, Solon, Zeng)

Credit: Tim Pyle

@ Another perturbative scheme relevant to the two-body
problem is the self-force expansion ( )
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Definition

The SF approximation is a perturbation theory where observables are
computed in powers of m/A. A is a scale associated to a background

o (E.g. A= M, Schwarzschild). At LO the motion is geodesics
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@ At NLO in m/M, the motion is corrected by back-reaction
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Comparison

The SF approximation for scattering orbits has gained interested
only recently (Hopper, Cardoso, Long, Barack). Can we understand
this perturbative scheme using on-shell scattering amplitudes?

The PM approximation The SF approximation

@ Small parameter: G @ Small parameter m/M
@ Resum PN results @ Resum PM results
@ Impulse: @ Impulse:
Apt = Apy + Ap +... Apt = Apf + Ap] +...
. = —— N~
~G ~ G2 geodesic  ~m/M
@ Scattering waveform: o Scattering waveform
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The SF approximation on plane waves

@ Consider a gravitational plane wave background

ds® = 2 dudv — H,p (1) x*x? du® — dxtdxt
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compact support
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@ Why studying the self-force expansion on plane waves?

@ Penrose limit: any spacetimes along a null geodesic can be
viewed as a gravitational plane wave (Penrose)
@ Analytic results for observables (Harte, Flanagan, Fransen)
© Existence of compact formulae for scattering amplitudes
on plane wave backgrounds (Adamo, Mason, Sharma, Casali)
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Leading SF on a plane wave

@ The exact geodesic motion is captured by the impulse
Apt = p+\/EE'J-L(u = o) b/

where the zweibein satisfies E,j = 2bEP (Shore).
Memory effects: If H,, has compact support [x;, x¢], then
EZ(u > x¢) = 67 + uv/ Gc? even if the background is flat

NV

@ Can we describe the exact geodesic motion from amplitudes?
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@ The in region is flat. Neglecting emission (0SF)

S 1) = [ 40 (p.#) (p) (1 Sa 1) ) + -

Songt 2—point

@ 2-point on a plane wave background are non vanishing. We
can compute them using LSZ on a curved background
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@ Taking a stationary phase approximation in the final state, we
can then compute the exact impulse via a mean value (V')

Sult) = [ d0(p) O o(p...p1 + VGpic by [p)

(| SIP* Sy |9p) = p* + v Gpy. 6 F b
M<2\/Ep+ pacf'bi — Gpicf’b"cf’bmab)
—n
2p

@ 2-point amplitude on a plane wave equivalent to an eikonal
resumation of perturbative 3-point amplitudes in vacuum, non
vanishing due to memory (C., llderton, Elkhidir, O'Connell)
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@ Higher points define classical radiation in the SF
approximation. The "simplest” one is

(0 K]S ) ~ 25 [ a0 e (o )P )P (x)
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Geodesic motion (known exactly!)

@ The weak field limit is a Compton amplitude in vacuum
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@ 3-points define the LO waveform in the SF approximation.

Radiation on Z7 as ( )
Wz(u,X) = — i dw e=™4 C1(k) a, (k) + c.c
2(u, X) = w i .C.
HATY Arr 0 M , g
helicity ks

@ The waveform follows from averaging on the final state
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All order waveforms from amplitudes (Adamo, C. , llderton, Klisch)

Woop(t:2)_r = S50 / 5(u — V()P T (R, v)
y

@ Choosing H,p(u) = d(u)d(\, —\) and defining v := rA|u]

R Vlog(u—l—\/yz—l)
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@ The LO waveform in the SF approximation on a plane wave is
an explicit resummation of contributions in the coupling s
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The SF expansion on Schwarzschild

@ Consider QFT on a static background (e.g. Schwarzschild)

@ The geodesic motion is captured by the classical limit of a
2-point (equivalent to an eikonal amplitude in vacuum)
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@ 2-points on Schwarzschild are function of the radial action /(r)
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geodesic motion
@ As example, the exact geodesic scattering angle for a scalar
particle on Schwarzschild is (O'Connell, Ofri, Telem)

Ap =
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characteristic zeroes
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@ Some work is required to evaluate a 3-point amplitude on a
Schwarzschild background gj,,,. Using the pertubiner approach

S0 Gou h) = [/ Tgl i, vy o5

Trilinear action
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@ The incoming scalar, and outgoing scalar and graviton on the
background g,,,, are determined via a matching condition on i°
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@ The classical limit of a 3-point is determined by Hamilton's
principal function 5(t, r, ¢, 9) not the radial action alone

RIS =[xVl [ A ()

11 k'

radiation R1:3\ B(rsg)

XN, 7 (K') Ely (2005 67, — g (9Sy - 08 + 5 ) | /(S +Sr=5)

@ The weak field limit of a 3-point on Schwarzschild reproduces
the probe limit of a 5-point amplitude on a flat background
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{p, k\5!P> ( 2(M ))ﬁs(p,P%erq,P—q—k,k2+--.
S— atrlx ong S—matrix onn

Weak field limit = linearized black hole
NP(1) = 3(po — lo)F™(p 1) . NP7 (k) = 247, 69 A¥ (k)
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Conclusions

@ We can define the SF expansion to classical observables in
terms of the classical limit of amplitudes on a background.

@ Relevant on-shell building blocks for the SF expansion on a
plane wave and Schwarzschild (2-points and 3-points).

@ Plane wave case: impulse and waveform from amplitudes.

@ Schwarzschild case: the weak field limit of a 3-point is a
5-point in vacuum: using Hamilton's principal function is key.

Main message
We can address the self-force approximation using scattering amplitudes
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