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Structure

Self-dual sector:
• invitation to homotopy algebras via kinematic algebras
• a toy model for curved space
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Kinematic Algebras in YM

• Color-kinematic duality observed in scattering amplitudes [Bern,
Carrasco,Johansson]

• Kinematic factors ni (momenta, polarisation vectors) obey the same
relations as color factors ci (structure constants)

ci + cj + ck = 0 (1)
ni + nj + nk = 0 (2)

• (1) follows from Jacobi identity of gauge Lie algebra of YM
• Another algebra giving (2)? - ”kinematic algebra”
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The self-dual sector is a great toy model

• Subsector of a theory where only one of the helicities survives (e.g. YM +1,
gravity +2).

• Integrable: infinite tower of charges/symmetries.
• Relation to w1+∞ (talk [Raclariu]) and subn-leading soft theorems.
• Very simple expressions for (a subset) of scattering amplitudes.
• Alternative perturbation scheme.
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Self-dual YM in light-cone gauge[Monteiro,O’Connell]

• Self-duality relation

Fµν =
√g
2
ϵµνρλFρλ,

• Work in light-cone coordinates: u = it + z, v = it − z,
w = x + iy , w̄ = x − iy ,

• Then, choosing light-cone gauge , we are left with

Aw = 0, Aw̄ = ∂uΦ, Av = ∂w Φ,

where
□R4 Φ + i [∂uΦ, ∂w Φ] = 0

• Introduce Poisson bracket

{f , g} := ∂w f ∂ug − ∂uf ∂w g

and notice that it appears naturally in the scalar equation of motion:

□R4 Φ −
i
2

[{Φ,Φ}] = 0,

• Poisson bracket automatically satisfies Jacobi,

{f , {g , h}} + {g , {h, f }} + {h, {f , g}} = 0.

kinematic algebra (area preserving diffeomorphisms).
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Kinematic algebras

• Chern Simons [Ben-Shahar,Johansson] - volume preserving diffeo, Hopf algebras
in YM from Heavy Mass EFT
[Brandhuber,Browna,Chen,Gowdy,Johansson,Lin,Travaglini,Wen], via twistor theory and/or
pure spinors [Borsten,Jurco,Kim,Macrelli,Saemann,Wolf], beyond MHV
[Chen,Johansson,Teng,Wang],[Lee,Mafra,O. Schlotterer], [Ben-Shahar,Guillen], self-dual
extensions/deformations [Chacon, Garcıa-Compean, Luna,
Monteiro,White,Armostrong-Williams, Wikeley ]...

• Role of the gauge choice in constructing a (proper) kinematic algebra ?
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Homotopy algebras

• Color-kinematics, double copy[Reiterer],[Zwiebach],[Lada,Stasheff],[Hohm,Zwiebach],
[Borsten,Jurco,Kim,Macrelli,Saemann,Wolf], [Bonezzi,Chiaffrino,Diaz-Jaramillo,Hohm],
[Szabo,Trojani].

• Connections to holography [Chiaffrino,Ersoy,Hohm], higher spins [Sharapov,Skvortsov],
etc...

• Can think of them as generalisations of BV (BRST) formalism, but can be
simpler in some ways.

• Give a general way to construct kinematic algebras.
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Self-dual general

• General SD relation
Fµν =

1
2
ϵµνρσ Fρσ ,

fully gauge covariant.
• Rewrite as:

(1 − ⋆)F ≡ 2 P−F = 0 ,

• Separating the orders

2 P−dA + P−[A,A] = 0 .

8 / 30



Gauge
choices,

kinematic
algebras, and

(A)dS

Silvia Nagy

Set-up

Applications
to curved
space

L∞ algebras and homotopy

• An L∞ algebra is a graded vector space X =
⊕

i Xi equipped with a
(possibly infinite) set of graded symmetric multilinear maps Bn : X ⊗n → X .

• The maps obey a (possibly infinite) set of quadratic relations.
• Nilpotency:

B1
(

B1(ψ)
)

≡ d
(
d(ψ)

)
= 0

• Leibniz rule

dB2(ψ1, ψ2) + B2
(
d(ψ1), ψ2

)
+ (−1)ψ1 B2

(
ψ1,d(ψ2)

)
= 0

• Jacobi up to homotopy :

B2
(

B2(ψ1, ψ2), ψ3
)

+ (−1)ψ1(ψ2+ψ3)B2
(

B2(ψ2, ψ3), ψ1
)

+ (−1)ψ3(ψ1+ψ2)B2
(

B2(ψ3, ψ1), ψ2
)

= −dB3(ψ1, ψ2, ψ3) − B3(d(ψ1), ψ2, ψ3) − (−1)ψ1 B3(ψ1,d(ψ2), ψ3)
− (−1)ψ1+ψ2 B3(ψ1, ψ2,d(ψ3))

• higher order relations...
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Explicit realisation for self-dual YM

• We have 3 vector spaces: gauge parameters, gauge fields, equations:

X−1 X0 X1

Λ A E

d d

• We extract the explicit expressions for B1 ≡ d, B2... from the e.o.m.,
symmetry transformations, gauge algebra:

d(A) = 2 P−dA ∈ X1 , d(Λ) = dΛ ∈ X0

B2(A1,A2) = 2 P−[A1,A2] ∈ X1 , B2(A,Λ) = [A,Λ] ∈ X0 .

• B3 and above vanish in this case
• Consistency relations ensure gauge covariance of e.o.m., closure of gauge

algebra.
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Color-stripping

• The L∞ algebra X SDYM takes the form of a tensor product:

X SDYM = K ⊗ g ,

• Expand an arbitrary element ψ(x) of X SDYM in a basis {Ta} of g, and
write it as

ψ(x) = ua(x) ⊗ Ta , ua(x) ∈ K , Ta ∈ g .

• Go from Bn to mn maps via

d
(
ψ(x)

)
= d

(
ua(x)

)
⊗ Ta , B1 = d = m1

B2(ψ1, ψ2) = (−1)ψ1 m2(ua
1 , ub

2 ) ⊗ fab
c Tc
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Color-stripping

• Now we have
K0 K1 K2

λ A E

d d

,

with explicit maps

dA = 2 P−dA ∈ K2 , dλ = dλ ∈ K1

m2(A1,A2) = 2 P−
(

A1 ∧ A2
)

∈ K2 , m2(λ,A) = λ ∧ A ∈ K1
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Constructing the kinematic algebra
• Need to introduce another operator

K0 K1 K2

λ A E .

d

b

d

b

We require b to be nilpotent: b2 = 0, and to obey the defining relation

db + bd = □ ,

• In our case
b = d†

• If b does not obey the Leibniz rule with respect to m2, its failure to do so
can be used to define a graded symmetric bracket b2 as

b2(u1, u2) := b m2(u1, u2) − m2(bu1, u2) − (−1)u1 m2(u1, bu2) ,

• In an amplitudes context, the bracket b2(A1,A2) between color-stripped
fields gives the contribution to the kinematic numerator arising from a
cubic vertex joining the external particles 1 and 2.
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Constructing the kinematic algebra

• b2 is our candidate for the generalisation of the Poisson bracket.
• Check Jacobi

b2(b2(u1, u2), u3) + (−1)u1(u2+u3)b2(b2(u2, u3), u1) + (−1)u3(u1+u2)b2(b2(u3, u1), u2)
= [d, [b, θ3]](u1, u2, u3) − [□, θ3](u1, u2, u3) ,

• We can directly compute

θ3(A1,A2,A3) = − ⋆
(

A1 ∧ A2 ∧ A3
)
,

θ3(E,A1,A2) = 2 P−

{
⋆

(
E ∧ A[1

)
∧ A2]

}
,

• Jacobi follows from Leibniz rule.
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Making the right gauge choices

• Obstruction to proper (”strict”) algebra

θ3(A1,A2,A3) = − ⋆
(

A1 ∧ A2 ∧ A3
)
,

θ3(E,A1,A2) = 2 P−

{
⋆

(
E ∧ A[1

)
∧ A2]

}
,

• In LC gauge, the self-duality constraint Au = 0 additionally implies Aw = 0,
i.e. two of the components vanish, so

θ3 = 0

e.g. ⋆
(

A1 ∧ A2 ∧ A3
)

∝ εµνρσA1νA2ρA3σ

• One can extract the Poisson bracket of area-preserving diffeos
[Monteiro,O’Connell]

bα2 (A1,A2) = −2 ϵαβ∂β
{

Φ1,Φ2
}
.

• Apply to other theories to find the best gauge choice, or extract kinematic
algebra without gauge fixing.
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Curved space

• Add a non-zero cosmological constant Λ
• cosmology (dS), holography (AdS)
• Everything is more difficult!
• Amplitudes → correlators (see talks Wed-Fri)
• Self-dual toy model: integrability, simple kinematic algebras, w1+∞,

closed-form for amplitudes/correlators ... ?
• See related works [Przanowski,Krasnov,Skvortsov,Neiman,Tran,Shaw,Herfray,] and relation

to twistors [Adamo,Mason,Sharma]
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Self-dual YM

• Consider four dimensional Euclidean AdS4 with unit radius in the Poincaré
patch:

ds2
AdS =

dt2 + dx2 + dy2 + dz2

z2 ,

• SD condition
Fµν =

√g
2
ϵµνρλFρλ,

• Reduces to flat equation in AdS4 (due to conformal flatness).
• In light cone coordinates u = it + z, v = it − z, w = x + iy , w̄ = x − iy ,

the metric is
ds2

AdS =
4 (dw dw̄ − du dv)

(u − v)2 ,
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Self-dual YM in light-cone gauge
• In LC gauge, the self-duality constraint is solved by

Au = 0, Aw = 0, Aw̄ = ∂uΦ, Av = ∂w Φ

with
□R4 Φ + i [∂uΦ, ∂w Φ] = 0

• Split spacetime as
x i = (u,w), yα = (v , w̄)

• Introduce the operators

Πα = (Πv ,Πw̄ ) = (∂w , ∂u)

then
Ai = 0, Aα = ΠαΦ

• Poisson bracket

{f , g} := ∂w f ∂ug − ∂uf ∂w g = εαβΠαf Πβg ,

so finally
□R4 Φ −

i
2

[{Φ,Φ}] = 0,

where we introduced the notation

[{f , g}] = εαβ
[
Παf ,Πβg

]
.
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Self-dual gravity in curved backgrounds

• In flat background
Rµνρσ = 1

2
√gϵ ηλ

µν Rηλρσ .

Upon contracting two of the idices

Rµρ = 1
2 ϵ

σηλ
µ Rηλρσ = 0

i.e. e.o.m=Bianchi !
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Self-dual gravity in curved backgrounds
• In flat background

Rµνρσ = 1
2
√gϵ ηλ

µν Rηλρσ .

Upon contracting two of the idices, get e.o.m=Bianchi

Rµρ = 1
2 ϵ

σηλ
µ Rηλρσ = 0

• In curved background, introduce the tensor

Tµνρσ = Rµνρσ − 1
3 Λ(gµρgνσ − gνρgµσ),

• Self-duality relation

Tµνρσ = 1
2
√gϵ ηλ

µν Tηλρσ .

Upon contracting two indices:

Rµρ − Λgµρ = 1
2
√gϵ σηλ

µ Rηλρσ = 0,

• LHS reproduces e.o.m. Rµν = Λgµν ,R = 4Λ, and RHS is again Bianchi.
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Relation to Weyl tensor

• Recall
C ρσ
µν = R ρσ

µν − 2R [ρ
[µ g σ]

ν] +
1
3

Rg [ρ
[µ g σ]

ν]

• In flat space, on the support of the e.o.m. Rµν = R = 0

Cµνρσ → Rµνρσ

• In curved space, on the support of the e.o.m. Rµν = Λgµν ,R = 4Λ

Cµνρσ → Tµνρσ
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Scalar description flat

• Notation (recall x i = (u,w), yα = (v , w̄))

Πα = (Πv ,Πw̄ ) = (∂w , ∂u)

• In flat space, write the metric as (non-perturbative)

ds2 = dw dw̄ − du dv + hµν dxµdxν ,

• In LC gauge (huµ = 0), the self-duality constraint is then solved by

hiµ = 0, hαβ = ΠαΠβϕ,

with ϕ satisfying
□R4ϕ− {{ϕ, ϕ}} = 0,

where we introduced the notation

{{f , g}} =
1
2
εαβ{Παf ,Πβg},
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Scalar description (flat with YM)
• Notation (recall x i = (u,w), yα = (v , w̄))

Πα = (Πv ,Πw̄ ) = (∂w , ∂u)

• In flat space, write the metric as (non-perturbative)

ds2 = dw dw̄ − du dv + hµν dxµdxν ,

• In LC gauge (huµ = 0), the self-duality constraint is then solved by

hiµ = 0, hαβ = ΠαΠβϕ, Ai = 0, Aα = ΠαΦ

with ϕ satisfying

□R4ϕ− {{ϕ, ϕ}} = 0, □R4 Φ −
i
2

[{Φ,Φ}] = 0,

where we introduced the notation

{{f , g}} =
1
2
εαβ{Παf ,Πβg}, [{f , g}] = εαβ

[
Παf ,Πβg

]
.
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Scalar description AdS4
• Notation (recall x i = (u,w), yα = (v , w̄))

Π̃ = (Π̃v , Π̃w̄ ) =
(
∂w , ∂u − 4

u−v

)
,

• Write the metric as (non-perturbative)

ds2 = 4
(u−v)2 (dw dw̄ − du dv + hµν dxµdxν)

• In LC gauge (huµ = 0), the self-duality constraint is then solved by

hiµ = 0, hαβ = Π(αΠ̃β)ϕ

with ϕ satisfying

√g
(

−□AdS + m2
)
ϕ+ 4

{{
ϕ

u − v
,

ϕ

u − v

}}
∗

= 0

where m2 = −2 corresponding to a conformally coupled scalar in AdS4 and
we introduced the notation

{{f , g}}∗ =
1
2
εαβ{Παf ,Πβg}∗
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Modified Poisson bracket
• Notation (recall x i = (u,w), yα = (v , w̄))

Πα = (Πv ,Πw̄ ) = (∂w , ∂u), Π̃ = (Π̃v , Π̃w̄ ) =
(
∂w , ∂u − 4

u−v

)
• The modified Poisson bracket is given by

{f , g}∗ =
1
2
εαβ(Παf Π̃βg − ΠαgΠ̃β f ).

• Note {f , g}∗

∣∣
Π̃→Π

= {f , g} = εαβΠαf Πβg
• Alternative forumula

{f , g}∗ = {f , g} + 2
u−v (f ∂w g − g∂w f ) .

• In the flat-space limit z = (u − v) → ∞, we get Π̃ → Π, and {, } ⇒ {, }∗

• Crucially, it satifies jacobi{
f , {g , h}∗

}
∗

+
{

g , {h, f }∗
}

∗
+

{
h, {f , g}∗

}
∗

= 0.
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Correlators
• Scalar SD AdS equation dmits the following solutions, which are related to

planewave solutions by a Weyl rescaling:

ϕ = (u − v)eik·x ,

• Extract structure ”constants”:{
eik1·x , eik2·x

}
= X (k1, k2) ei(k1+k2)·x ,{

eik1·x , eik2·x
}

∗
= X̃ (k1, k2) ei(k1+k2)·x ,

where
X (k1, k2) = k1uk2w − k1w k2u ,

X̃ (k1, k2) = X (k1, k2) −
2i

u − v
(k1 − k2)w .

• computing three-point boundary correlators:

VSDYM =
1
2

X (k1, k2) f a1a2a3 ,

VSDG =
1
2

X (k1, k2) X̃ (k1, k2) ,
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Correlators

• The objects X and X̃ obey Jacobi identities analogous to f a1a2a3 and can
therefore be thought of as structure constants of kinematic Lie algebras:

0 = X (k1, k2) X (k3, k1 + k2) + cyclic

= X̃ (k1, k2) X̃ (k3, k1 + k2) + cyclic.

which follow from{
f , {g , h}∗

}
∗

+
{

g , {h, f }∗
}

∗
+

{
h, {f , g}∗

}
∗

= 0.

• Currently computing higher orders (with [Chowdhury,Lipstein,Monteiro,Singh])
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Deformed w1+∞

• One can extract the w1+∞ from the Poisson breacket [Monteiro]

• For an on-shell state, the momentum satisfies kw̄/ku = kv/kw = ρ, where ρ
is some number. It is then possible to expand an on-shell plane wave as
follows:

eik·x =
∞∑

a,b=0

(iku)a (ikw )b

a!b!
eab ,

where eab = (u + ρw̄)a (w + ρv)b . This is naturally interpreted as an
expansion in soft momenta. Letting wp

m = 1
2 ep−1+m,p−1−m and plugging

this into the Poisson bracket:{
wp

m,wq
n
}

= (n(p − 1) − m(q − 1)) wp+q−2
m+n

• For our modified Poisson bracket{
wp

m,wq
n
}

∗
=

{
wp

m,wq
n
}

+
(m + q − p − n)

u − v
wp+q−3/2

m+n+1/2

• Local deformation, falls outside the classification of global deformations
[Pope,Bittleston, Heuveline, Skinner, Bu, Etingof, Kalinov, Rains]
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Conclusions and future directions

• Correlators - simple formula at n points ?
• Connection to asymptotic symmetries.
• Integrability and connection to AdS/CFT.
• Full theory from expansion around self-dual sector.
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Thank You !
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