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Set-up

Structure

Self-dual sector:
® invitation to homotopy algebras via kinematic algebras

® a toy model for curved space
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Set-up

Kinematic Algebras in YM

Color-kinematic duality observed in scattering amplitudes [Bern,

Carrasco, Johansson]

Kinematic factors n; (momenta, polarisation vectors) obey the same
relations as color factors ¢; (structure constants)

cGi+c+c=0 (1)
n;+nj+nk:0 (2)

(1) follows from Jacobi identity of gauge Lie algebra of YM
Another algebra giving (2)? - "kinematic algebra”
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Set-up

The self-dual sector is a great toy model

Subsector of a theory where only one of the helicities survives (e.g. YM +1,

gravity +2).

Integrable: infinite tower of charges/symmetries.

Relation to witoo (talk [Raclariv]) and sub”-leading soft theorems.
Very simple expressions for (a subset) of scattering amplitudes.

Alternative perturbation scheme.
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Self-dual YM in light-cone gaugeimonteiro,0'Connell
Self-duality relation

g
Fp,l/ = %GpupAFpA7

Work in light-cone coordinates: u=it+z, v=it—z,
w=x4iy, w=x—liy,
Then, choosing light-cone gauge , we are left with

Aw =0, As=0,, A, =20d,o,

where
Opa® + i [0uP,0,P] =0

Introduce Poisson bracket
{f,g} == OwfOug — Oufdwg
and notice that it appears naturally in the scalar equation of motion:
Cpa® = 2 1{6, 0} =0,
Poisson bracket automatically satisfies Jacobi,

{f.{g:h}} +{g, {h f}} + {h,{f. g}} =0.
kinematic algebra (area preserving diffeomorphisms).
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Set-up

Applications

to curved ® Chern Simons [Ben-Shahar,Johansson] - volume preserving diffeo, Hopf algebras

His in YM from Heavy Mass EFT
[Brandhuber,Browna,Chen,Gowdy, Johansson, Lin, Travaglini,Wen|, via twistor theory and/or
pure spinors [Borsten,Jurco,Kim,Macrelli,Saemann, Wolf], beyond MHV
[Chen,Johansson, Teng,Wang],[Lee,Mafra,O. Schlotterer], [Ben-Shahar,Guillen], self-dual
extensions/deformations [Chacon, Garcia-Compean, Luna,
Monteiro, White,Armostrong-Williams, Wikeley ]...

® Role of the gauge choice in constructing a (proper) kinematic algebra ?
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Set-up

Applications
to curved
space

Homotopy algebras

Color-kinematics, double copy|Reiterer],[Zwiebach],[Lada,Stasheff],[Hohm,Zwiebach],
[Borsten,Jurco,Kim,Macrelli,Saemann,Wolf], [Bonezzi,Chiaffrino,Diaz-Jaramillo,Hohm],

[Szabo, Trojani].

Connections to holography [Chiaffrino,Ersoy,Hohm], higher spins [Sharapov,Skvortsov],
etc...

Can think of them as generalisations of BV (BRST) formalism, but can be
simpler in some ways.

Give a general way to construct kinematic algebras.
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® General SD relation

1
F/AU = 5 Epu/po' F,OO‘ 3

fully gauge covariant.

® Rewrite as:
(1-x)F=2P_F=0,

® Separating the orders

2P_dA+ P_[AA]=0.
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L algebras and homotopy

An Lo algebra is a graded vector space X = @i X; equipped with a

ossibly infinite) set of graded symmetric multilinear maps B, : X®" — X.
(p y g y p

The maps obey a (possibly infinite) set of quadratic relations.

Nilpotency:
Bi (Bi(y)) = d(d(¥)) =0

Leibniz rule
dBa(v1,2) + B (d(h1), v2) + (=1)*1 Bz (1, dl(2)) =0

Jacobi up to homotopy :

By (Ba(1,v2), ¥3) + (—1)¥1(V2+93) By (B (2, 903), w1 ) + (—1)¥3(V1+92) By (Bo (s, 1), 42

= —dB3(¥1,%2,¥3) — B3(d(¥1), ¥2,93) — (=1)¥1 B3(1, d(v2), 43)
— (=1)¥172Bs(¢1, 92, d(¥3))

higher order relations...
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Explicit realisation for self-dual YM

We have 3 vector spaces: gauge parameters, gauge fields, equations:

X_1 *}d XO *}d X1

A A E

We extract the explicit expressions for By = d, B;... from the e.o.m.,
symmetry transformations, gauge algebra:

d(A)=2P_dA € X , d(A) = dA € Xo
BQ(Al,AQ) = 2P7[A1,A2] € Xy, BQ(A7 /\) = [A7 /\] € Xp .

B3 and above vanish in this case

Consistency relations ensure gauge covariance of e.o.m., closure of gauge
algebra.
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Color-stripping

® The Lo algebra XSPYM takes the form of a tensor product:
XSPYM _ oo g

® Expand an arbitrary element 9(x) of XSPYM in a basis { T,} of g, and
write it as

Y(x)=uv(x)®Ta, v'(x) €K, To€g.
® Go from Bj, to m, maps via

d(¢(x) =d(v*(x) & Ta, B =
Ba(th1,¥2) = (—1)¥1mp(uf, uf) ® fop° Te
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® Now we have
Ko i} Ki L} K>

A A £
with explicit maps
dA=2P_dAc K, dX =dX) € K;
my(A1, A2) =2P (A AA) €Ky, m(M\A)=ANAE K
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Set-up Ko K1 Ka
N~ ~_ ~“
b b
A A &

We require b to be nilpotent: b2 = 0, and to obey the defining relation
db+bd=0,

® |n our case
b=dt

® |f b does not obey the Leibniz rule with respect to mo, its failure to do so
can be used to define a graded symmetric bracket by as

bo(u1, u2) := b ma(ur, u2) — mo(bur, u2) — (=1)" ma(u1, bun) |
® In an amplitudes context, the bracket by(.A1,.42) between color-stripped

fields gives the contribution to the kinematic numerator arising from a
cubic vertex joining the external particles 1 and 2.
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S ® b, is our candidate for the generalisation of the Poisson bracket.

® Check Jacobi

ba(bo(ur, u2), us) 4 (—1)“(2783) by (by(uz, u3), ur) + (—1)“31742) by (by(us, ur), o)
= [d, [b, 03]](u1, u2, u3) — [0, O3](u1, w2, uz) ,

® We can directly compute

03( A1, A2, A3) = — (.Al A Az /\A3) ,

03(€, A1, Az) =2 P_{ * (EAA) A AQ]} ,

® Jacobi follows from Leibniz rule.
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Set-up 93(./417 .AQ,A3) = — % (A1 ANAr A .A3) s

03(E, A1, A2) =2 P,{ * (EAAR) A A2]} ,

® |n LC gauge, the self-duality constraint A, = 0 additionally implies A, = 0,
i.e. two of the components vanish, so

03 =0

e.g. *(.A1 A Az A .A3) o EIWPJAIVAZpA&r

® One can extract the Poisson bracket of area-preserving diffeos
[Monteiro,O'Connell]

bg (A1, Ap) = —2e*P95{ b1, by} .

® Apply to other theories to find the best gauge choice, or extract kinematic
algebra without gauge fixing.
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Curved space

Add a non-zero cosmological constant A
cosmology (dS), holography (AdS)
Everything is more difficult!

Amplitudes — correlators (see talks Wed-Fri)

Self-dual toy model: integrability, simple kinematic algebras, wi 4o,
closed-form for amplitudes/correlators ... ?

See related works [Przanowski,Krasnov,Skvortsov,Neiman, Tran,Shaw,Herfray,] and relation
to twistors [Adamo,Mason,Sharma]
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Self-dual YM

Consider four dimensional Euclidean AdS4 with unit radius in the Poincaré
patch:

dt? + dx? + dy? + dz2

2 b

ds? .« =
AdS 2

SD condition

g
Fuv = %EWM FPA,

Reduces to flat equation in AdS4 (due to conformal flatness).

In light cone coordinates u = it+z, v=it—z, w=x+iy, w=x — iy,
the metric is
4 (dw dw — du dv)

2
dsjas = (u— V)z

)
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Self-dual YM in light-cone gauge

In LC gauge, the self-duality constraint is solved by
A,=0, A,=0, Az =0,, A =09

with
Oga® + i [0uP,00,P] =0

Split spacetime as

x = (u, w), y& = (v,w)

Introduce the operators
Mo = (My,Ng) = (0w, Ou)

then

Poisson bracket
{f.g} == 0wfOug — QufOug = e*’NafMgg,

so finally ]
Dpe® — 2 [{0,0}] = 0,

where we introduced the notation
[{f.g}] =% [Naf,Ngg] .
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Applications

to curved
space ® In flat background

1 A
Ruvps = 5\/§€uun Rnxpo-

Upon contracting two of the idices
_1_onx _
Rup = 5€." """ Ryxpe =0

i.e. e.o.m=Bianchi !
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Self-dual gravity in curved backgrounds

® |n flat background

1 A
R,uupa = §\/§€an Rn)\puv

Upon contracting two of the idices, get e.o.m=Bianchi

_1_onA _
Rup = 5€4" " Ryxpo =0

® |n curved background, introduce the tensor

Tuvpo = R,uupa - %A(g,upgua - gupgud)a

® Self-duality relation

_1 nA
T,uupa = §\/§€pw TT])\,DO"

Upon contracting two indices:

A
Rup — Ngup = %\/EEMM Rnxps =0,

® LHS reproduces e.o.m. R, = Aguu, R = 4A, and RHS is again Bianchi.
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Relation to Weyl tensor

® Recall
lp . ol

po _ po _ lp_ o] 1
Cuv™ = Ruw 2R[u &) * 3Rg[# &,
® In flat space, on the support of the e.o.m. R,, = R=0
C,u,l/po' — Rp.upa
® In curved space, on the support of the e.o.m. R, = Aguw, R = 4A

Cuvpo = Tpvpo
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Scalar description flat

Notation (recall x' = (u,w), y® = (v, w))
Mo = (My,Ng) = (8w, u)
In flat space, write the metric as (non-perturbative)
ds?® = dw dw — du dv + hy, dx*dx”,
In LC gauge (hy, = 0), the self-duality constraint is then solved by
hip =0, hog =MNalge,

with ¢ satisfying

Oga¢ — {{#,9}} =0,

where we introduced the notation

{{F.8}} = 5=°*(Naf. Nag),
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Mo = (My,Ng) = (9w, Ou)

Applications ® |In flat space, write the metric as (non-perturbative)
to curved
space

ds? = dw dw — du dv + hy, dxHdx”,
® In LC gauge (huy, = 0), the self-duality constraint is then solved by
hipy =0, hog =TMalMge, Ai =0, Ao =Myd
with ¢ satisfying
Opsd— {{6,61} =0,  Dpa® = [{0,0}] =0,
where we introduced the notation

{f.g1} = 3e"(Maf Magh,  [{F.81] = =7 [Maf, Mag] .
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Scalar description AdSy

e Notation (recall x = (u, w), y* = (v, w))

A= (fl,,fa) = (0w, 00 — 7%) ,

® Write the metric as (non-perturbative)

ds? = (dw dw — du dv 4 hy, dx*dx”)

vy

® In LC gauge (huyu = 0), the self-duality constraint is then solved by

with ¢ satisfying

AT ( P

u—v u—v

where m? = —2 corresponding to a conformally coupled scalar in AdS; and
we introduced the notation

{{f et} = 75“5{” fiNpgh
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Modified Poisson bracket
Notation (recall x' = (u, w), y® = (v, w))

Mo = (Mv,Ma) = (0w, ), 1= (v, M) = (9w, 0 —

u—v
The modified Poisson bracket is given by

1 8 .
{f.g}. = Eaaﬁ(ﬂafﬂﬁg —NagMgf).
Note {f, g}, |5, = {f g} =e*NafMgg

Alternative forumula

{f.g}, ={f. g} + 2 (fOwg — g0wf).

=)

In the flat-space limit z = (u — v) — oo, we get [1 =T, and {,} = {, }«

Crucially, it satifies jacobi

{fie.n.}, +{e{nf}, +{nife}}, =0
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Scalar SD AdS equation dmits the following solutions, which ar

Correlators

planewave solutions by a Weyl rescaling:

d) = (Ll - V)eikAX’

Extract structure "constants”:
{e"kl'x7 e”‘?'x} = X (ku, kp) e'lkitha)x,
{e"kl'x7 eik2'x} =X (k1, ko) ei(k1+k2)'x7
*

where

X (k1, k2) = kiukow — kiwkou,

~ 2i
X (ki ko) = X (ki k2) = —— (I — ka),, -

computing three-point boundary correlators:

Vspym =

Vspg =

1
EX (ki, ko) F319273

1 .
>X (ki, ko) X (ki, ko),

e related to
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Correlators

® The objects X and X obey Jacobi identities analogous to 1% and can
therefore be thought of as structure constants of kinematic Lie algebras:

0 = X (k1, ko) X (k3, k1 + k2) + cyclic
= X (k1, k2) X (ks, k1 + k) + cyclic.

which follow from
{fAg.n}, +{enfh}, +{nifg}}, =0

® Currently computing higher orders (with [Chowdhury,Lipstein,Monteiro,Singh])
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Deformed wi o

® One can extract the wy o from the Poisson breacket [Monteiro]

® For an on-shell state, the momentum satisfies kg /ky = kv/kw = p, where p

is some number. It is then possible to expand an on-shell plane wave as

follows:
oo

(iky)? Ikw)
Z alb! T apl Ceb

a,b=0
where ¢, = (u+ piw)? (w 4 pv)P. This is naturally interpreted as an

expansion in soft momenta. Letting wf, = %ep,prm,p,l,m and plugging
this into the Poisson bracket:

{whs wi} = (n(p = 1) = m(q = ) w5

For our modified Poisson bracket

{wowd}, = {whwi} + 2= o

Local deformation, falls outside the classification of global deformations
[Pope,Bittleston, Heuveline, Skinner, Bu, Etingof, Kalinov, Rains]
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® Correlators - simple formula at n points ?
® Connection to asymptotic symmetries.
® Integrability and connection to AdS/CFT.

® Full theory from expansion around self-dual sector.

29/30



Gauge
choices,
kinematic
algebras, and

(A)dS

Silvia Nagy

Applications
to curved
space

Thank You !
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