
Stochastic Resetting

Satya N. Majumdar
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Extreme Events: rare but devastating
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Population size gets reset by random catastrophes
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catastrophic events

‘reset’

population growth & reset =⇒ competing effects

Q: Will the population size stabilize at long times ?

Is there a stationary state at long time ?
[Manrubia & Zanette, 1999]
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Search problems are ubiquitous
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Visual search: a face in a crowd
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Visual search in psychology

Search via diffusion and resetting
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Schematic search trajectory

O

reset to O
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Other examples of stochastic resetting

• Searching for the global minimum in a complex energy landscape via
simulated annealing

empirical observation: Resetting to the initial configuration from time
to time (and starting afresh) helps finding new pathways out of a
metastable configuration
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Random Search Problems

In the context of random search problems, a natural question thus
emerges:

Q: Does stochastic resetting help in searching a target ?

Does it really reduce the mean search time of a target ?
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Two principal issues concerning stochastic resetting

To summarize:

Two principal issues when stochastic resetting is switched on in a system
evolving under its own natural dynamics:

• Does the system reach a stationary state ?

• Does stochastic resetting make a random search process efficient ?
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Diffusion with stochastic resetting

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]
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Diffusion with stochastic resetting: The model
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0
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time

r

r

r

resetting rate = r

Poissonian resetting

Time intervals between successive
resettings distributed as:

p(τ) = r e−rτ

Dynamics: In a small time interval ∆t

x(t + ∆t) = x0 with prob. r∆t (resetting)

= x(t) + η(t) ∆t with prob. 1− r∆t (diffusion)

η(t) → Gaussian white noise: 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = 2D δ(t − t ′)

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

S.N. Majumdar Stochastic Resetting



Diffusion with stochastic resetting: The model

�
�
�
�

space
0 x

0

r

time

r

r

r

resetting rate = r

Poissonian resetting

Time intervals between successive
resettings distributed as:

p(τ) = r e−rτ

Dynamics: In a small time interval ∆t

x(t + ∆t) = x0 with prob. r∆t (resetting)

= x(t) + η(t) ∆t with prob. 1− r∆t (diffusion)

η(t) → Gaussian white noise: 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = 2D δ(t − t ′)

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

S.N. Majumdar Stochastic Resetting



Diffusion with stochastic resetting: The model

�
�
�
�

space
0 x

0

r

time

r

r

r

resetting rate = r

Poissonian resetting

Time intervals between successive
resettings distributed as:

p(τ) = r e−rτ

Dynamics: In a small time interval ∆t

x(t + ∆t) = x0 with prob. r∆t (resetting)

= x(t) + η(t) ∆t with prob. 1− r∆t (diffusion)

η(t) → Gaussian white noise: 〈η(t)〉 = 0 and 〈η(t)η(t ′)〉 = 2D δ(t − t ′)

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

S.N. Majumdar Stochastic Resetting



Prob. density pr(x , t) with resetting rate r > 0
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0
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r

resetting rate = r

pr (x , t) → prob. density at time t,

given pr (x , 0) = δ(x − x0)

• In the absence of resetting (r = 0):

p0(x , t) = 1√
4π D t

exp[−(x − x0)2/4Dt]

• In the presence of resetting (r > 0):

pr (x , t) =?
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Fokker-Planck (Master) Equation

Fokker-Planck Equation:

∂tpr(x , t) = D ∂2
xpr(x , t)− r pr(x , t) + r δ(x − x0)

Initial Cond.: pr(x , 0) = δ(x − x0)

This linear equation can be solved at all t exactly by Fourier transform
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Exact solution valid at all times t
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• Exact solution at all times t:

pr (x , t) = e−r t p0(x , t) +

∫ t

0

dτ (r e−r τ ) p0(x , τ)

where p0(x , τ) = diffusion propagator = 1√
4π D τ

exp[−(x − x0)2/4Dτ ]

Renewal interpretation: τ → time since the last resetting during which
=⇒ free diffusion

• As t →∞, pst
r (x) = r

∫∞
0

p0(x , τ) e−r τ dτ = α0

2 exp[−α0 |x − x0|]
where α0 =

√
r/D
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Stationary State

Exact solution → pst
r (x) =

α0

2
exp[−α0 |x − x0|] with α0 =

√
r/D

p

x
x

0

st

r
(x)

→ nonequilibrium stationary state
(NESS)

⇒ current carrying with
detailed balance → violated

pst
r (x) = α0 exp[−Veff(x)]

effective potential: α0|x − x0|

Experimental verificaion using
holographic optical tweezers

Tal-Friedman, Pal, Sekhon, Reuveni, & Roichman

J. Phys. Chem. Lett. 11, 7350 (2020)
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Unusual temporal relaxation
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Dynamical phase transition

TRANSIENTTRANSIENT

NESS

SPACE

TIME

X
0

ξ (t)ξ (t)

pr (x , t) ∼ exp[−α0 |x − x0|] for |x − x0| ≤ ξ(t) (NESS)

∼ exp[−r t − |x − x0|2/4Dt] for |x − x0| ≥ ξ(t) (TRANSIENT)

where α0 =
√
r/D and ξ(t) =

√
4 D r t ⇒ growing length scale

=⇒ NESS gets established on larger and larger length scales
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Dynamical phase transition

TRANSIENTTRANSIENT

NESS

SPACE

TIME

X
0

ξ (t)ξ (t)

Large deviation form: pr (x , t) ∼ exp

[
−t f

(
|x − x0|

t

)]

where the rate function

f (u) = α0 |u| for |u| ≤ u∗ =
√

4Dr

= r + u2/4D for |u| ≥ u∗ =
√

4Dr

second derivative f ”(u) is discontinuous at u = u∗

=⇒ 2-nd order dynamical phase transition

[S.M., S. Sabhapandit, G. Schehr, PRE, 91, 052131 (2015)]
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Target Search: First-passage properties
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Search of a fixed target via pure diffusion (r = 0)

Consider a 1-d Brownian walker, starting at x0, searching for a fixed
target at 0

0 x
0

searchertarget

t
f

ti
m

e

space

t
f

first−passage time

first-passage time tf

=⇒ random variable

F0(tf |x0) → Prob. distribution of tf
given x0

• Exact solution:

F0(tf |x0) = x0√
4πDt3

f

exp[−x2
0/4Dtf ] −−−−→

tf→∞
t
−3/2
f

• Mean capture time → T̄ =
∫∞

0
tf F0(tf |x0) dtf =∞

Lévy ’40, Chandrasekhar ’43, Feller’s book, Redner’s book, ...
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Lévy ’40, Chandrasekhar ’43, Feller’s book, Redner’s book, ...

S.N. Majumdar Stochastic Resetting



Search of a fixed target via pure diffusion (r = 0)

Consider a 1-d Brownian walker, starting at x0, searching for a fixed
target at 0

0 x
0

searchertarget

t
f

ti
m

e

space

t
f

first−passage time first-passage time tf

=⇒ random variable

F0(tf |x0) → Prob. distribution of tf
given x0

• Exact solution:

F0(tf |x0) = x0√
4πDt3

f

exp[−x2
0/4Dtf ] −−−−→

tf→∞
t
−3/2
f

• Mean capture time → T̄ =
∫∞

0
tf F0(tf |x0) dtf =∞
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Diverging mean capture time for pure diffusion

The diverging mean capture time T̄ →∞ can traced back to trajectories
that typically wander away in the direction opposite to that of the target
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0 x

0

r=0

Such wandering trajectories get cut-off by resetting (r > 0)
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Target search via diffusion with resetting (r > 0)
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r

Exact result for the Mean capture time:

T̄ =
1

r

[
exp

(√
r/D x0

)
− 1
]

[M.R. Evans & S.M., PRL, 106, 160601 (2011)]

=⇒ Mean capture time is ∞ for r = 0, but finite when r > 0
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Optimal resetting rate
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Optimal resetting rate

T

r
0 r*

_
T̄ (r , x0) = 1

r

[
exp

(√
r/D x0

)
− 1
]

diverges as r → 0 and r →∞

As a function of r , T̄ (r) has a minimum at r = r∗

optimal resetting rate r∗ is given by:

r∗ = γ2 D

x2
0

where γ − 2
(
1− e−γ

)
= 0 ⇒ γ = 1.59362 . . .

[M.R. Evans and S.M., Phys. Rev. Lett. 106, 160601 (2011)]
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Target search via diffusion with resetting in d > 1
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a

0

R
0

r

r
stationary target of radius a at 0 in
d > 2

searcher starts at R0 > a, diffuses, and
resets with rate r

• Mean capture time:

T̄ (r ,R0) =
1

r

[(
a

R0

)ν
Kν(a

√
r/D)

Kν(R0

√
r/D)

− 1

]
where ν = 1− d/2

Kν(z) −→ modified Bessel function

• Once again, there is an optimal r∗ that minimizes T̄ (r ,R0) in all d

[M.R. Evans and S.M., J. Phys. A: Math. Theo. 47, 285001 (2014)]
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Target search via diffusion with resetting in d > 1
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Three important facts from the simple toy model

diffusion + stochastic resetting

=⇒
• Nonequilibrium stationary state (NESS)

• Unusual temporal relaxation

=⇒ accompanied by a dynamical phase transition

• The existence of an optimal resetting rate r∗

=⇒ renders a diffusive search efficient
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Toy model =⇒ explosion of activities

• Enzymatic reactions in biology (Michaelis-Menten reaction)
• Diffusion in a confining potential/box
• Lévy flights, Lévy walks, fractional BM with resetting
• Space-time dependent resetting rate r(x , t)
• Search via nonequilibrium reset dynamics vs. equilibrium dynamics
• Resetting dynamics of extended systems
• Memory dependent reset
• Quantum dynamics with reset
• Active particles with reset
• Cost of resetting
• Optimization of random search algorithms
• Optimal strategy for animal movements

. . . =⇒ a long list !

Reviews: “Stochastic resetting and applications”,
M.R. Evans, S.M., & G. Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020)

“The inspection paradox in stochastic resetting”,
A. Pal, S. Kostinski & S. Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)
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• Lévy flights, Lévy walks, fractional BM with resetting
• Space-time dependent resetting rate r(x , t)
• Search via nonequilibrium reset dynamics vs. equilibrium dynamics
• Resetting dynamics of extended systems
• Memory dependent reset
• Quantum dynamics with reset
• Active particles with reset
• Cost of resetting
• Optimization of random search algorithms
• Optimal strategy for animal movements

. . . =⇒ a long list !

Reviews: “Stochastic resetting and applications”,
M.R. Evans, S.M., & G. Schehr, J. Phys. A. : Math. Theor. 53, 193001 (2020)

“The inspection paradox in stochastic resetting”,
A. Pal, S. Kostinski & S. Reuveni, J. Phys. A. : Math. Theor. 55, 021001 (2022)

S.N. Majumdar Stochastic Resetting



Experiments

S.N. Majumdar Stochastic Resetting



Experiments

Theory of resetting =⇒ rapidly developing

How about experiments?

Experiments on target search via diffusion with resetting using optical
traps set-up:

Tal-Friedman, Pal, Sekhon, Reuveni, Roichman, J. Phys. Chem. Lett. 11, 7350 (2020)

Besga, Bovon, Petrosyan, S.M., Ciliberto, Phys. Rev. Res. 2, 032029 (2020)
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Experimental protocol for resetting

1. Free diffusion for an exponentially distributed period

2. Switch on an optical harmonic trap and the let the particle relax
to its equilibrium distribution using Engineered Swift Equilibration
(ESE) technique =⇒ mimics instantaneous resetting

Steps 1 and 2 alternate ...

free diffusion

sp
ac

e

time
0
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Experimental protocol for resetting

1. Free diffusion for an exponentially distributed period

2. Switch on an optical harmonic trap and the let the particle relax
to its equilibrium distribution =⇒ resetting

Steps 1 and 2 alternate ...

Resetting position is not fixed x0 = 0 as in theory, but thermally
distributed: P(x0) ∼ e−x

2
0/2σ2

where σ2 = kBT/κ

A finite width σ =⇒ interesting new effects for the mean first-passage
time T̄ to a fixed target located at L
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Dynamical Spinodal phase transition

A finite width σ =⇒ interesting new effects for the mean first-passage
time T̄ to a fixed target located at L

T̄ (r , b = L/σ) −→ non-monotonic function of r for fixed
b = L

σ > bc = 2.53..

=⇒ spinodal transition at b = bc

Besga, Bovon, Petrosyan, S.M. & Ciliberto

Phys. Rev. Res. 2, 032029 (2020)

Faisant, Besga, Petrosyan, Ciliberto & S.M.

J. Stat. Mech. 113203 (2021)
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Generalisation to many-body systems
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Stochastic Resetting in a nutshell

t

x(t)

0

t3t2t1

• Natural dynamics =⇒ deterministic/stochastic/classical/quantum

• Resetting at random times and then natural dynamics restarts afresh

• Interval between resettings =⇒ p(τ) independently

=⇒ renewal process

• If p(τ) = r e−r τ =⇒ Poissonian resetting
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Generalisation to many-body systems

x

H(x,t)

Interface height
s
i = +_1Ising spins 

Any many-body system evolving under its own stochastic dynamics:

Ex: (i) fluctuating interface with EW/KPZ dynamics
(ii) Ising model with Glauber dynamics

Configuration C : (i) {H(x , t)} → heights of an interface
(ii) {s1, s2, . . . , sL} → spins in Ising model

Natural dynamics ⇒ subject to stochastic resetting to its initial
configuration with rate r

Pr (C , t) −→ Prob. that the system is in config. C at time t ?
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General Renewal Equation

C

t time

last reset before t

τ

C0

Renewal equation: Setting τ → time since last resetting before t

Pr (C , t) = e−r t P0(C , t) +

∫ t

0

dτ (r e−r τ )P0(C , τ)

[S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014)]

As t →∞, the nonequilibrium stationary state:

Pr (C ) =
∫∞

0
dτ (r e−r τ )P0(C , τ)
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Nonequilibrium Stationary State

At long times, the system reaches a nonequilibrium stationary state

Pr (C ) =

∫ ∞
0

dτ (r e−r τ )P0(C , τ)

To determine this stationary state, we need to know the full
time-dependent P0(C , τ) for the system without resetting at all times τ

=⇒ makes it hard

Few cases where analytical progress can be made

Examples: Fluctuating interfaces, Exclusion processes, N independent
Brownian motions, Ising model etc.

S. Gupta, S.M., G. Schehr, PRL, 112, 220601 (2014); U. Basu, A. Kundu, A. Pal, PRE, 100,

032136 (2019); M. Magoni, S.M., G. Schehr, PRR, 2, 033182 (2020)...

Example: N noninteracting particles in a switching optical trap

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Exp. protocol for resetting using optical traps

1. Free diffusion of N noninteracting particles during an exponentially
distributed period

2. Switch on an optical harmonic trap and the let the particles relax
to their equilibrium distribution =⇒ mimics instantaneous resetting

Steps 1 and 2 alternate ...

free diffusion

sp
ac

e

0
time
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A simple model of Correlated resetting gas

time 

sp
ac

e

0

Consider N Brownian motions (independent) that are simultaneously
reset with rate r to the origin

The joint position distribution approaches a nonequilibrium stationary
state (NESS) at long times

Pst
r ({xi}) = r

∫ ∞
0

dτ e−r τ
N∏
i=1

1√
4πDτ

e−x
2
i /4Dτ

The joint distribution does not factorize =⇒ correlated resetting gas

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Solvable Correlated Gas

time 

s
p

a
c
e

0

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏
i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

In this model, interactions between particles are not built-in, but the
correlations are generated by the dynamics (simultaneous resetting),
that persist all the way to the stationary state

The gas is strongly correlated in the NESS

〈x2
i x

2
j 〉 − 〈x2

i 〉 〈x2
j 〉 = 4D2

r2 =⇒ attractive all-to-all interaction
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Solvable Correlated Gas

time 

s
p

a
c
e

0

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏
i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

The stationary joint distribution has a CIID structure =⇒ Solvable

Pst
r (x1, x2, . . . , xN) =

∫ ∞
−∞

du h(u)
N∏
i=1

p(xi |u)

CIID =⇒ Conditionally Independent and Identically Distributed
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Solvable Correlated Gas

Joint distribution:

Pst
r ({xi}) = r

∫ ∞
0

dτ e−r τ
N∏
i=1

1√
4πDτ

e−x
2
i /4Dτ

Despite strong correlations, several physical observables can be
computed exactly in the NESS due to the CIID structure

• Compute any observable for the ideal gas ⇒ I.I.D variables with
distribution p0(x , τ) parametrized by τ =⇒ easy

• Average over the random parameter τ using p(τ) = r e−r τ

Examples:

• Average density

• Distribution of the k-th maximum: Order statistics

• Spacing distribution

• Full Counting Statistics

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Average Density

1
N

1
ln N

ρ(x, N)

x0
M1 ∼ ln N

∼ D
r

Joint distribution:

Pst
r ({xi}) = r

∫∞
0

dτ e−r τ
N∏
i=1

p0(xi , τ)

p0(x , τ) = 1√
4πDτ

e−x
2
i /4Dτ

Average density:

ρ(x ,N) = 1
N

N∑
i=1

〈δ(xi − x)〉 =

∫
Pst
r (x , x2, . . . , xN) dx2 dx3 . . . dxN

= r
∫∞

0
dτ e−r τ p0(x , τ) = α0

2 exp[−α0 |x |]

where α0 =
√
r/D

=⇒ same as the single particle position distribution
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Extreme statistics and the gap/spacing distribution

a) b)

Λ(α)P(Mk)

Mk /Λ(α) dk /λN(α)

λN(α)P(dk)

• Global maximum (rightmost particle): M1 = max{x1, x2, . . . , xN}

Prob.[M1 = w |N]→ 1
LN

f
(

w
LN

)
where LN =

√
4 D ln N

r and

f(z) = 2 z e−z2

with z ≥ 0

• Gap between the two rightmost particles d1

Prob.[d1 = g |N]→ 1
lN
h
(

g
lN

)
where lN =

√
D

r ln N and

h(z) = 2
∫∞

0 du e−u2−z/u with z ≥ 0

Non-exponential tail: h(z) ∼ exp[−3 (z/2)2/3] as z →∞

M. Biroli, H. Larralde, S. M., G. Schehr, PRL, 130, 207101 (2023)
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Exact stationary states for two other protocols

N noninteracting particles in a harmonic trap

(1) Protocol 1: Stiffness of the harmonic trap changes from µ1 → µ2

with rate r1 and µ2 → µ1 with rate r2

=⇒ drives the system into a correlated NESS

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024)

(2) Protocol 2: The center of the harmonic trap performs a stochastic
motion

=⇒ drives the system into a correlated NESS
Sabhapandit, S.M., J. Phys. A: Math. Theor. 57, 335003 (2024)
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Exact stationary states for two other protocols

In both protocols, the NESS has the CIID (conditionally independent and
identically distributed) structure

Pst(x1, x2, . . . , xN) =

∫ ∞
−∞

du h(u)
N∏
i=1

p(xi |u)

This CIID structure =⇒ solvable for various observables

Biroli, Kulkarni, S.M., Schehr, PRE, 109, L032106 (2024); Sabhapandit, S.M., J. Phys. A: Math.

Theor. 57, 335003 (2024); Kulkarni, S.M., Sabhapandit, arXiv: 2407.20342
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Summary and Conclusions

• A brief and partial overview of Stochastic Resetting
=⇒ a rapidly evolving field of research

• Leads to ⇒ new nonequilibrium stationary state (NESS)

• Unusual temporal relaxation to the stationary state

⇒ 2-nd order dynamical phase transition for diffusion with resetting

• Search of a stationary target via diffusion+resetting → efficient

Mean search time T̄ (r) has a minimum at an optimal resetting rate r∗ in
all dimensions

• Experiments =⇒ new interesting questions ⇒ spinodal phase transition

• Generalisation to many-body systems

Simultaneous resetting of independent particles
=⇒ nontrivial correlations in the NESS
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Recent directions

• Geometrical properties of the territory covered by a resetting Brownian
motion

Span, Convex hull, no. of distinct sites visited etc.

S.M., F. Mori, H. Schawe, G. Schehr, PRE, 103, 022135 (2021); M. Biroli, F. Mori, S.M., J. Phys.

A 55, 244001 (2022)

• Resetting with memory

Boyer & Solis-Salas (2014); Boyer, Evans & S.M. (2017); Falcon-Cortes, Boyer, Giuggioli, S.M.

(2017), Boyer & S.M. (2024)...

• Resetting Brownian motion with constraints: resetting Brownian bridges
and its optimal properties

B. De Bruyne, S.M. & G. Schehr, PRL, 128, 200603 (2022); N. Smith & S.M., J. Stat. Mech

053212 (2022)

• First-passage resetting

De Bruyne, Randon-Furling, Redner (2020)
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Recent directions

• Applications of resetting in stochastic optimal control theory
B. De Bruyne & F. Mori (2022); F. Mori & L. Mahadevan, arXiv:2311.18813

• Cost of resetting and Entropy production
Fuchs, Goldt, Seifert (2016),......, Pal, Kusmierz, Reuveni (2020); Bodrova & Sokolov (2020);

Mori, Olsen, Krishnamurthy (2023); Sunil, Blythe, Evans, S.M (2023), Olsen, Gupta, Mori,

Krishnamurthy (2924); Olsen, Gupta (2024).....

• Resetting in classical many-body systems
Durang, Henkel, Park (2014), Gupta, S.M., Schehr (2014); Basu, Kundu, Pal (2019); Magoni,

S.M. ,Schehr (2020); Krapivsky, Vilk, Meerson (2022); Biroli, Larralde, S.M., Schehr (2023), Di

Bello, Hartmann, S.M., Mori, Rosso, Schehr (2023), Biroli, Kulkarni, S.M., Schehr (2023) . . .

• Resetting in Quantum many-body systems
Mukherjee, Sengupta, S.M. (2018); Rose, Touchette, Lesanovsky, Garrahan (2018); Perfetto,

Carollo, Magoni & Lesanovsky (2021); Yin, Barkai (2022); Dubey, Chetrite, Dhar (2022); Turkeshi,

Dalmonte, Fazio, Schiro (2022); Kulkarni, S.M. (2023), Kulkarni, S.M. & Sabhapandit (2024) . . .

=⇒ An optimally chosen resetting rate enhances quantum
entanglement between qubits

Ongoing collaboration between LPTMS, Munich, Tel-Aviv and ICTS
(Bangalore) using IBM quantum computer
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Stochastic Resetting→ rich and interesting static/dynamic phenomena
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