
Measurement induced dynamics of a qubit — emergent
resetting dynamics

Abhishek Dhar
International centre for theoretical sciences (ICTS-TIFR), Bangalore

Varun Dubey (ICTS-TIFR),

Raphael Chetrite (Université Côte d’Azur, Nice)

J. Phys. A: Math. Theor. 56 154001 (2023).

Measuring and Manupulating Non-equilibrium systems
October 14-25, 2024

(ICTS-TIFR) December 4-8, 2023 1 / 14



Outline of talk

MOTIVATION: Consider the dynamics of a quantum system whose unitary dynamics is
interrupted by a sequence of projective measurements. Outcome of measurements is
probabilistic, hence we obtain a stochastic dynamics — Quantum Trajectories.

We discuss a simple example: Two qubits, System (S) and Detector (D); evolve unitarily for
time τ ; make measurement on D-qubit and record the outcome; Study the effective stochastic
dynamics of the S-qubit wavefunction and the record statistics.

The wavefunction dynamics of the S-qubit is given by a drift-jump process for a single angle
variable — can also be thought of as a resetting process!

Exact results for steady state, time evolution, spectrum of Fokker-Planck operator, and the
counting statistics.
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Quantum Trajectories
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Quantum Trajectories
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Quantum Trajectories — measurement induced phase transitions

Measurement induced phase transitions: many body quantum systems show a transition from
volume-law entanglement entropy to area-law entropy with increase in the rate of
measurements.

Entanglement has to be measured for pure states on individual trajectories . Very difficult
from the experimental point of view.

What do measurement records tell us about such transitions?

Ask this question for few-body systems.
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General setup of two qubits

1 Two qubits, System (S) and Detector (D).

initial state |Ψ(0)〉 = |ψ(0)〉(S) ⊗ |0〉(D) =
(

a|0〉(S) + b|1〉(S)
)
⊗ |0〉(D)

2 Evolve unitarily for time τ ; S and D get entangled.

|Ψ(τ)〉 = Uτ |Ψ(0)〉 = a00|00〉+ a10|10〉+ a01|01〉+ a11|11〉

= (a00|0〉+ a10|1〉)⊗ |0〉(D) + (a01|0〉+ a11|1〉)⊗ |1〉(D).

3 Make measurement on D (e.g. σ(D)
z ). Outcomes:

|0〉D implies |ψ〉 = a00|0〉+ a10|1〉 with prob. 〈ψ|ψ〉 = |a00|2 + |a10|2

|1〉D implies = a01|0〉+ a11|1〉 with prob. 〈ψ|ψ〉 = |a00|2 + |a10|2.

4 Thus we have a stochastic evolution to a new state[
a
b

]
→
[

a′
b′

]
5 Reset D-qubit to state |0〉D —- REPEAT the above steps.
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General setup

1 Bloch-Sphere representation:[
a
b

]
=

[
cos θ/2

eiφ sin θ/2

]
2 A stochastic trajectory on the Bloch sphere
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Specific model: Snizhko, Kumar, Romito (2020)
Roy, Chalker, Gornyi, Gefen (2020)

Unitary evolution of 2-qubit system is given by Hamiltonian:

H = γ0σx ⊗ I +

√
γ

τ
π1 ⊗ σy , π1 = (1− σz )/2

Uτ = e−iHτ .

Consider continuous time limit τ → 0.

Dynamics is confined to y − z plane of Bloch-sphere
=⇒ single parameter, θ, characterizes the quantum state.

Stochastic dynamics is given by the following drift-jump equation

dθt = Ω (θt ) dt +
(
π − θt−

)
dNt , E [dNt ] = α(θt ) dt = γ sin2 θt

2
dt .

Ω(θ) = −2γ0 [1 + λ sin θ] . λ =
γ

4γ0
.

Nt is a counting process with θ-dependent rate function αt .
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Quantum Trajectories

Equivalently, the dynamics is given by:

θt+dt =

{
θt + Ω(θt ) dt with prob. 1− α(θt )dt
π with prob. α(θt )dt

.

Ω(θ) = −2γ0 [1 + λ sin θ]

Single parameter, λ = γ/(4γ0), controls the measurement strength.
Drift + position-dependent RESET.
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Earlier work: Snizhko, Kumar, Romito [PRR, 2020]

Master Equation:

∂P(θ, t)
∂t

= −
∂

∂θ
[Ω(θ)P(θ, t)]− γ sin2(θ/2)P(θ, t) + γδ(θ − π)

∫ 2π

0
sin2(θ′/2)P(θ′, t) dθ′.

Ω(θ) = −2γ0 [1 + λ sin θ]

Exact steady state distribution: interesting transitions

Exact expression for survival probability [Prob. of no resets]:
S(t) = e−

∫ t
0 dt′α(θ(t′)), starting from |0〉. Transition at λ = 1, from oscillatory to pure

exponential decay.

Few eigenfunctions of the Fokker-Planck operator.
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New results: Dubey, AD, Chetrite (J.Phys.A:2023)

Space-dependent resetting — Use approaches from:
Majumdar, Evans (PRL, 2011); Majumdar, Evans (J. Phys. A , 2011)
Pal, Kundu, Evans (J. Phys. A, 2016)
Roldan, Gupta (PRE, 2017).

Exact solution for time evolution of P(θ, t) by solution of the renewal equation:

P(θ, t) = P t
0[0]δ(θ − θt (0, 0)) +

∫ t

0
αt−τPτ0 [0||π] δ(θ − θτ (0, π)) dτ,

where αt−τ is the mean transition rate:

αt =

∫ 2π

0
γ sin2

(
θ

2

)
P(θ, t) dθ.
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Record statistics

Full spectrum obtained for λ ≤ 1. Time evolution in terms of spectral expansion.

Counting statistics: The probability of registering exactly n counts in the interval (0, t] is given
by

P t
0[n] =

∫ t

0
dtn
∫ tn

0
dtn−1· · ·

∫ t2

0
dt1 pt

0[t1, . . . , tn].

Can obtain exact expression for Laplace-Generating function

Z (s, σ) =

∫ ∞
0

dte−σt
∞∑

n=0

e−nsP t
0[n]

.

All cumulants of N scale linearly with time t (at large times).
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Click statistics

Explicit formula for mean number of clicks:

〈Nt 〉 =


2λγ0t + λ2

[
−1 + e−λγ0t sin(ωt+ϕ)

sinϕ

]
0 ≤ λ < 2,

2λγ0t + λ2
[
−1 + e−λγ0t sinh(ω′t+ϕ′)

sinhϕ′

]
λ > 2,

4
(
−1 + γ0t + e−2γ0t (1 + γ0t)

)
λ = 2,

Probability of no clicks — survival probability

S(t , λ) =
e−γt/2
β2

(
sin2 (βγ0t) + sin2 (βγ0t + φ)

)
for 0 ≤ λ < 1

=
e−γ2t

β′2

(
sinh2 (β′γ0t

)
+ sinh2 (β′γ0t + φ′

))
for λ > 1

= e−γ2t
(

(γ0t)2 + (1 + γ0t)2
)

for λ = 1

The clicks are the only experimental observables. Their statistics allow us to see various
transitions of the system dynamics.
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Conclusions

We studied the dynamics of a qubit that is continuously monitored via measurements on a
detector qubit with which it interacts strongly so as to avoid the zeno limit.

For the case considered here, the qubit state remains confined at all times on the yz plane of
the Bloch sphere so that it can represented by a single angle variable. The state |ψ(t)〉
follows a stochastic dynamics with drift and jump terms.

The stochastic wavefunction dynamics can be naturally interpreted as a resetting process,
with a resetting rate that depends on the instantaneous state. The strength of the resetting
rate λ quantifies the strength of measurements.
[Quantum resetting: B Mukherjee, K Sengupta, SN Majumdar (PRB, 2018)]
Measurement dynamics leads to many possibilities: Drift+Jump+Diffusion

Exact results on the number of resetting events, Nt , in a specified time t . The no-click
probabilty shows a transition at λ = 1. [ this is the variable accessible to experiments].

Solving the renewal equation, we obtain the exact form of the probability distribution P(θ, t)

for the system to be in the quantum state, |θ〉 =

[
cos (θ/2)
i sin (θ/2)

]
, at time t .

Average density matrix of the qubit, ρ̂(t) =
∫ 2π

0 dθP(θ, t)|θ〉〈θ|, satisfies a Lindblad equation
and has much less information about the dynamics. The stochastic dynamics is a “unraveling”
of the Lindblad.
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