

Numerical studies of inertial modes in the Sun using Dedalus

Stellar Convection Conference, NORDITA

Suprabha Mukhopadhyay

PhD, Max Planck Institute for Solar System Research

Collaborators: Yuto Bekki, Xiaojue Zhu, Laurent Gizon

Eigenvalue problem using the Dedalus code

- Open source, Python, MPI-parallelized code (Burns+ Phy. Rev. Res, 2020).
- Spectral code: uses various basis like Fourier, Chebyshev, etc.
- Can flexibly solve for various geometries: shell, sphere, ball, annuli, and cartesian.
- Many examples: dedalus-project.org

Previous theoretical studies of solar inertial modes

Linear studies:

Literature	Model	Stratification	Rotation	Buoyancy effects	Latitudinal Entropy gradient	Deviation from adiabaticity
Bekki+ A&A, 2022	Compressible	Solar-like	Solar differential/ uniform rotation	Included	From Thermal wind balance	Different profiles tested
Bhattacharya+ ApJ, 2024	Anelastic $\nabla \cdot (\rho_0 \mathbf{u}) = 0$	Solar-like	Solar differential/ uniform rotation	Included	Absent	Analytical model (fixed)
Jain+ ApJ, 2024	Anelastic (cylindrical)	Stratified	Uniform rotation only	Included	Absent	Discussed (not used)
Triana+ ApJ, 2022	Incompressible $\nabla \cdot \mathbf{u} = 0$	Uniform (unstratified)	Uniform rotation only	Not Boussinesq	Absent	None
Fournier+ A&A, 2022	Incompressible (surface)	None	Solar differential/ uniform rotation	Not Boussinesq	Absent	None

Non-linear simulations: Bekki+ A&A, 2022, Bekki+ Sci. Adv. 2024, Blume+ ApJ, 2024

26.08.2024

Issues with modeling solar inertial modes

- Effects of extending the domain have not been tested. How are they affected by radiative interior or near-surface shear layers?
- **Different** model setups have been used, but the effects of their simplifying **assumptions** have not been tested.

Comparison of the 3 Models

Coupling of the inertial modes with the radiative interior

Rossby modes in setup including radiative zone

- Both sectoral (I = m) and non-sectoral (I ≠ m) Rossby modes are present on including RZ, unlike in CZ (Blume+ ApJ,2024).
- They follow analytical dispersion relation (e.g. Zaqarashvili+ Space Sci. Rev, 2021):

$$\omega_{l,m} = -\frac{2m\Omega_0}{l(l+1)}.$$

- There are **radial overtones** of the modes, with no radial nodes in the CZ (n_{CZ}) and **any** number of radial nodes in the **RZ** (n_{RZ}) .
- The number of radial nodes in RZ (n_{RZ}) produces a negligible perturbation in the frequency.

l = m, l = m + 1, l = m + 2

Difference of sectoral Rossby modes in RZ and CZ

- They have high velocities in RZ, **deviating** from the r^m behavior of u_{θ} in **CZ**(*Provost+ A&A, 1981*).
- They behave very differently in RZ and CZ due to change in the Force balance.
- The behaviour of the mode in CZ is unaffected by RZ, i.e. very weakly coupled.

What happens to other inertial modes?

- Modes with significant convective motions are evanescent in the convectively stable RZ.
- The portion of these modes in the CZ is **unaffected** by the presence of the radiative zone
- These modes can be considered completely decoupled from RZ.

Eigenfunctions under DR in the convection zone

 Modes from the Boussinesq model are different near the critical latitude due to the presence of radial motions there. Compressible Anelastic Boussinesq

Eigenfunctions of the rotating convective modes

• The non-toroidal modes are significantly different for Boussinesq model, due to absence of stratification.

Eigenfunctions of the high-latitude modes

- Baroclinically unstable high-latitude modes are produced under latitudinal entropy gradient from thermal wind balance of differential rotation. (*Bekki+ A&A, 2022*)
- The high-latitude modes obtained from the Boussinesq model have a different meridional structure from the other models because baroclinical instability involves non-toroidal motions.
- It is trapped at much higher latitudes than the other models.
- The mode also has a more negative **frequency**.

Cause of the differences: radial motions

General trend: Difference in frequency between Boussinesq and compressible 0 models increases with increase in the estimate of non-toroidicity of the mode.

 $\Gamma =$

Mukhopadhyay, Bekki, Zhu, & Gizon, 2024 (Manuscript in prep.)

- Inertial modes are very weakly coupled or decoupled to the radiative interior.
- Anelastic model simplifies the calculations without affecting the inertial modes.
- **Boussinesq** model significantly affects the **non-toroidal** modes due to the neglect of density stratification.