Entropy rain - seen since Stein & Nordlund (1989)

Filamentary, nonlocal shown: entropy fluctuations pos neg

Axel Brandenburg (Nordita)

"Standard" overshooting convection

Hurlburt, Toomre, & Massaguer (1986)

 Δf $\overline{}$ \rightarrow flawed for stellar applications

Structure of my talk

- Part I: slope of opacity vs temperature matters oTop few Mm are Schwarzschild-unstable \circ The rest is just stirred \circ Solution to convection conundrum
- Part II: modeling this in MLT \circ stirring \rightarrow Deardorff
- Part III: Size of structures

 \circ Not a solution to super-small convective velocities \bullet Brandenburg (2016, ApJ 832, 6

Near-polytropic solutions

$$
\nabla \cdot \mathbf{F}_{\text{rad}} = -\kappa \rho \oint_{4\pi} (I - S) \, d\Omega, \qquad \frac{\text{D} \ln \rho}{\text{D}t} = -\nabla \cdot u,
$$

$$
\rho \frac{\text{D}u}{\text{D}t} = -\nabla p + \rho g + \nabla \cdot (2\rho \cdot \mathbf{S}),
$$

$$
\hat{\mathbf{n}} \cdot \nabla I = -\kappa \rho (I - S), \qquad \rho T \frac{\text{D}s}{\text{D}t} = -\nabla \cdot \mathbf{F}_{\text{rad}} + 2\rho \cdot \mathbf{S}^2,
$$

4.0×10⁴
\n3.8×10⁴
\n3.8×10⁴
\n
$$
\frac{12}{5}
$$
 3.4×10⁴
\n $\frac{12}{5}$ 3.2×10⁴
\n $\frac{12}{5}$ 3.2×10⁴
\n2.8×10⁴
\n2.8×10⁴
\n0 2 4 6 8 10 12
\n4×10⁴
\n $\frac{4×10^4}{5}$
\n $\frac{12}{5}$ 2×10⁴
\n $\frac{1}{5}$ 2×10⁴
\n

 $\kappa = \kappa_{0} \rho^{a} T$ Kramers-type opacity

212 2 1 cooling rate $=\lambda = \chi k^2$ *k k k* $+\ell$ $=\lambda = \chi k^2 \Rightarrow \lambda = \frac{\chi k^2}{4}$

2

• Polytrope possible

a $\boldsymbol{\tau}$ *b*

od*T*/d*z*=const below photosphere o*T* = const above photosphere

• Polytropic index?

o More complicated opacities?

Barekat & Brandenburg (2014, A&A 571, A68)

Polytropes when *n* > -1

Need:

For example:

 $=$ const *dz dT*

const $3\kappa\rho$ 16 σT^3 == ======= = σT and *K*

Kramers type power law

$$
\kappa = \kappa_0 \rho^a T^b
$$

Polytropic index *n*

 2.0

$$
\rho = T^{\frac{3-b}{1+a}} = T^n
$$

Analytic solution

Radiative flux:

$$
\mathbf{F}_{\text{rad}} = -K\nabla T \qquad \text{with} \qquad K = \frac{16\sigma_{\text{SB}}T^3}{3\kappa\rho}
$$

Kramers' opacity: $\kappa = \kappa_0 (\rho/\rho_0)^a (T/T_0)^b$

Nonconvecting solution $(F_{rad} = const)$ $(T/T_0)^{4+a-b} = (n+1)\nabla_{rad}^{(0)}(P/P_0)^{1+a} + (T_{top}/T_0)^{4+a-b}$

Brandenburg (2016)

Polytropic index for Kramers opacity:

$$
n = \frac{3-b}{1+a} = \frac{3+3.5}{1+1} = 3.25 \quad >1.5 \, (\Rightarrow \text{stable})
$$

OPAL vs. old Cox & Stewart opacities

- 2 branches
- Rising branch from H opacity at low T
- Decreasing branch from bound-free & free-free opacity
- Kramers type opacity

$$
\kappa = \kappa_0 \rho^a T^b
$$

•
$$
a=1, b=-3.5
$$

 $\sqrt{10}$ Mm₂

 1 Mm

 10^6

 100 Mm

Hydrostatic reference solutions

What matters? Actual opacity or its derivative?

- $b_{\text{max}} = 0, 1, 10$
- *b* = 0 means *n*=1.5

Illustrative simulations

- Extended subadiabatic layer
- Yet upward enthalpy flux

Illustrative simulations

- Extended subadiabatic layer
- Yet upward enthalpy flux

Structure of my talk

- Part I: slope of opacity vs temperature matters oTop few Mm are Schwarzschild-unstable oThe rest is just stirred oSolution to convection conundrum
- Part II: modeling this in MLT \circ stirring \rightarrow Deardorff
- Part III: Size of structures
	- oNot a solution to super-small convective velocities

Brandenburg, Nordlund, & Stein (2000) using Kramers opacity

Subadiabatic layers now seen routinely

Bekki, Hotta, & Yokoyama (2017)

- Lower 1/3 subadiabatic
- But overshoot layer not included

Confirmed by simulations (Käpylä+17)

- Extended subadiabatic layer
- Yet upward enthalpy flux
- Distinct from usual overshoot layer (where enthalpy flux is downward!)

"Standard" overshooting convection

Hurlburt, Toomre, & Massaguer (1986)

Explained by Deardorff term

tau approximation $\partial F_{\text{enth}}/\partial t = \overline{\rho}\overline{T}(\overline{u_z s} + \overline{u_z s})$

$$
\dot{s} = -u_j \nabla_{\!j} \overline{S} - s/\tau_{\rm cool} \dots,
$$

$$
\dot{u}_i = -g_i s/c_p + ...,
$$

gradient & Deardorff terms

$$
\boldsymbol{F}_{\rm G} = -\frac{1}{3}\tau_{\rm red} u_{\rm rms}^2 \overline{\rho} \ \overline{T} \ \boldsymbol{\nabla} \overline{S},
$$

$$
\boldsymbol{F}_{\rm D} = -\tau_{\rm red} \overline{s^2} \, \boldsymbol{g} \ \overline{\rho} \ \overline{T}/c_P
$$

Axel Brandenburg IVILI extra nabla term in standard MLT

$$
F_{\text{enth}} = \frac{1}{3} \overline{\rho} c_P \overline{T} \left(\tau_{\text{red}} u_{\text{rms}}^2 / H_P \right) (\nabla - \nabla_{\text{ad}} + \nabla_{\text{D}})
$$

0.03

 0.01

 \mathcal{V}

8

9

10

 $\nabla-\nabla_{\rm ad}$

11

12

13

on.

Theoretical Expression for the Countergradient Vertical Heat Flux

J. W. DEARDORFF

National Center for Atmospheric Research, Boulder, Colorado 80302

A theoretical expression is derived from the heat-flux conservation equation for the counter potential-temperature gradient that can sustain an upward flux of sensible heat. This gradient is found to be $\gamma_e = (g/\theta)$ $(\theta^2)/(\omega'^2)$, where (θ'^2) is the potential temperature variance and $\langle w'^2 \rangle$ is the vertical velocity variance. The usual down-gradient eddy coefficient expression for the heat flux is obtained from the derivation only if γ_e is set to zero. Aircraft measurements of (g/θ) $(\theta'^2)/(\omega'^2)$ in the middle and upper portions of convective planetary boundary layers indicate that this expression for γ_e is of the same order of magnitude (near 0.7 \times 10⁻⁵ °K cm⁻¹) the value deduced previously for γ_e from completely different considerations.

" N WILL ------- L---- J II HIVYUUI W al. [1971], and Donaldson [1972] that utilize ations for the second moments and closure umptions for third moments. The equation, ich makes use of the Boussinesq approximaı, is

$$
\frac{\partial}{\partial t} \langle w' \theta' \rangle = -\langle u, \rangle \frac{\partial}{\partial x_i} \langle w' \theta' \rangle - \langle w' u, \rangle \frac{\partial \langle \theta \rangle}{\partial x_i} \n- \langle u_i' \theta' \rangle \frac{\partial \langle w \rangle}{\partial x_i} - \frac{\partial}{\partial x_i} \langle w' u_i' \theta' \rangle \n\leftarrow \frac{g}{\theta_0} \langle \theta'^2 \rangle - \frac{1}{\rho_0} \langle \theta' \frac{\partial p'}{\partial z} \rangle
$$
\n(3)

17

5900

Nearly constant entropy through mixing from the top

- Enthalpy flux without gradient term o *Non-local* phenomenon
- Convection instability not by local Schwarzschild criterion \circ But stirring from above \rightarrow drives Deardorff \circ No giant cells expected (\rightarrow global simulations assumed MLT) o Stability depends on *local* opacity law

Also seen in accretion disc simulations

Brandenburg & Das (2020, GAFD 114, 162)

Structure of my talk

- Part I: slope of opacity vs temperature matters oTop few Mm are Schwarzschild-unstable oThe rest is just stirred oSolution to convection conundrum • Part II: modeling this in MLT
	- \circ stirring \rightarrow Deardorff
- Part III: Size of structures
	- \circ Not a solution to super-small convective velocities

Small scales predominant?

Hotta19 Hanasoge+17 **C** $x/R_{\odot} = 0.96$ • Rapid downdrafts 10^{18} $10¹$ $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10^{12} \end{bmatrix}$ Greer et al. o How fast can they go? $10²$ **Granulation** • Are small scales unobservable? Helioseismology tracking oCould explain helioseismic result? $10⁰$ $10²$ 10 $10⁴$ Spherical harmonic degree l **Stagger** oE.g., like cases I or II? E_{ϕ} (km³/s²) $10^{(}$ `SG tracking Case I: $\beta = \widetilde{\beta} = 0$ Case II: $\beta=0$, $\widetilde{\beta}=1$ Case III: $\beta = \widetilde{\beta} = 1$ Theory (Miesch et al. 2012) 10^{-1} \boldsymbol{z} 0.8 0.8 0.8 0.6 0.6 0.6 10^{-2} 0.4 0.4 0.4 **SEISMOLOGY** 0.2 0.2 0.2 10^{-3} $10⁰$ $10¹$ $10²$ 10^{3} $10⁴$ 0.0 Spherical harmonic degree, ℓ -0.2 $0.\overline{2}$ -0.2 0.2 0.4 -0.2 -0.4 0.0 0.4 -0.4 0.0 -0.4 0.0 0.2 0.4 \boldsymbol{x}

Filling factor?

 $\overline{S} = (1-f)\overline{S}_{\uparrow} + f\overline{S}_{\downarrow} = \overline{S}_{\uparrow} - f \Delta \overline{S}$ $\overline{s^2} = (1 - f)(\overline{S}_1 - \overline{S})^2 + f(\overline{S}_1 - \overline{S})^2 = \hat{f}(\Delta \overline{S})^2$ $\hat{f} = (1 - f)f$

$$
\overline{u_z^3} = (1-f)\,\overline{U}_\uparrow^3 + f\,\,\overline{U}_\downarrow^3 = -\hat{f}\,(1-2f)(\Delta\overline{U})^3
$$

When f becomes small (<0.14), ϕ_{kin} exceeds unity and for $f < 0.015$, $\phi_{\rm kin}$ exceeds the estimate $\phi_{\rm enth} \approx 4$ found by Brandenburg et al. (2005) , so the sum of enthalpy and kinetic energy fluxes may become negative, which appears unphysical.

$$
F_{\rm kin} = -\phi_{\rm kin} \, \overline{\rho} u_{\rm rms}^3
$$

where $\phi_{\text{kin}} = (1/2 - f)/\hat{f}^{1/2}$ is a positive prefactor (corresponding to downward kinetic energy flux) if $f < 1/2$. Stein et al. (2009) find $f \approx 1/3$, nearly independently of depth, which yields $\phi_{\rm kin} \approx \sqrt{2}/4 \approx 0.35$; see Table 1, where we list ϕ_{kin} and $-\overline{U_1}/u_{\text{rms}} = [(1-f)/f]^{1/2}$ for selected values of f.

$$
F_{\text{enth}} = \phi_{\text{enth}} \, \overline{\rho} u_{\text{rms}}^3
$$

with $\phi_{\text{enth}} = k_f H_P/(a_{\text{MLT}} \nabla_{\text{ad}})$. This yields $\phi_{\text{enth}} \approx 20$, which is rather large. By contrast, Brandenburg et al. (2005) determined a quantity k_u such that $\phi_{\text{enth}} = k_u^{-3/2} \approx 4$.

Final remarks

- NSSL (near-surface shear layer) not (well) resolved oTremendous difference in time scales: 5 min vs 12 days oLength scales: 300 km vs 60 Mm
- Convection instability not by *local* Schwarzschild criterion \circ But stirring from above \rightarrow drives Deardorff flux \circ No giant cells expected (\rightarrow all global simulations flawed!?) oStability depends on *local* opacity law

Opacity **K** Polytropic index *n*

 $n = \frac{3-b}{1+a}$ $\kappa = \kappa_0 \rho^a T^b$ Barekat+Brandenburg14

Gradient flux (Böhm-Vitense 1953) Deardorff flux (Deardorff 1968)

$$
\boldsymbol{F}_{\!G} = -\frac{1}{3}\tau_{\text{red}}\boldsymbol{u}_{\text{rms}}^2\bar{\boldsymbol{\rho}}\,\,\overline{\boldsymbol{T}}\,\,\boldsymbol{\nabla}\bar{\boldsymbol{S}},
$$

$$
\textbf{\textit{F}}_{\rm D}=-\tau_{\rm red}\, \overline{s^2}\, \textbf{\textit{g}}\, \, \overline{\rho}\, \, \overline{T}/c_P
$$

Conclusions

- Convection dynamics not quite like mixing length theory
- Slope of entropy matters for convective stability
- Find even hot blobs in convection simulations
- Identified Deardorff term:responsible for subadiabatic conv
- Mixing length model still gives sharp bottom of CZ

Tau approximation

$$
\dot{s} = -u_j \nabla_j \overline{S} + N_s
$$

$$
\dot{u}_i = g_i s / c_p + N_u
$$

$$
\frac{\partial F_i}{\partial t} \propto \overline{u_i} \dot{s} + \overline{\dot{u}_i s} = -\overline{u_i u_j} \nabla_j \overline{S} + g_i \overline{s^2} / c_p + N_{su}
$$

 $\mathcal T$ *i su F* N $_{\cdots}$ $=-$ Closure hypothesis

Another missing piece: surface appearence

a, Ω

-2

- Stratified MHD turbulence produces spots
	- oEven without convection \circ Can form + disappear in days \circ Strong scale separation required o Best in forced turbulence oUnclear how important for the Sun
- Buoyant rise picture questionable oExpansion during ascent oSlender tubes not seen in simulations oAnticipated role of tachocline?
- Link between dynamo & butterfly o Must be integral part of solar dynamo o Surface appearance possibly shallow

1.00 0.10 0.00 0.10 0.50 0.20 0.30 0.00 0.40 0.50 -0.50 0.60 0.70 0.80 B_{\star}/B_{∞} B_x/B_{∞} $t/\tau_{14} = 0.20$ $t/\tau_{\rm td} = 2.00$

Brandenburg+13