Effects of rotation on convective
scale and Deardorff layers
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ABSTRACT

Context. Rotation is thought to influence the size of convective eddies and the efficiency of convective energy transport in the deep
convection zones of stars. Rotationally constrained convection has been invoked to explain the lack of large-scale power in observa-

tions ol solar Mlows.

Kapyla (2024), Astron. Astrophys, 683, 221
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Motivation: What Is the true nature of
convection In the Sun?
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| find your lack of supergranulation
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Ansatz |: Subadiabatic deep convection

The Schwarzschild criterion:

He d
AV =V —Vyy=-—22 1
cp dr

Is encoded in mixing-length theory (MLT; cf. Vitense 1953) of convection: Fi.,, (AV)3/ 2,

Therefore MLT implies local driving of convection up to a scale of 200Mm (giant cells).

This has been internalized by many simulation setups such that the depth of the CZ is
predetermined and fixed, and in mean-field theory by assuming F'..,., = —xpT V5.
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The classics state that a convection zone
(CZ) is always superadiabatic. So are my
simulations. Ergo, so must the solar CZ!

Beware of the Maradona effect!

Stellar Convection: Modelling, Theory and Observations; Nordita, 29th Aug 2024



Ansatz |. Subadiabatic deep convection

1.99E 1
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ABSTRACT. Progress in the theory of stellar convection over the past decade is reviewed. The

similarities and differences between convection in stellar envelopes and laboratory convection at high v
Rayleigh numbers are discussed. Direct numerical simulation of the solar surface layers, with no other

input than atomic physics, the equations of hydrodynamics and radiative transfer is now capable of r

reproducing the observed heat flux, convection velocities, granulation patterns and line profiles with 0.010

remarkably accuracy. These results show that convection in stellar envelopes is an essentially non-local 3 r

process, being driven by cooling at the surface. This differs distinctly from the traditional view of stellar [T 0.005 -

convection in terms of local concepts such as cascades of eddies in a mean superadiabatic gradient. The A r

consequences this has for our physical picture of processes in the convective envelope are illustrated r

with the problems of sunspot heat flux blocking, the eruption of magnetic flux from the base of the 0.000

convection zone, and the Lithium depletion problem.

. . 7

Spruit (1997), Mem. d. Soc. Astron. Italiana, 68, 397 1000

Meanwhile in atmospheric physics: T 100- |
4= _ ) e L -
Fenin = —x1pTVs+ mpTgs”? [cp. ool T \

Deardorff (1961/66), J. Atmosph. Phys., 18, 540 / 23, 503. 7 8 9 10 _ 11 12 13

logyy P [egs]
Addition of such non-locality can lead to a very Brandenburg (2016), Astrophys. J., 832, 6
thin superadiabatic layer + deep Deardorff zone. Chan & Gigas (1992), Astrophys. J., 389, 87

Roxburgh & Simmons (1993), Astron. Astrophys., 277, 93
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Non-rotating convection
| 90 Mm
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Buoyancy zone (BZ): convective energy flux positive, superadiabatic temperature gradient.

Deardorff zone (DZ): convective energy flux positive, subadiabatic temperature gradient.
Overshoot zone (OZ): convective energy flux negative, subadiabatic temperature gradient.
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Surface cooling drives convection
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Kapyla et al. (2017), Astrophys. J. Lett., 845, L23
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Ansatz Il Rotationally constrained convection

Conjecture: Convection in deep parts of solar CZ is strongly affected by rotation such that
large-scales are suppressed. The maximum scale of convection coincides with that of

supergranulation with /., ~ 100.
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These studies assume a priori that rotational influence on
convection is strong. But can we estimate this independently?

Featherstone & Hindman (2016), Astrophys. J. Lett., 830, 15
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Simulations and relation to reality

Dimensionless numbers in simulations: The actual velocity and length scales in

gd* (1 ds % 7 the deep CZ of the Sun are unknown:
Ra - — I d_ 9 Pr — PrM - T
v cp dz v
X P X 20/ »
urmsg Co = = Ro .
Re = , Renyy = PmRe, Pe = PrRe, Uconv
1%
Ap= Poot o Yoms o1 Stating that e.g. Co ~ 10 in the deep CZ
Ptop 2000 Is woefully imprecise!
Simulations can only reproduce Co (Ro).
Parameter Sun (Mg) 09 (20Mp) Simulations
Ra 1020 10%4 109
Pr 10-© 109 10-1...10
Prug 1073 103 10-1...10
Re 1013 10t 104
Pe 107 108 104
Rem 1010 104 10%
Ap 105 3 102
Ro 0.1...1 1! 1072...103

Kapyla et al. (2023), Space Science Rev., 219, 58
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Simulations and relation to reality

Let us define a hypothetical velocity measuring of the energy flux:

£\
Ftot:pui, ’U,*:( tt) .

P
Define a flux Coriolis number:

1/3
Cor = 2QH, (Fp ) . Co¥ ~3.1.
tot

This is a hypothetical measure of the importance of rotation based on the available energy
flux. No dependence on dynamical length or velocity scales!

Rag o Fiot
PrTa®? — 8pQ3HY

Turns out that: Cop = (Raj)~'/?,where Raj =

It is necessary (but not sufficient!) to reproduce Cor in a numerical simulation claiming to
target the Sun.

Aurnou et al. (2020), Phys. Rev. Research, 2, 043115
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Convective scale as a function of Q2
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Featherstone & Hindman (2016) Rornis = 0.011
; _ 2m o = 2m run: Co = (2rRopm1) " ~ 14.5. Current run with
max ) .
Kmax Kmean Co=17: kmax = 17kn, lpax ~ 0.235d ~ 0.48H,,

corresponding to 24 Mm.
But this corresponds to ) ~ 15!
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]CH == 27T/LH, Hp ~ 0.49d (: 50 Mm)



So what about the Sun?
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Convective scale in the Sun is affected by rotation but only mildly even in the deep
convection zone!

Rotationally constrained convection ruled out as a solution to the convective conundrum?
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Conclusions

Non-rotating and moderately rotating convection zones have stably stratified, yet
convective layers (Deardorff zones). But these do not solve the convective conundrum!

For rapid enough rotation the Deardorff zone vanishes in simulations. Is this still the
case in real stars where convection and surface forcing is more vigorous?

Current results suggest that the solar convection zone is not strongly rotationally
constrained anywhere. This rules out another way to solve the convective conundrum?

What is it then? Surface effects, magnetic fields, Prandtl number, resolution,
or unknown unknowns?
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Overshooting depth vs. rotation

0.35 1

Oz : depth of OZ based on Fiopny -

dl(‘)z : depth of OZ based on Fyiy,. 0.251
dpy : depth of DZ. {é’ 2
S 0.15
Deardorff zone vanishes for rapid 0.10
enough rotation, overshooting? os.
OZ decreases until around Co=~1 by both 0.00
measures. 10-2 10-! 10" 10!
Co
The solar case only mildly affected by For Co > 1 the Richardson number is:
rotation, OZ depth between a third and a A2 d
half reduced. Rigp = =5 < 1, where N2 I
s d2 2 0.05H,, Q5 cp dz
s ' ' R~ 104
(Kapyla 2019, Astron. Astrophys, 631, 122) In the Sun, however: Rig ~ 10~.
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Numerical simulations

Cartesian setup with the PeEnciL CobDE; fully compressible equations in
rotating frame:

Dlnp
Dt V™
D 1
Frl; = g — ;(Vp—V-QVpS)—Qqu,
Ds 1
T— = —=[V +(F.q+ Fsqs) — C] + 208,
Dy p[ (Fraa + Fsas) — C] + 2v
https://github.com/pencil-code F = _KVT, K= Kop *T°".
SGS _ /
The Pencil Code Collaboration (2021), J. Open Source F = —XsGspVs.
Softw., 6, 2807
rms? 2000
Re = ™5 40, Pe=PrRe, Pr= —— =1, (=k'. Co= =0...17.
v XSGS Uconv
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