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Importance of massive stars in astrophysics
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• Radiative, chemical, kinematic feedback

• Progenitors of gravitational wave sources

• Laboratories for testing physics:


‣ winds

‣ binarity

‣ magnetic fields

‣ pulsations

‣ rotation
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Unconstrained physics of massive stars: mixing

Dominic Bowman

Uncertainties in rotation and mixing propagate 
through evolution and strongly impact predictions of:


• compact remnant mass and spin

• supernova feedback to host galaxy

Bowman (2020)
Edelmann et al. (2019)
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Talk Outline  
1. Asteroseismology: types of pulsations and pulsators

2. Insight from stellar pulsations: mixing and rotation


3. Magneto-asteroseismology: interior magnetic fields


4. Stochastic low-frequency variability: gravity waves and turbulence




Asteroseismology unlocks stellar interiors

Dominic Bowman

1.4 3-D Oscillations in Stars 19

Fig. 1.7. Propagation of rays of sound or gravity waves in a cross-section of a Sun-
like star. The acoustic ray paths (panel a) are bend by the increase in sound speed
with depth until they reach the inner turning point (indicated by the dotted circles)
where they undergo total internal refraction. At the surface the acoustic waves are
reflected by the rapid decrease in density. Shown are rays corresponding to modes of
frequency 3000 µHz and degrees (in order of increasing penetration depth) l = 75, 25,
20 and 2; the line passing through the centre schematically illustrates the behaviour
of a radial mode. The g-mode ray path (panel b) corresponds to a mode of frequency
190 µHz and degree 5 and is trapped in the interior. In this example, it does not
propagate in the convective outer part. As we shall see in Chapter 2, g modes are
observed at the surface of other types of pulsators. This figure illustrates that the
g modes are sensitive to the conditions in the very core of the star, an important
property. From Cunha et al. (2007).

but the frequencies of the g modes decrease, as is shown in Fig. 1.6; 2) the
p modes are most sensitive to conditions in the outer part of the star, whereas
g modes are most sensitive to conditions in the deep interior of the star,11 as
is shown in Fig. 1.7; 3) for n ! l there is an asymptotic relation for p modes
saying that they are approximately equally spaced in frequency, and there is
another asymptotic relation for g modes pointing out that they are approxi-
mately equally spaced in period.

As illustrated in Fig. 1.7, g modes in solar-like stars are trapped beneath
the convective envelope, when viewed as rays. In reality the modes have finite
amplitudes also in the outer parts of the star and hence, at least in principle,
can be observed on the surface; this is in fact the case in the γDor stars
which have convective envelopes. In more massive main-sequence stars, such
as illustrated in Fig. 1.8, the g-mode rays are confined outside the convective
core.

11 except in white dwarfs where the g modes are sensitive mainly to conditions in
the stellar envelope; see Section 3.4.2.
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Fig.1.7.Propagationofraysofsoundorgravitywavesinacross-sectionofaSun-
likestar.Theacousticraypaths(panela)arebendbytheincreaseinsoundspeed
withdepthuntiltheyreachtheinnerturningpoint(indicatedbythedottedcircles)
wheretheyundergototalinternalrefraction.Atthesurfacetheacousticwavesare
reflectedbytherapiddecreaseindensity.Shownarerayscorrespondingtomodesof
frequency3000µHzanddegrees(inorderofincreasingpenetrationdepth)l=75,25,
20and2;thelinepassingthroughthecentreschematicallyillustratesthebehaviour
ofaradialmode.Theg-moderaypath(panelb)correspondstoamodeoffrequency
190µHzanddegree5andistrappedintheinterior.Inthisexample,itdoesnot
propagateintheconvectiveouterpart.AsweshallseeinChapter2,gmodesare
observedatthesurfaceofothertypesofpulsators.Thisfigureillustratesthatthe
gmodesaresensitivetotheconditionsintheverycoreofthestar,animportant
property.FromCunhaetal.(2007).

butthefrequenciesofthegmodesdecrease,asisshowninFig.1.6;2)the
pmodesaremostsensitivetoconditionsintheouterpartofthestar,whereas
gmodesaremostsensitivetoconditionsinthedeepinteriorofthestar,11as
isshowninFig.1.7;3)forn!lthereisanasymptoticrelationforpmodes
sayingthattheyareapproximatelyequallyspacedinfrequency,andthereis
anotherasymptoticrelationforgmodespointingoutthattheyareapproxi-
matelyequallyspacedinperiod.

AsillustratedinFig.1.7,gmodesinsolar-likestarsaretrappedbeneath
theconvectiveenvelope,whenviewedasrays.Inrealitythemodeshavefinite
amplitudesalsointheouterpartsofthestarandhence,atleastinprinciple,
canbeobservedonthesurface;thisisinfactthecaseintheγDorstars
whichhaveconvectiveenvelopes.Inmoremassivemain-sequencestars,such
asillustratedinFig.1.8,theg-moderaysareconfinedoutsidetheconvective
core.

11
exceptinwhitedwarfswherethegmodesaresensitivemainlytoconditionsin
thestellarenvelope;seeSection3.4.2.

Pressure (p) modes:
• n > 0

• high frequency

• probe near-surface

• radial and non-radial

• equally spaced in frequency

Gravity (g) modes:
• n < 0

• low frequency

• probe near-core

• non-radial

• equally-spaced in period

R. Townsend R. Townsend
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Asteroseismology: pressure modes
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likestar.Theacousticraypaths(panela)arebendbytheincreaseinsoundspeed
withdepthuntiltheyreachtheinnerturningpoint(indicatedbythedottedcircles)
wheretheyundergototalinternalrefraction.Atthesurfacetheacousticwavesare
reflectedbytherapiddecreaseindensity.Shownarerayscorrespondingtomodesof
frequency3000µHzanddegrees(inorderofincreasingpenetrationdepth)l=75,25,
20and2;thelinepassingthroughthecentreschematicallyillustratesthebehaviour
ofaradialmode.Theg-moderaypath(panelb)correspondstoamodeoffrequency
190µHzanddegree5andistrappedintheinterior.Inthisexample,itdoesnot
propagateintheconvectiveouterpart.AsweshallseeinChapter2,gmodesare
observedatthesurfaceofothertypesofpulsators.Thisfigureillustratesthatthe
gmodesaresensitivetotheconditionsintheverycoreofthestar,animportant
property.FromCunhaetal.(2007).

butthefrequenciesofthegmodesdecrease,asisshowninFig.1.6;2)the
pmodesaremostsensitivetoconditionsintheouterpartofthestar,whereas
gmodesaremostsensitivetoconditionsinthedeepinteriorofthestar,11as
isshowninFig.1.7;3)forn!lthereisanasymptoticrelationforpmodes
sayingthattheyareapproximatelyequallyspacedinfrequency,andthereis
anotherasymptoticrelationforgmodespointingoutthattheyareapproxi-
matelyequallyspacedinperiod.

AsillustratedinFig.1.7,gmodesinsolar-likestarsaretrappedbeneath
theconvectiveenvelope,whenviewedasrays.Inrealitythemodeshavefinite
amplitudesalsointheouterpartsofthestarandhence,atleastinprinciple,
canbeobservedonthesurface;thisisinfactthecaseintheγDorstars
whichhaveconvectiveenvelopes.Inmoremassivemain-sequencestars,such
asillustratedinFig.1.8,theg-moderaysareconfinedoutsidetheconvective
core.

11
exceptinwhitedwarfswherethegmodesaresensitivemainlytoconditionsin
thestellarenvelope;seeSection3.4.2.

Pressure (p) modes:
• n > 0

• high frequency

• probe near-surface

• radial and non-radial

• equally spaced in frequency

R. Townsend

Non-radial pressure modes probe the envelope physics:

• rotation rate from near-core to near-surface

• first-order caveat: applicable to slow rotators (<15% critical breakup)

e.g. Kurtz et al. (2014) for AF stars 
e.g. Aerts et al. (2003) for early-B stars

first-order Ledoux splitting:

Nordita Workshop 20246
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Fig. 1.7. Propagation of rays of sound or gravity waves in a cross-section of a Sun-
like star. The acoustic ray paths (panel a) are bend by the increase in sound speed
with depth until they reach the inner turning point (indicated by the dotted circles)
where they undergo total internal refraction. At the surface the acoustic waves are
reflected by the rapid decrease in density. Shown are rays corresponding to modes of
frequency 3000 µHz and degrees (in order of increasing penetration depth) l = 75, 25,
20 and 2; the line passing through the centre schematically illustrates the behaviour
of a radial mode. The g-mode ray path (panel b) corresponds to a mode of frequency
190 µHz and degree 5 and is trapped in the interior. In this example, it does not
propagate in the convective outer part. As we shall see in Chapter 2, g modes are
observed at the surface of other types of pulsators. This figure illustrates that the
g modes are sensitive to the conditions in the very core of the star, an important
property. From Cunha et al. (2007).

but the frequencies of the g modes decrease, as is shown in Fig. 1.6; 2) the
p modes are most sensitive to conditions in the outer part of the star, whereas
g modes are most sensitive to conditions in the deep interior of the star,11 as
is shown in Fig. 1.7; 3) for n ! l there is an asymptotic relation for p modes
saying that they are approximately equally spaced in frequency, and there is
another asymptotic relation for g modes pointing out that they are approxi-
mately equally spaced in period.

As illustrated in Fig. 1.7, g modes in solar-like stars are trapped beneath
the convective envelope, when viewed as rays. In reality the modes have finite
amplitudes also in the outer parts of the star and hence, at least in principle,
can be observed on the surface; this is in fact the case in the γDor stars
which have convective envelopes. In more massive main-sequence stars, such
as illustrated in Fig. 1.8, the g-mode rays are confined outside the convective
core.

11 except in white dwarfs where the g modes are sensitive mainly to conditions in
the stellar envelope; see Section 3.4.2.

Gravity (g) modes:
• n < 0

• low frequency

• probe near-core

• non-radial

• equally-spaced in period

R. Townsend

Van Reeth et al. (2015)

Prograde dipole gravity modes most common geometry in observations:

• rotation and chemical mixing in near-core region

• Traditional approximation for rotation (TAR) up to ~90% critical breakup

Bowman Asteroseismology of High-Mass Stars

a p mode in the envelope and the character of a g mode in the
deep interior (Aerts et al., 2010). The regularities of asymptotic
p modes in the amplitude spectra of low- and intermediate-
mass stars has greatly simplified the issue of mode identification
and facilitated asteroseismology for low-mass stars (see e.g.,
Chaplin and Miglio, 2013; Hekker and Christensen-Dalsgaard,
2017; García and Ballot, 2019), but are rarely observed in massive
stars (see e.g., Belkacem et al., 2010; Degroote et al., 2010b). Such
high-radial order p modes are generally not expected for massive
stars owing to the excitation physics of the κ-mechanism being
inefficient in driving such modes in massive stars (Dziembowski
and Pamyatnykh, 1993; Dziembowski et al., 1993; Gautschy and
Saio, 1993; Pamyatnykh, 1999; Miglio et al., 2007).

In the presence of rotation the frequency degeneracy of non-
radial pulsation modes with respect to m is lifted, which serves
as a unique method of mode identification in certain pulsating
stars. The simplest case is for stars that rotate (very) slowly and
rigidly, i.e., with a uniform interior rotation angular frequency
"—such that the splitting of non-radial pulsation frequency,
ωn$m, is given by

ωn$m = ωn$ +m (1− Cn$) ", (1)

where Cn$ is the Ledoux constant which sets the size of the
splitting due to the Coriolis force. In this idealized example,
the result of Equation (1) produces a multiplet of pulsation
frequencies separated by the stellar rotation frequency in the
amplitude spectrum for p modes of high radial order or high-
angular degree since Cn$ " 0 in such cases (Aerts et al.,
2010). An example of rotationally-split quadrupole p modes is
shown in Figure 1, using the example of KIC 11145123 originally
discovered by Kurtz et al. (2014). The amplitude spectrum of
the resultant quintuplet split by rotation shown in Figure 1 uses
both 1 and 4-years light curves to emphasize the significant
improvement in the resolving power of longer light curves
for asteroseismic studies of rotation. Therefore, if the rotation
rate is sufficiently slow, p-mode multiplets serve as a means of
determining the interior rotation rates of stellar envelopes using
an almost model-independent methodology.

Beyond the first-order perturbative approach for including the
Coriolis force in slow and rigid rotators given in Equation (1),
second- and third-order perturbative formalisms have been
discussed by, for example, Dziembowski and Goode (1992),
Daszyńska-Daszkiewicz et al. (2002), and Suárez et al. (2010). As
described by Suárez et al. (2010), it is important to note that the
first-order perturbative treatment of the Coriolis force applied to
p modes is only applicable for stars with rotation velocities below
∼15% of their critical breakup velocity, with faster rotating stars
requiring more complex formalisms.

2.2. Gravity Modes
Gravity (g) modes are standing waves for which buoyancy (i.e.,
gravity) acts as a restoring force (Aerts et al., 2010). Typically,
g modes have low frequencies, can only be non-radial and are
mostly sensitive to the deep interiors of massive stars near their
convective cores. In the asymptotic regime, g modes are equally
spaced in period (Tassoul, 1980), and exhibit a characteristic

FIGURE 1 | Example of rotational splitting of quadrupole p modes into a

quintuplet using both 1 and 4-years light curves of the star KIC 11145123

(Kurtz et al., 2014). Horizontal red lines correspond to the rotational splitting

value of the modes.

period %0. In the case of a non-rotating and chemically-
homogeneous star, %0 can be calculated from the individual
g-mode periods, Pn,$, given by

Pn$ =
%0√

$ ($ + 1)
(|n| + α) , (2)

in which α is a phase term independent of the mode degree, $,
and

%0 = 2π2
(

∫ r2

r1

N(r)
dr
r

)−1

, (3)

where r1 and r2 are the inner and outer boundaries of the g-mode
pulsation cavity, and N(r) is its Brunt-Väisälä frequency. Thus,
Equation (2) defines a constant spacing in period for g modes
of the same angular degree, $, and consecutive radial order, n.
Equation (3) demonstrates that the characteristic period, %0, is
largely determined by the Brunt-Väisälä frequency, N(r), which
has a strong dependence on the mass of the convective core, and
hence the mass and age of a star (Miglio et al., 2008a).

2.2.1. Interior Rotation
Since all massive stars rotate to some extent, the Coriolis force
is also a dominant restoring force for g modes. Therefore, it
is more appropriate to describe massive stars having gravito-
inertial modes, for which both the Coriolis force and buoyancy
are important. This is particularly true for pulsation modes with
frequencies in the co-rotating frame below twice the rotation
frequency (see Aerts et al., 2019a). As discussed in detail by
Bouabid et al. (2013), the period spacing increases with period
in the co-rotating frame for prograde modes, and decreases
in the inertial frame. This is because in the co-rotating frame
the effective $($ + 1) (cf. Equation 2) for prograde sectoral

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 4 October 2020 | Volume 7 | Article 578584

Bowman Asteroseismology of High-Mass Stars

a p mode in the envelope and the character of a g mode in the
deep interior (Aerts et al., 2010). The regularities of asymptotic
p modes in the amplitude spectra of low- and intermediate-
mass stars has greatly simplified the issue of mode identification
and facilitated asteroseismology for low-mass stars (see e.g.,
Chaplin and Miglio, 2013; Hekker and Christensen-Dalsgaard,
2017; García and Ballot, 2019), but are rarely observed in massive
stars (see e.g., Belkacem et al., 2010; Degroote et al., 2010b). Such
high-radial order p modes are generally not expected for massive
stars owing to the excitation physics of the κ-mechanism being
inefficient in driving such modes in massive stars (Dziembowski
and Pamyatnykh, 1993; Dziembowski et al., 1993; Gautschy and
Saio, 1993; Pamyatnykh, 1999; Miglio et al., 2007).

In the presence of rotation the frequency degeneracy of non-
radial pulsation modes with respect to m is lifted, which serves
as a unique method of mode identification in certain pulsating
stars. The simplest case is for stars that rotate (very) slowly and
rigidly, i.e., with a uniform interior rotation angular frequency
"—such that the splitting of non-radial pulsation frequency,
ωn$m, is given by

ωn$m = ωn$ +m (1− Cn$) ", (1)

where Cn$ is the Ledoux constant which sets the size of the
splitting due to the Coriolis force. In this idealized example,
the result of Equation (1) produces a multiplet of pulsation
frequencies separated by the stellar rotation frequency in the
amplitude spectrum for p modes of high radial order or high-
angular degree since Cn$ " 0 in such cases (Aerts et al.,
2010). An example of rotationally-split quadrupole p modes is
shown in Figure 1, using the example of KIC 11145123 originally
discovered by Kurtz et al. (2014). The amplitude spectrum of
the resultant quintuplet split by rotation shown in Figure 1 uses
both 1 and 4-years light curves to emphasize the significant
improvement in the resolving power of longer light curves
for asteroseismic studies of rotation. Therefore, if the rotation
rate is sufficiently slow, p-mode multiplets serve as a means of
determining the interior rotation rates of stellar envelopes using
an almost model-independent methodology.

Beyond the first-order perturbative approach for including the
Coriolis force in slow and rigid rotators given in Equation (1),
second- and third-order perturbative formalisms have been
discussed by, for example, Dziembowski and Goode (1992),
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Figure 1.5: Left: Part of a 1.6 M§ evolution track, with X = 0.71, Z = 0.014,
step core overshoot –ov = 0.3 and di�usive mixing Dmix = 1 cm2 s≠1. Right:
Period spacing patterns computed for dipole modes of the marked models on
the evolution track in the left plot. For each the hydrogen content of the core
(Xc) is provided.

present in the period spacing pattern depending on the level of e�ciency of the
mixing.

Bouabid et al. (2013) further extended the work of Miglio et al. (2008), and
studied the influence of both mixing processes and rotation. The results that
the authors obtained for the mixing processes, converge to those found by Miglio
et al. (2008) when rotation is ignored. The influence of rotation was found to
vary from mode to mode. The period spacings of prograde modes, which travel
in the direction of rotation, exhibit a downward slope in the period spacing
pattern for a rotating star, because of the positive rotational frequency shift
added to the oscillation frequencies in an inertial frame. The same e�ect is
observed for zonal modes, though it is not as strong as for prograde modes.
Retrograde modes, which travel in the opposite direction of rotation, have an
upward slope. These e�ects are illustrated in Figure 1.6 for the dipole g-mode
pulsations of the same model shown in Figure 1.5 at Xc = 0.5. Extra mixing
was taken into account by increasing the di�usive mixing to Dmix = 100 cm2 s≠1,
while the frequency shifts resulting from rotation were computed using the
traditional approximation (TA) of pulsations implemented in GYRE v4.3. The
influence of TA will be discussed further later in this Section, while the GYRE
code is discussed in more detail in Section 1.2.3.

(b)

(a)

(c)

Figure 1.5: Left: Part of a 1.6 M§ evolution track, with X = 0.71, Z = 0.014,
step core overshoot –ov = 0.3 and di�usive mixing Dmix = 1 cm2 s≠1. Right:
Period spacing patterns computed for dipole modes of the marked models on
the evolution track in the left plot. For each the hydrogen content of the core
(Xc) is provided.

present in the period spacing pattern depending on the level of e�ciency of the
mixing.

Bouabid et al. (2013) further extended the work of Miglio et al. (2008), and
studied the influence of both mixing processes and rotation. The results that
the authors obtained for the mixing processes, converge to those found by Miglio
et al. (2008) when rotation is ignored. The influence of rotation was found to
vary from mode to mode. The period spacings of prograde modes, which travel
in the direction of rotation, exhibit a downward slope in the period spacing
pattern for a rotating star, because of the positive rotational frequency shift
added to the oscillation frequencies in an inertial frame. The same e�ect is
observed for zonal modes, though it is not as strong as for prograde modes.
Retrograde modes, which travel in the opposite direction of rotation, have an
upward slope. These e�ects are illustrated in Figure 1.6 for the dipole g-mode
pulsations of the same model shown in Figure 1.5 at Xc = 0.5. Extra mixing
was taken into account by increasing the di�usive mixing to Dmix = 100 cm2 s≠1,
while the frequency shifts resulting from rotation were computed using the
traditional approximation (TA) of pulsations implemented in GYRE v4.3. The
influence of TA will be discussed further later in this Section, while the GYRE
code is discussed in more detail in Section 1.2.3.

(a) Xc = 0.7

(b) Xc = 0.5

(c) Xc = 0.2
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Fig. 1.7. Propagation of rays of sound or gravity waves in a cross-section of a Sun-
like star. The acoustic ray paths (panel a) are bend by the increase in sound speed
with depth until they reach the inner turning point (indicated by the dotted circles)
where they undergo total internal refraction. At the surface the acoustic waves are
reflected by the rapid decrease in density. Shown are rays corresponding to modes of
frequency 3000 µHz and degrees (in order of increasing penetration depth) l = 75, 25,
20 and 2; the line passing through the centre schematically illustrates the behaviour
of a radial mode. The g-mode ray path (panel b) corresponds to a mode of frequency
190 µHz and degree 5 and is trapped in the interior. In this example, it does not
propagate in the convective outer part. As we shall see in Chapter 2, g modes are
observed at the surface of other types of pulsators. This figure illustrates that the
g modes are sensitive to the conditions in the very core of the star, an important
property. From Cunha et al. (2007).

but the frequencies of the g modes decrease, as is shown in Fig. 1.6; 2) the
p modes are most sensitive to conditions in the outer part of the star, whereas
g modes are most sensitive to conditions in the deep interior of the star,11 as
is shown in Fig. 1.7; 3) for n ! l there is an asymptotic relation for p modes
saying that they are approximately equally spaced in frequency, and there is
another asymptotic relation for g modes pointing out that they are approxi-
mately equally spaced in period.

As illustrated in Fig. 1.7, g modes in solar-like stars are trapped beneath
the convective envelope, when viewed as rays. In reality the modes have finite
amplitudes also in the outer parts of the star and hence, at least in principle,
can be observed on the surface; this is in fact the case in the γDor stars
which have convective envelopes. In more massive main-sequence stars, such
as illustrated in Fig. 1.8, the g-mode rays are confined outside the convective
core.

11 except in white dwarfs where the g modes are sensitive mainly to conditions in
the stellar envelope; see Section 3.4.2.

Gravity (g) modes:
• n < 0

• low frequency

• probe near-core

• non-radial

• equally-spaced in period

R. Townsend

Bowman (2020)

Increased mixing decreases "dips" in g-mode period spacing pattern.

8 Nordita Workshop 2024



(a)

Fig. 5 Propagation of rays of sound or gravity waves in a cross-section of the solar interior. The acoustic
ray paths (a) are bent by the increase in sound speed with depth until they reach
(indicated by the dotted circles) where they undergo total internal refraction, at the distance

Space photometry revolution

Dominic Bowman

not to scale!

Long-term, continuous, high-precision light curves are needed to resolve individual pulsation modes.

Nordita Workshop 20249



relative precisions of 1% to 5% for the best cases; see Table 1
given by Aerts, Mathis, and Rogers (2019).
A new view on stellar variability in the HRD is offered by

data from the European Space Agency (ESA) Gaia satellite
(Eyer et al., 2019). Using 22 months of calibrated photo-
metric, spectrophotometric, and astrometric Gaia data, this
study showed how the large-amplitude radial modes of
classical variables, such as Cepheids, RR Lyrae stars, and
Miras (indicated in Fig. 1), makes them “move” in the
observational analog of the HRD, i.e., a color-absolute

magnitude diagram, during their pulsation cycle. This
introduces a new “time” dimension in the evaluation of
stellar evolution theory. These radial pulsators remain of vast
interest and importance for observational cosmology
(Soszyński et al., 2016; Anderson and Riess, 2018) but
are not considered in this review. Our attention is directed
entirely to stars exhibiting multiple nonradial oscillations,
which in the context of asteroseismology deserve to be
called “good vibrations” after the eponymous 1966 song by
the Beach Boys.

FIG. 1. Hertzsprung-Russel diagram (HRD) showing the position of different classes of pulsating stars. The abbreviation of the classes
follows the nomenclature used by Aerts, Christensen-Dalsgaard, and Kurtz (2010) in Chap. 2, to which we refer for extensive
discussions of all indicated classes in terms of the excitation mechanisms, along with the typical periods and amplitudes of the
oscillations. The hatching line style used in each of the ellipses marks the dominant type of oscillation mode in each class: == for gravity
modes and nn for pressure modes. The recently discovered stochastic low-frequency (SLF) variability in O-type stars and blue
supergiants is discussed in the text and has been added as a compararison with previous versions of this plot. The solid black lines and
the black dotted line represent standard evolutionary model tracks, with birth masses and evolutionary timescales as indicated. The
borders of the classical instability strip are plotted with gray lines, while the double line represents the zero-age main sequence (ZAMS).
Early versions of this figure were made by Jørgen Christensen-Dalsgaard (Aarhus University) and Pieter Degroote (KU Leuven).
Adapted from Pápics, 2013.

C. Aerts: Probing the interior physics of stars …

Rev. Mod. Phys., Vol. 93, No. 1, January–March 2021 015001-3

Image credit: 
P. I. Pápics

Dominic Bowman

Types of pulsating massive stars

SLF: Stochastic low-frequency variability

• Broad period range between minutes and several days

• Seemingly near-ubiquitous in massive stars


β Cephei stars: 

• Periods of order several hours

• Low radial order coherent p and g modes


• Masses above ~8 M☉

Slowly Pulsating B stars:
• Periods of order days

• High radial order g modes


• Masses between 3 and 9 M☉
Image credit: P. Degroote
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Asteroseismic results for interior mixing

M. G. Pedersen et al.: The shape of convective core overshooting from gravity-mode period spacings
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Fig. 1: Di↵erent shapes of internal mixing profiles. Grey marks the convective core, blue the overshooting region and green the extra
di↵usive mixing in the radiative envelope. Panel (a) to (c) has been zoomed in on the near core region while panel (d) shows the
mixing profile from center to the surface of the star. In both panel (a) and (b) the extra di↵usive mixing in the radiative envelope
has been set constant. Panel (a): step overshoot. Panel (b): exponential overshooting. Panel (c): Extended exponential overshoot
where the extension replaces the constant di↵usive envelope mixing in panels (a) and (b). Panel (d): Exponential overshoot coupled
to an extra di↵using mixing profile Dext(r) from Rogers & McElwaine (2017) instead of a constant mixing (green dashed line).

Such a decrease in mixing e�ciency was motivated by Freytag
et al. (1996), whose 2D hydrodynamical simulations of surface
convection in A-type stars and white dwarfs showed an expo-
nential decay with distance from the convective boundary in the
vertical velocities of the convective cells. The parameters of ex-
ponential di↵usive mixing used in MESA are described by Her-
wig (2000), who follow the prescription of the time-dependent
overshoot mixing given by Freytag et al. (1996). Herwig (2000)
used this description of the overshooting to study its e↵ect on
the evolution of Asymptotic giant branch (AGB) stars, showing
a clear e↵ect on, e.g., the third dredge-up. In this sense, it con-
cerns convective undershooting towards the interior of the star.

For an exponential overshoot, the di↵usion coe�cient in the
overshoot region is given as

DOV = D0 exp
 �2 (r � r0)

fovHp,cc

!
. (2)

The shape of the exponential overshooting is illustrated in Fig.
1 (b). As in the case of step overshooting, the switch from con-
vection to overshooting is set to occur at r0. To take into account
the step taken inside the convective region, we e↵ectively use
( f0 + fov)Hp,cc in Eq. (2) instead of just fovHp,cc. In MESA, the
parameters f0 and fov can be varied.

2.3. Extended exponential overshooting

Through 2D and 3D hydrodynamical simulations of He-shell
flash convection in AGB stars, Herwig et al. (2007) found that
the convective boundary mixing at the bottom of the convective
envelope is best described by two exponential terms. This double
exponential overshooting is thereby an extension of the exponen-
tial di↵usive overshooting described above and is illustrated in
Fig. 1 (c). Battino et al. (2016) interpreted the mixing from the
first exponential term to arise from Kelvin-Helmhotz instabili-
ties, and the second term as being due to internal gravity waves
generated at the convective boundary. The parameterised version

of this extended exponential overshooting was described and ap-
plied by Battino et al. (2016) to study s-process nucleonsynthesis
in AGB stars. Here, we test this description for overshooting at
the core, rather than undershooting at the envelope.

As in the case of the standard exponential overshoot, r0 gives
the position at which the switch from convection to overshooting
defined by f0 · Hp,cc occurs, and D0 is the di↵usion coe�cient at
r0. Two length scales occur: 1) f1·Hp,cc, which corresponds to the
description in Eq. (2), and 2) f2 ·Hp,cc, which takes e↵ect for r >
r2. The location of r2 is determined by the choice of D2. In other
words, when the di↵usive mixing coe�cient in the overshooting
region decreases below D2, the overshooting region is extended
by a second exponential term.

The mathematical description of the extended exponential
overshooting is:

For r  r2:

DOV = D0 exp
 �2 (r � r0)

f1 · Hp,cc

!
(3)

For r � r2:

DOV = D2 exp
 �2 (r � r2)

f2 · Hp,cc

!
. (4)

When using the extended exponential overshoot, the parameters
to be varied in MESA are: f0, f1, f2 and D2. In all cases, it is
required that f2 > f1 > f0. If f2 = f1, one simply reproduces
the single exponential overshooting. If f2 < f1, the ’extension’
cuts o↵ the single exponential overshooting and causes it to go
to zero faster. To take into account the step f0Hp,cc taken inside
the convective core, we e↵ectively use ( f0 + f1)Hp,cc in Eq. (3)
and ( f0 + f2)Hp,cc in Eq. (4).
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Fig. 1: Di↵erent shapes of internal mixing profiles. Grey marks the convective core, blue the overshooting region and green the extra
di↵usive mixing in the radiative envelope. Panel (a) to (c) has been zoomed in on the near core region while panel (d) shows the
mixing profile from center to the surface of the star. In both panel (a) and (b) the extra di↵usive mixing in the radiative envelope
has been set constant. Panel (a): step overshoot. Panel (b): exponential overshooting. Panel (c): Extended exponential overshoot
where the extension replaces the constant di↵usive envelope mixing in panels (a) and (b). Panel (d): Exponential overshoot coupled
to an extra di↵using mixing profile Dext(r) from Rogers & McElwaine (2017) instead of a constant mixing (green dashed line).

Such a decrease in mixing e�ciency was motivated by Freytag
et al. (1996), whose 2D hydrodynamical simulations of surface
convection in A-type stars and white dwarfs showed an expo-
nential decay with distance from the convective boundary in the
vertical velocities of the convective cells. The parameters of ex-
ponential di↵usive mixing used in MESA are described by Her-
wig (2000), who follow the prescription of the time-dependent
overshoot mixing given by Freytag et al. (1996). Herwig (2000)
used this description of the overshooting to study its e↵ect on
the evolution of Asymptotic giant branch (AGB) stars, showing
a clear e↵ect on, e.g., the third dredge-up. In this sense, it con-
cerns convective undershooting towards the interior of the star.

For an exponential overshoot, the di↵usion coe�cient in the
overshoot region is given as

DOV = D0 exp
 �2 (r � r0)

fovHp,cc

!
. (2)

The shape of the exponential overshooting is illustrated in Fig.
1 (b). As in the case of step overshooting, the switch from con-
vection to overshooting is set to occur at r0. To take into account
the step taken inside the convective region, we e↵ectively use
( f0 + fov)Hp,cc in Eq. (2) instead of just fovHp,cc. In MESA, the
parameters f0 and fov can be varied.

2.3. Extended exponential overshooting

Through 2D and 3D hydrodynamical simulations of He-shell
flash convection in AGB stars, Herwig et al. (2007) found that
the convective boundary mixing at the bottom of the convective
envelope is best described by two exponential terms. This double
exponential overshooting is thereby an extension of the exponen-
tial di↵usive overshooting described above and is illustrated in
Fig. 1 (c). Battino et al. (2016) interpreted the mixing from the
first exponential term to arise from Kelvin-Helmhotz instabili-
ties, and the second term as being due to internal gravity waves
generated at the convective boundary. The parameterised version

of this extended exponential overshooting was described and ap-
plied by Battino et al. (2016) to study s-process nucleonsynthesis
in AGB stars. Here, we test this description for overshooting at
the core, rather than undershooting at the envelope.

As in the case of the standard exponential overshoot, r0 gives
the position at which the switch from convection to overshooting
defined by f0 · Hp,cc occurs, and D0 is the di↵usion coe�cient at
r0. Two length scales occur: 1) f1·Hp,cc, which corresponds to the
description in Eq. (2), and 2) f2 ·Hp,cc, which takes e↵ect for r >
r2. The location of r2 is determined by the choice of D2. In other
words, when the di↵usive mixing coe�cient in the overshooting
region decreases below D2, the overshooting region is extended
by a second exponential term.

The mathematical description of the extended exponential
overshooting is:

For r  r2:

DOV = D0 exp
 �2 (r � r0)

f1 · Hp,cc

!
(3)

For r � r2:

DOV = D2 exp
 �2 (r � r2)

f2 · Hp,cc

!
. (4)

When using the extended exponential overshoot, the parameters
to be varied in MESA are: f0, f1, f2 and D2. In all cases, it is
required that f2 > f1 > f0. If f2 = f1, one simply reproduces
the single exponential overshooting. If f2 < f1, the ’extension’
cuts o↵ the single exponential overshooting and causes it to go
to zero faster. To take into account the step f0Hp,cc taken inside
the convective core, we e↵ectively use ( f0 + f1)Hp,cc in Eq. (3)
and ( f0 + f2)Hp,cc in Eq. (4).
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• Convective core boundary mixing:  𝒇ov   


• Stellar parameters:  Z,  M⭑,  Xc ,  Mcc


• Envelope Mixing:  Dmix (r)

observed period spacing. Thus, the overshoot is stronger in this
target compared to that of the slower rotator Star I.

The extra diffusive mixing exhibits a distinct minimum
around »Dlog 0.75ext . Theoretical predictions for the vertical
(radial) component of the shear-induced mixing Dv in
differentially rotating massive stars is roughly 3 to even 10
orders of magnitude stronger than what we constrained here;
for several examples, refer to Figure 7 in Talon et al. (1997),
Figure 6 in Meynet & Maeder (2000), Figure 3 in Mathis et al.
(2004), and Figures 15 and 16 in Decressin et al. (2009). Based
on Equation (7) in Mathis et al. (2004), Dv depends explicitly
on the square of the angular differential rotation frequency

( )µ WD r d drv
2. The immediate—and perhaps most plausi-

ble—explanation of the low Dext value is that KIC 7760680 is
nearly a rigid-body rotator. The range of viable Dext is so
negligibly small that neglecting additional mixing in the
radiative envelope is justifiable for this star. The extent of the
three mixing regions, in addition to the profile of the hydrogen
abundance and the Brunt–Väisälä frequency for the best model,
are shown in Figure 2(a) and (b).

Figure 6(f) shows the position of all of the evolutionary
tracks on the Kiel diagram. The color coding is proportional to

clog red
2 . The 1σ, 2σ, and 3σ uncertainty boxes are highlighted

in gray. The position of the best model is flagged with a white
circle, which confirms that the asteroseismic parameters of the

best model agree with their spectroscopic counterparts; recall
that the same agreement was already achieved between v isin
and the optimized rotation frequency.
That the resulting cred

2 are larger than 1000 (even for the best
models) stems from two facts. First, the relative uncertainties in
the mode frequencies σi/fi (see, e.g., Figure 1(b) or Table 1 in
Pápics et al. 2015) are roughly ∼10−4–10−6. Second, our
current understanding of stellar structure and evolution is based
on 1D models, imposing simplifying assumptions (e.g., stellar
opacity, stellar composition and mixture, clumpiness in mass
loss, treatment of rotation), ignoring some physical processes
(e.g., atomic diffusion, radiative levitation, magnetic field), in
addition to other physical processes that are not understood
well (e.g., the role of internal gravity waves, the angular
momentum transport, interaction of various mixing processes).
Therefore, it is not surprising that our 1D equilibrium models
succeed in explaining the overall asteroseismic observables
globally, but not in detail.
The distribution of clog red

2 for grid B (with step-function
overshoot) is presented in Figure 7, and the grid parameters are
given in Table 1. The clog red

2 values lie in the range (3.562,
6.825). The preferred value for step-function overshoot is
αov = 0.31–0.32. Thus, as with grid A, grid B indicates
that sizeable overshoot mixing is required to match the

Figure 6. Distribution of clog red
2 (Equation (7)) for the free parameters of grid A. A similar distribution for grid B is presented in Figure 7. Panels (a)–(e) show the

local minima of clog red
2 vs. initial mass Mini, exponential overshoot free parameter fov, metallicity Zini, extra diffusive mixing Dlog ext, and center hydrogen mass

fraction Xc, respectively. For clarity, the ordinate is restricted to models with -clog 4red
2 . Panel (f) shows the position of the input models on the Kiel diagram. The

1σ, 2σ, and 3σ uncertainty boxes for the position of KIC 7760680 from spectroscopy are highlighted as gray boxes. The position of the best model is flagged with a
white open circle. The clog red

2 is color-coded.
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Very important for post-
main sequence evolution!

 

What is the shape of the overshooting 
and the temperature gradient in the 

boundary mixing region?

Bowman & Michielsen (2021) 

Michielsen, Aerts & Bowman (2021)

+From a large grid of stellar evolution models and 
their pulsation mode frequencies determine:

Dominic Bowman

Moravveji et al. (2015) 
Moravveji et al. (2016)
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Asteroseismic results for interior mixing: SPB stars

Dominic Bowman

Kepler space telescope had good 
coverage of SPB stars:16 M. G. Pedersen et al.

Figure 11. HR diagram showing the 34 SPB stars in the SPB instability strip. Binaries are marked by dark triangles. The instability
strip by Moravveji (2016) assumes a metallicity of Z = 0.014, the metal mixture of Asplund et al. (2009), an exponential convective core
overshooting of fov = 0.02, and an 75% increase in the nickle and iron opacities. The coloured region shows the sum of the number n of
excited dipole (` = 1) and quadruple (` = 2) gravity modes. The top and bottom dot-dashed lines indicates the position of the zero-age
and terminal-age main-sequence, while the black dashed line shows the cool edge of the � Cep instability strip for radial (` = 0) pressure
modes. Five example evolutionary tracks are shown in grey and labeled according to their initial mass.

Figure 12. Fitted spectral energy distribution of KIC 9020774
compared to the measured photometry in the Gaia, SDSS,
2MASS and WISE passbands. An infrared excess is seen in the
WISE photometry.
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KIC 7760680: confidence intervals of an excellent SPB star:



Asteroseismic results for interior mixing: SPB stars

Dominic Bowman

Ensemble modelling of 26 SPBs observed by 
Kepler reveals interior mixing profiles:


• diverse shape and amount of envelope mixing

• quasi-rigid rotation
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HD192575: a new β Cep star with TESS

Dominic Bowman Nordita Workshop 202415

avoided crossing 
between two ℓ = 2 

gravity-mode 
rotational multiplets

pressure mode 
rotational multiplet

gravity mode 
rotational multiplet

(e.g. Mazumdar et al. 2006)
Burssens, Bowman et al. (2023)

Grid of 1D MESA models:



HD192575: avoided crossing of multiplets

Dominic Bowman Nordita Workshop 202416

Avoided crossing among rotational multiplets:

• very(!) tight age constraint

• full core-to-surface rotation profile


Burssens, Bowman et al. (2023)



HD192575: forward asteroseismic modelling

Dominic Bowman Nordita Workshop 202417

MDj ≡ (Ytheo
j − Yobs)

⊤
(V + Σ)−1 (Ytheo

j − Yobs)

From only 1-year 
TESS light curve:

1σ (age) < 15%


 

1σ (mass) < 10%

 

1σ (mcore) < 15%

2σ confidence intervals:

Mahalanobis Distance superior to 𝝌2 as merit function:


➔ includes theoretical uncertainties

➔ penalises parameter correlations and degeneracies

Burssens, Bowman et al. (2023)



Interior rotation and mixing profiles

Dominic Bowman Nordita Workshop 202418

Ωcore / Ωenv = 1.5 ± 0.4

Mahalanobis Distance superior to 𝝌2 as merit function:


➔ includes theoretical uncertainties

➔ penalises parameter correlations and degeneracies

Uncertainties based on 
statistical sampling and 

full error propagation

Burssens, Bowman et al. (2023)



Colours: 10.5 < M < 13.5 M☉
Dotted = 10% critical

Dashed = 20% critical
Solid = 30% critical

Efficiency of angular momentum transport

Dominic Bowman Nordita Workshop 202419

Near-rigid rotation profile:

Ωcore / Ωenv = 1.5 ± 0.4

Very efficient angular 
momentum transport 
compared to rotating 

models

Non-magnetic rotating GENEC models from: 
Georgy et al. (2013)

μ gradient zone most 
likely shear layer

Burssens, Bowman et al. (2023)



Colours: 10.5 < M < 13.5 M☉
Dotted = 10% critical

Dashed = 20% critical
Solid = 30% critical

2D stellar evolution models

Dominic Bowman Nordita Workshop 202420

Mombarg, Rieutord, Espinosa Lara (2023)

Rotation results from forward asteroseismic modelling using 
1D MESA models consistent with rotating 2D ESTER models:


• non-rigid rotation profile

• shear layer is the μ-gradient zone

Interior mixing profile: Interior rotation profile:

age = 1 Myr

age = 15 Myr



Asteroseismic results for interior rotation

Quasi-rigid interior rotation measurements across stellar evolution 
mandate strong angular momentum transport mechanism(s)

Dominic Bowman

based on:

Aerts, Mathis, & Rogers (2019)


Li et al. (2019)

Bowman (2020)


Pedersen et al. (2021)
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2. Insight from stellar pulsations: mixing and rotation


3. Magneto-asteroseismology: interior magnetic fields

4. Stochastic low-frequency variability: gravity waves and turbulence




What about magnetic fields?

Dominic Bowman Nordita Workshop 202423

Case study of magnetic SPB star HD 43317:

• perturbation of pulsation frequency

• damping of pulsation standing wave

• suppression of pulsation excitation mechanism

2 Lecoanet, Bowman & Van Reeth

star with solar metallicity, a projected surface rotational velocity
of E sin 8 = 115 ± 9 km s�1, an e�ective temperature of )e� =
17350±750 K and a surface gravity of log 6 = 4.0±0.1 (Pápics et al.
2012). HD 43317 was observed by the CoRoT mission (Auvergne
et al. 2009) which provided a 150.5-d light curve with an average
cadence of 32 s. The light curve contained dozens of significant
g-mode frequencies (Pápics et al. 2012; Buysschaert et al. 2018).

Buysschaert et al. (2018) extracted all the significant g-mode fre-
quencies from the CoRoT light curve of HD 43317. After delimiting
the parameter space in the HR diagram using the spectroscopic pa-
rameters, the authors performed forward asteroseismic modelling to
ascertain a statistically best-fitting mass of " = 5.8+0.1

�0.2M� , core

hydrogen content of -c = 0.54+0.01
�0.02, and a parameterisation of con-

vective boundary mixing (CBM) of 5CBM = 0.004+0.014
�0.002. Assump-

tions in their modelling strategy included: rigid rotation fixed at the
measured surface rotation period (i.e. ' 0.62⌦crit,Roche); constant
envelope mixing of ⇡env = 10 cm2 s�1; and a radiative temperature
gradient within the CBM region. The best-fitting parameters were de-
rived based on a large grid of non-rotating and non-magnetic MESA
structure models (r8118; Paxton et al. 2011, 2013, 2015) and cor-
responding theoretical pulsation mode frequencies using the stellar
oscillation code GYRE (v4.1; Townsend & Teitler 2013) after identi-
fying probable mode geometries of the detected g-mode frequencies.
The e�ect of rotation was included within the GYRE calculations
using the Traditional Approximation for Rotation (TAR; Townsend
& Teitler 2013). We refer the reader to Buysschaert et al. (2018) for
full details.

HD 43317 is the only magnetic and rapidly rotating star pulsating
in g modes that has been modelled using asteroseismology (Buyss-
chaert et al. 2018). For (non-magnetic) pulsating stars in this mass
range (i.e. SPB stars), much higher radial orders (i.e. |=pg | � 1) are
more commonly observed (Pedersen et al. 2021), making HD 43317
atypical given its distinct lack of high-radial order g modes.

In Fig. 1, we show the propagation diagram for the structure model
determined by Buysschaert et al. (2018) to best reproduce the ob-
served g-mode frequencies and inferred mode geometry identifica-
tion. In this paper we primarily study this best-fitting structure model
and determine an upper limit of the magnetic field strength in the
near-core region that satisfies the constraint that HD 43317 only has
high-frequency g modes. To test the robustness of our results, we
also analyse an additional 19 models which satisfy the 2f confi-
dence intervals on mass, age and CBM (see Table 2 of Buysschaert
et al. 2018). Although there are many free parameters that can be
included when calculating a grid of structure models, we consider
the asteroseismically calibrated models of Buysschaert et al. (2018)
to be su�cient to test the hypothesis that the interior magnetic field is
strong enough to suppress low-frequency g modes and explain why
only high-frequency g modes are observed.

3 INTERACTION OF INTERNAL GRAVITY WAVES AND
MAGNETIC FIELDS

The magnetic SPB star HD 43317 has only high-frequency g modes
observed in its amplitude spectrum of the CoRoT light curve, with
radial orders spanning �15  =pg  �1, which is atypical for SPB
stars (Buysschaert et al. 2018). The lowest-frequency g mode is
56 = 1.806 d�1 in the corotating frame, which leads to the question
of why lower frequency g modes are not observed. Non-adiabatic
pulsation calculations of HD 43317 using GYRE (v6.0.1; Townsend
& Teitler 2013; Townsend et al. 2018; Goldstein & Townsend 2020)
suggest a wider range of g modes should be excited, with =pg ranging

Figure 1. Propagation diagram for the magnetic SPB star HD43317 using the
best-fitting asteroseismic model of Buysschaert et al. (2018). The green line
shows the oscillation cavity of the lowest-frequency identified g mode with
frequency 56 = 0.692 d�1 in the inertial frame. The yellow line is an estimate
of the magnetic interaction frequency for ✓ = 1, assuming the magnetic field
is a dipole with strength ⌫A = 4.68 ⇥ 105 G at A = 0.18'¢ (eqn. 1).

from �39±2 to �8±1 for (✓,<) = (2,�1) and from �34±3 to �8±1
for (✓,<) = (1,�1). We propose that these low-frequency g modes
are suppressed by a strong near-core magnetic field.

To understand the suppression of g modes, we turn our attention
to propagating IGWs. If an IGW can reflect o� an upper and lower
region of a star and its frequency satisfies a quantization condition,
it can set up a standing mode, i.e., a g mode. Fuller et al. (2015) and
Lecoanet et al. (2017) found that IGWs can have strong interactions
with magnetic fields which prevent them from reflecting o� the inner
part of the star. This can suppress the dipole oscillation modes in RGB
stars (e.g., Stello et al. 2016). They found that (ignoring rotation) if
an IGW of frequency 5 enters a region where

5 . 5⌫ =
1

2c

s
⌫A
cd

#⇤
A

, (1)

it can convert into a magnetic wave, preventing the formation of a
standing g mode. Here ⌫A is the radial magnetic field, d is the density,
⇤ =

p
✓(✓ + 1) with ✓ the spherical harmonic degree of the IGW, and

A is the local radius. This relation was used to estimate a magnetic
field of ⇠ 107 G in the RGB star KIC 8561221 (García et al. 2014;
Fuller et al. 2015). Assuming (as a rough approximation) the interior
magnetic field of HD 43317 varies as 1/A3 like a dipole, Fig. 1 shows
that 5⌫ is greatest in the near-core region at A ⇡ 0.18'¢, if we only
consider the oscillation cavities of the identified observed g modes
of HD 43317 which have frequencies above the green line. This
indicates that the strongest interaction between IGWs and a dipolar
magnetic field would occur in the near-core region where # is large
due to the chemical composition gradient. In this region 5⌫ ⇠ 1 d�1,
indicating that magnetic and rotational e�ects are similar in strength.
A similar calculation by Cantiello et al. (2016), also found magnetic
fields of 105 G can suppress modes with 5 . 0.86 d�1.

To refine this heuristic estimate, we calculate the linear waves
of a rotating, magnetised star using the WKBJ approximation. We
assume the background magnetic field is predominately dipolar, and
take ⌫A (A, \) = ⌫A (A) cos(\). We assume all wave variables can be
written as, e.g.,

*A (A , \, q, C) = DA (A, \) exp

8<q � 8lC + 8n�1

π
k(A)3A

�
, (2)
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Magnetic interaction frequency

Brunt-Väisälä frequency

Magnetic field damps standing gravity wave if:

Lowest frequency 
gravity mode

Assuming:

• dipolar magnetic field geometry (∝1/r3)


• range of self-excited gravity modes

where:

Buysschaert et al. (2018) 
Lecoanet, Bowman, Van Reeth (2022)
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Figure 3. Critical magnetic field strength for di�erent IGWs as a function of
their frequency in the inertial frame. We study waves with the frequencies
of the g modes of HD 43317. Frequencies corresponding to observed (un-
observed) modes are plotted with thick (thin) symbols. We infer a magnetic
field with strength ⌫A ⇡ 4.7 ⇥ 105 G at A = 0.18'¢ (horizontal line). A
dipolar field of this strength would suppress g modes below the horizontal
line, explaining the lack of low-frequency modes.

inwards (upper right plot), it exhibits similar behaviour to the higher-
frequency mode as the left hand side of the figure. However, near
the radiative-convective interface, it undergoes a strong interaction
with the magnetic field, turning into a resonant AW. In the bottom
right quadrant of Fig. 4, we show the structure of the resonant AW.
We calculate the AW at a single radius near the radiative-convective
interface, but plot it at a range of radii to illustrate its structure.
To resolve the AW, we introduce a small magnetic resistivity of
[ = 3⇥10�10 into the problem. The AW has high radial wavenumber
and a critical latitude near 45�. Because the resonant AWs form a
continuum (Fig. 2), we expect the AW to interact with many other
AWs and spread across many latitudes. This means no IGW returns
to the surface at this frequency, so there is no g mode, in agreement
with the observed properties of the star.

There is uncertainty in the stellar structure of HD 43317 as inferred
from asteroseismology. Up to now, we have analysed the best-fitting
structure model. To test the robustness of our inferred magnetic
field strength, we calculate ⌫crit using the structure models from
Buysschaert et al. (2018) which satisfy the 2f confidence intervals
on mass, age and CBM. In Fig. 5, we plot ⌫crit for the IGWs with
the frequencies of the (✓,<) = (2,�1) modes with =pg = �16
and =pg = �15. Assuming the =pg = �16 mode is not observed
at the surface due to the presence of a dipolar magnetic field, the
magnetic field strength must be between these two ⌫crit. To estimate
this magnetic field strength, we plot the histogram of the mean of
⌫crit for these two modes. The average magnetic field strength across
the 20 best-fitting models is ⌫A = 456 kG in the near core region,
A ⇡ 0.18'¢. The root-mean-square deviation from this mean across
the twenty models is 6 kG. The inferred magnetic field strength is
insensitive to the di�erent models.

5 CONCLUSIONS

Magnetic massive stars are rare, and pulsating magnetic massive
stars are rarer still. The pulsating, magnetic and rapidly rotating
star HD 43317 provides a unique opportunity to infer the strength
of the magnetic field in the near-core region based on the reported

Figure 4. Azimuthal velocity structure for < = �1, ✓ = 2 waves with
frequencies 5 = 0.872 d�1 (left; =pg = �15) and 5 = 0.840 d�1 (right;
=pg = �16) in the inertial frame, assuming a dipole magnetic field with
⌫A = 4.68 ⇥ 105 G at A = 0.18'¢. The top panels show the incoming
waves, and bottom panels show outgoing waves. The lower frequency wave,
corresponding to the unobserved =pg = �16 mode, interacts strongly with
the magnetic field when it enters into chemical composition gradient region,
triggering a latitudinally-localised resonant AW. The AW is calculated only
at a single radius near the radiative-convective interface, but is plotted over a
range of radii to give a sense of its structure.

lack of observed low-frequency g modes (Buysschaert et al. 2018).
To reproduce the lowest-frequency observed g mode based on the
previous forward asteroseismic modelling, we find a critical magnetic
field strength of approximately 5 ⇥ 105 G is needed in the near-core
region for HD 43317. This inference is the first of its kind for a
main-sequence star and serves as a valuable proof-of-concept for two
reasons. First, pulsation modes can diagnose interior magnetic fields.
Second, the interaction of waves with a strong internal magnetic field
can explain why only certain radial order modes are visible at the
surface of HD 43317.

What is the physical origin of this magnetic field? HD 43317 has a
surface magnetic field of strength⇡ 1.3 kG. If the strength of the field
scales as ⇠ A�3 from the surface to the interior of the star, the field
in the near-core region would be ⌫A ⇠ 200 kG, which is smaller than
our inferred field strength by a factor of⇡ 2. It is also possible that the
near-core magnetic field is enhanced by a core convective dynamo.
3D simulations of B stars find magnetic field strengths of ⇡ 200 kG
(Augustson et al. 2016). However, Featherstone et al. (2009) found
the presence of a fossil field can enhance the dynamo magnetic field
up to ⇡ 500 kG, as we find here. Our results support the conclusion
that HD 43317’s near-core magnetic field is a stronger-than-normal
core convective dynamo induced by a strong fossil field, which is
observed at the star’s surface.

In the future, we anticipate that this methodology can be expanded
and applied to potentially many more pulsating magnetic stars being
discovered by the ongoing NASA TESS mission (Ricker et al. 2015).
Thus, measuring near-core field magnetic field strengths sampling
mass and age on the upper-main sequence is now within reach.
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lack of observed low-frequency g modes (Buysschaert et al. 2018).
To reproduce the lowest-frequency observed g mode based on the
previous forward asteroseismic modelling, we find a critical magnetic
field strength of approximately 5 ⇥ 105 G is needed in the near-core
region for HD 43317. This inference is the first of its kind for a
main-sequence star and serves as a valuable proof-of-concept for two
reasons. First, pulsation modes can diagnose interior magnetic fields.
Second, the interaction of waves with a strong internal magnetic field
can explain why only certain radial order modes are visible at the
surface of HD 43317.

What is the physical origin of this magnetic field? HD 43317 has a
surface magnetic field of strength⇡ 1.3 kG. If the strength of the field
scales as ⇠ A�3 from the surface to the interior of the star, the field
in the near-core region would be ⌫A ⇠ 200 kG, which is smaller than
our inferred field strength by a factor of⇡ 2. It is also possible that the
near-core magnetic field is enhanced by a core convective dynamo.
3D simulations of B stars find magnetic field strengths of ⇡ 200 kG
(Augustson et al. 2016). However, Featherstone et al. (2009) found
the presence of a fossil field can enhance the dynamo magnetic field
up to ⇡ 500 kG, as we find here. Our results support the conclusion
that HD 43317’s near-core magnetic field is a stronger-than-normal
core convective dynamo induced by a strong fossil field, which is
observed at the star’s surface.

In the future, we anticipate that this methodology can be expanded
and applied to potentially many more pulsating magnetic stars being
discovered by the ongoing NASA TESS mission (Ricker et al. 2015).
Thus, measuring near-core field magnetic field strengths sampling
mass and age on the upper-main sequence is now within reach.
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High radial order g modes (i.e. |n| >>1) strongly 
interact with the magnetic field: 


• not possible to set up a standing wave

• upper limit for magnetic field strength

Nordita Workshop 202424

Magnetic field needed to damp gravity modes:

➔ rotating MHD simulations with the DEDALUS code

eigenvalue problem solved using WKBJ approximation
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Upper limit for near-core magnetic field:
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Interior magnetic fields of massive stars
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Ratnasingam et al. (2024, under review)

3D spherical Rayleigh MHD simulations:

• toroidal field dominates over poloidal 

field in the core and near core regions

• shear layer is the μ-gradient zone
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1. Asteroseismology: types of pulsations and pulsators


2. Insight from stellar pulsations: mixing and rotation


3. Magneto-asteroseismology: interior magnetic fields


4. Stochastic low-frequency variability: gravity waves and turbulence



Stochastic Low-Frequency (SLF) variability
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Observed 25 M☉ star

3D hydro simulation of core convection in 25 M☉ star 

Herwig et al. (2023)

Gravity waves from core, surface (both?), and/or winds

(Rogers et al. 2013, 2015; 
Edelmann et al. 2019; 
Horst et al. 2020; Ratnasingam et al. 2020; 
Vanon et al. 2023; Thompson et al. 2024; 
Lecoanet et al. 2019, 2021; Anders et al. 2023; 
Krtička & Feldmeier 2021)

Bowman et al. (2019a, 

2019b, 2020)

Sub-surface convection 
is metallicity dependent:   

exist in SMC stars? 
(Jermyn et al. 2022,   
Bowman et al. 2024)
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SLF variability morphology probes 
mass and age of a massive star:

SLF variability across the HR diagram
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 ↑M and ↑age = ↑ 𝜶 and ↓ νchar
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mass and age of a massive star:

SLF variability across the HR diagram
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 ↑M and ↑age = ↑ 𝜶 and ↓ νchar
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 ↑M and ↑age = ↑ Q

SLF variability transitions from 
stochastic to quasi-periodic:

New method: light curve fit with 

Gaussian Process (GP) regression 


with damped SHO kernel



SLF variability and macroturbulence
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Vini = 350 km/s
Vini = 250 km/s
Vini = 0 km/s

1.5 HP

Fig. 4. Convective velocity in the FeCZ as function of radial distance
from the stellar surface. The dotted line corresponds to a non-rotating
20 M! model at Z = 0.02, while the dashed and solid lines refer to the
same model rotating at birth with 250 km s−1 and 350 km s−1 respec-
tively. The values correspond to models having the same effective tem-
perature (log T = 4.339) and very similar luminosity (log L/L! = 5.04
for the non-rotating model and log L/L! = 5.03 for the rotating ones).
The gray band shows the upper 1.5 pressure scale heights of the FeCZ,
which is the region considered for the computation of 〈!c〉, cf. Eq. (6).
Convective velocities in the He convection zone are much lower than
1 km s−1 and are not visible in this plot.

small scale or large scale clumping in massive star winds, mag-
netic fields, and non-radial pulsations could be related to sub-
surface convection. For each point, we first briefly discuss the
theoretical motivation, and then the corresponding observational
evidence.

4.1. Microturbulence

4.1.1. Theoretical considerations

The convective cells in the upper part of a convection zone excite
acoustic and gravity waves that propagate outward. The genera-
tion of sound waves by turbulent motions was first discussed by
Lighthill (1952) and extended to a stratified atmosphere by Stein
(1967) and Goldreich & Kumar (1990). In a stratified medium,
gravity acts as a restoring force and allows the excitation of grav-
ity waves. For both acoustic and gravity waves, the most impor-
tant parameter determining the emitted kinetic energy flux is the
velocity of the convective motions. This is why, in the follow-
ing, we use the average convective velocity 〈!c〉 as the crucial
parameter determining the efficiency of sub-surface convection.

Goldreich & Kumar (1990) showed that convection excites
acoustic and gravity waves, resulting in maximum emission for
those waves with horizontal wave vector kh ∼ 1/HP,c and angular
frequency ω ∼ !c/HP,c, where now !c and HP,c are evaluated at
the top of the convective region. They calculated that the amount
of convective kinetic energy flux going into acoustic and gravity
waves is

Fac ∼ FcM15/2
c , (7)

and

Fg ∼ FcMc, (8)

respectively, where we take Fc ∼ ρc〈!c〉3 and Mc is the Mach
number in the upper part of the convective region. Since con-
vection in our models is subsonic, gravity waves are expected

Envelope convective zone

Radiative Layer

Radiative Layer

Stellar surface

Clumps

Acoustic and gravity waves

Microturbulence

Convective Zone

Buoyant magnetic !ux tubes

Fig. 5. Schematic representation of the physical processes connected to
sub-surface convection. Acoustic and gravity waves emitted in the con-
vective zone travel through the radiative layer and reach the surface, in-
ducing density and velocity fluctuations. In this picture microturbulence
and clumping at the base of the wind are a consequence of the presence
of sub-surface convection. Buoyant magnetic flux tubes produced in the
convection zone could rise to the stellar surface.

to extract more energy from the convective region than acoustic
waves. These gravity waves can then propagate outward, reach
the surface and induce observable density and velocity fluctua-
tions (Fig. 5).

The Brunt-Vaisäla frequency in the radiative layer above
the FeCZ is about mHz. Molecular viscosity can only damp
the highest frequencies, while wavelengths that will be reso-
nant with the scale length of the line forming region should
not be affected (see e.g. Lighthill 1967). This is the case for
the gravity waves stochastically excited by convective motions:
they can easily propagate through the sub-surface radiative layer,
steepening and becoming dissipative only in the region of line
formation.

Again, multi-dimensional hydrodynamic simulations would
be the best way to compute the energy loss of these waves during
their propagation through the radiatively stable envelope above
the FeCZ, but this is beyond what we can presently do. We can,
however, obtain an upper limit to the expected velocity ampli-
tudes at the stellar surface, where we only consider the energy
transport through gravity waves. The kinetic energy per unit vol-
ume associated with the surface velocity fluctuations Es must
be comparable to or lower than the kinetic energy density as-
sociated with the waves near the sub-surface convection zone,
Eg ∼ Mc ρc 〈!c〉2, or

Eg

Es
∼ Mc

(
ρc

ρs

) ( 〈!c〉
!s

)2

≥ 1, (9)

where ρc is the density at the top of the convective region and ρs
is the surface density, and !s is the surface velocity amplitude. In
this ratio we only consider energy density since the volume of
the line forming region is comparable to the volume of the upper
part of the convective zone. Therefore, we expect

!s ≤ 〈!c〉
√

Mc
ρc

ρs
· (10)

In our models with well developed FeCZs,
√

Mc ρc/ρs ( 1 (or-
der of magnitude), and thus !s and 〈!c〉 should be on the same
order of magnitude. It is difficult to estimate the typical corre-
lation length of the induced velocity field at the stellar surface,
but a plausible assumption is that it is about one photospheric
pressure scale height, HP,s, given the proximity of the FeCZ to

Cantiello et al. (2009)SLF variability morphology correlates with spectroscopic macroturbulence
• macroturbulence = large-scale and anisotropic (vh / vr >> 1)

• microturbulence = small-scale and isotropic
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Fig. 3. Six pulsationally broadened profiles with different S/N ratio (full lines) are compared with their best fit including both rotation and
macroturbulence (dashed lines) and rotation alone (dotted line). The values for the input rotation velocity, the rotation velocity from a fit without
macroturbulence, and from a fit with isotropic macroturbulence, (v sin i(in), v sin i(fit, vmacro = 0); v sin i(fit), vmacro), are as follows: a): (25, 27; 8, 14),
b): (45, 44; 11, 23), c): (125, 126; 125, 10), d): (65, 64; 49, 24), e): (45, 57; 5, 32), f): (85, 82; 14, 44), where all velocities are expressed in km s−1.
The fits without macroturbulence (dotted lines) lead to more reliable values of v sin i (see text for explanation).

discussion. In this work, we considered an isotropic macroturbu-
lence described by a Gaussian velocity distribution (denoted as
AISO), as well as an anisotropic description for which the radial
and tangential velocity fields in general have a different ampli-
tude denoted as AR and AT (a so-called radial-tangential model –
see Eq. (17.6), p. 433 in Gray 2005). For the anisotropic model
fits, we considered the two extreme cases of allowing AR to be
free while AT = 0 and AR = 0 while AT was allowed to take any
value. In this way, each of the three models for the macroturbu-
lence is described by one free parameter.

For all the simulated profiles, we determined v sin i and the
macroturbulence vmacro, while ignoring the presence of pulsa-
tional broadening, as is done in the literature, by adopting a
goodness-of-fit approach. The normalized profiles broadened
by both rotation and gravity-mode pulsations are denoted by
(λ j, p1(λ j)) and those broadened by rotation and macroturbu-
lence by (λ j, p2(λ j)), with j = 1, . . . ,N an index labelling the
velocity pixels within the profile. For the computation of p2 we
considered each of the three options AISO, AR, and AT. Each of
the profiles p1 and p2 were given the same equivalent width. We

computed the line deviation parameter, Σ, based on the classical
statistical technique of residuals:

Σ(v sin i, vmacro) ≡

√√√
1

N − 1

N∑

j=1

[
p1(λ j) − p2(λ j)

]2
. (1)

This quantity is the standard deviation of the residual profile
|p1 − p2|, averaged over all velocity pixels in the line profile,
expressed in continuum units. It is thus a measure of the fit qual-
ity, directly interpretable in terms of the S/N ratio of measure-
ments. The optimal choice of the parameters (v sin i, vmacro) is
then found by carefully screening the 2-dimensional parameter
space in v sin i and vmacro (in steps of 1 km s−1 for each of v sin i
and vmacro) and by identifying Σm ≡ min(v sin i,vmacro) Σ, where
vmacro can be any of AISO, AR or AT. Moreover, we allowed two
options to fit the pulsationally broadened profile p1: the one such
that the wavelength position of the minimum of p1 and p2 coin-
cide and the one such that their first moments 〈v〉 are in best
agreement. Note that these two options are equivalent only in
the case of symmetric profiles. For each generated profile, we
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free while AT = 0 and AR = 0 while AT was allowed to take any
value. In this way, each of the three models for the macroturbu-
lence is described by one free parameter.

For all the simulated profiles, we determined v sin i and the
macroturbulence vmacro, while ignoring the presence of pulsa-
tional broadening, as is done in the literature, by adopting a
goodness-of-fit approach. The normalized profiles broadened
by both rotation and gravity-mode pulsations are denoted by
(λ j, p1(λ j)) and those broadened by rotation and macroturbu-
lence by (λ j, p2(λ j)), with j = 1, . . . ,N an index labelling the
velocity pixels within the profile. For the computation of p2 we
considered each of the three options AISO, AR, and AT. Each of
the profiles p1 and p2 were given the same equivalent width. We

computed the line deviation parameter, Σ, based on the classical
statistical technique of residuals:

Σ(v sin i, vmacro) ≡

√√√
1

N − 1

N∑

j=1

[
p1(λ j) − p2(λ j)

]2
. (1)

This quantity is the standard deviation of the residual profile
|p1 − p2|, averaged over all velocity pixels in the line profile,
expressed in continuum units. It is thus a measure of the fit qual-
ity, directly interpretable in terms of the S/N ratio of measure-
ments. The optimal choice of the parameters (v sin i, vmacro) is
then found by carefully screening the 2-dimensional parameter
space in v sin i and vmacro (in steps of 1 km s−1 for each of v sin i
and vmacro) and by identifying Σm ≡ min(v sin i,vmacro) Σ, where
vmacro can be any of AISO, AR or AT. Moreover, we allowed two
options to fit the pulsationally broadened profile p1: the one such
that the wavelength position of the minimum of p1 and p2 coin-
cide and the one such that their first moments 〈v〉 are in best
agreement. Note that these two options are equivalent only in
the case of symmetric profiles. For each generated profile, we
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Vini = 350 km/s
Vini = 250 km/s
Vini = 0 km/s

1.5 HP

Fig. 4. Convective velocity in the FeCZ as function of radial distance
from the stellar surface. The dotted line corresponds to a non-rotating
20 M! model at Z = 0.02, while the dashed and solid lines refer to the
same model rotating at birth with 250 km s−1 and 350 km s−1 respec-
tively. The values correspond to models having the same effective tem-
perature (log T = 4.339) and very similar luminosity (log L/L! = 5.04
for the non-rotating model and log L/L! = 5.03 for the rotating ones).
The gray band shows the upper 1.5 pressure scale heights of the FeCZ,
which is the region considered for the computation of 〈!c〉, cf. Eq. (6).
Convective velocities in the He convection zone are much lower than
1 km s−1 and are not visible in this plot.

small scale or large scale clumping in massive star winds, mag-
netic fields, and non-radial pulsations could be related to sub-
surface convection. For each point, we first briefly discuss the
theoretical motivation, and then the corresponding observational
evidence.

4.1. Microturbulence

4.1.1. Theoretical considerations

The convective cells in the upper part of a convection zone excite
acoustic and gravity waves that propagate outward. The genera-
tion of sound waves by turbulent motions was first discussed by
Lighthill (1952) and extended to a stratified atmosphere by Stein
(1967) and Goldreich & Kumar (1990). In a stratified medium,
gravity acts as a restoring force and allows the excitation of grav-
ity waves. For both acoustic and gravity waves, the most impor-
tant parameter determining the emitted kinetic energy flux is the
velocity of the convective motions. This is why, in the follow-
ing, we use the average convective velocity 〈!c〉 as the crucial
parameter determining the efficiency of sub-surface convection.

Goldreich & Kumar (1990) showed that convection excites
acoustic and gravity waves, resulting in maximum emission for
those waves with horizontal wave vector kh ∼ 1/HP,c and angular
frequency ω ∼ !c/HP,c, where now !c and HP,c are evaluated at
the top of the convective region. They calculated that the amount
of convective kinetic energy flux going into acoustic and gravity
waves is

Fac ∼ FcM15/2
c , (7)

and

Fg ∼ FcMc, (8)

respectively, where we take Fc ∼ ρc〈!c〉3 and Mc is the Mach
number in the upper part of the convective region. Since con-
vection in our models is subsonic, gravity waves are expected

Envelope convective zone

Radiative Layer

Radiative Layer

Stellar surface

Clumps

Acoustic and gravity waves

Microturbulence

Convective Zone

Buoyant magnetic !ux tubes

Fig. 5. Schematic representation of the physical processes connected to
sub-surface convection. Acoustic and gravity waves emitted in the con-
vective zone travel through the radiative layer and reach the surface, in-
ducing density and velocity fluctuations. In this picture microturbulence
and clumping at the base of the wind are a consequence of the presence
of sub-surface convection. Buoyant magnetic flux tubes produced in the
convection zone could rise to the stellar surface.

to extract more energy from the convective region than acoustic
waves. These gravity waves can then propagate outward, reach
the surface and induce observable density and velocity fluctua-
tions (Fig. 5).

The Brunt-Vaisäla frequency in the radiative layer above
the FeCZ is about mHz. Molecular viscosity can only damp
the highest frequencies, while wavelengths that will be reso-
nant with the scale length of the line forming region should
not be affected (see e.g. Lighthill 1967). This is the case for
the gravity waves stochastically excited by convective motions:
they can easily propagate through the sub-surface radiative layer,
steepening and becoming dissipative only in the region of line
formation.

Again, multi-dimensional hydrodynamic simulations would
be the best way to compute the energy loss of these waves during
their propagation through the radiatively stable envelope above
the FeCZ, but this is beyond what we can presently do. We can,
however, obtain an upper limit to the expected velocity ampli-
tudes at the stellar surface, where we only consider the energy
transport through gravity waves. The kinetic energy per unit vol-
ume associated with the surface velocity fluctuations Es must
be comparable to or lower than the kinetic energy density as-
sociated with the waves near the sub-surface convection zone,
Eg ∼ Mc ρc 〈!c〉2, or

Eg

Es
∼ Mc

(
ρc

ρs

) ( 〈!c〉
!s

)2

≥ 1, (9)

where ρc is the density at the top of the convective region and ρs
is the surface density, and !s is the surface velocity amplitude. In
this ratio we only consider energy density since the volume of
the line forming region is comparable to the volume of the upper
part of the convective zone. Therefore, we expect

!s ≤ 〈!c〉
√

Mc
ρc

ρs
· (10)

In our models with well developed FeCZs,
√

Mc ρc/ρs ( 1 (or-
der of magnitude), and thus !s and 〈!c〉 should be on the same
order of magnitude. It is difficult to estimate the typical corre-
lation length of the induced velocity field at the stellar surface,
but a plausible assumption is that it is about one photospheric
pressure scale height, HP,s, given the proximity of the FeCZ to

Cantiello et al. (2009)SLF variability morphology correlates with spectroscopic macroturbulence
• macroturbulence = large-scale and anisotropic (vh / vr >> 1)

• microturbulence = small-scale and isotropic
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Fig. 3. Six pulsationally broadened profiles with different S/N ratio (full lines) are compared with their best fit including both rotation and
macroturbulence (dashed lines) and rotation alone (dotted line). The values for the input rotation velocity, the rotation velocity from a fit without
macroturbulence, and from a fit with isotropic macroturbulence, (v sin i(in), v sin i(fit, vmacro = 0); v sin i(fit), vmacro), are as follows: a): (25, 27; 8, 14),
b): (45, 44; 11, 23), c): (125, 126; 125, 10), d): (65, 64; 49, 24), e): (45, 57; 5, 32), f): (85, 82; 14, 44), where all velocities are expressed in km s−1.
The fits without macroturbulence (dotted lines) lead to more reliable values of v sin i (see text for explanation).

discussion. In this work, we considered an isotropic macroturbu-
lence described by a Gaussian velocity distribution (denoted as
AISO), as well as an anisotropic description for which the radial
and tangential velocity fields in general have a different ampli-
tude denoted as AR and AT (a so-called radial-tangential model –
see Eq. (17.6), p. 433 in Gray 2005). For the anisotropic model
fits, we considered the two extreme cases of allowing AR to be
free while AT = 0 and AR = 0 while AT was allowed to take any
value. In this way, each of the three models for the macroturbu-
lence is described by one free parameter.

For all the simulated profiles, we determined v sin i and the
macroturbulence vmacro, while ignoring the presence of pulsa-
tional broadening, as is done in the literature, by adopting a
goodness-of-fit approach. The normalized profiles broadened
by both rotation and gravity-mode pulsations are denoted by
(λ j, p1(λ j)) and those broadened by rotation and macroturbu-
lence by (λ j, p2(λ j)), with j = 1, . . . ,N an index labelling the
velocity pixels within the profile. For the computation of p2 we
considered each of the three options AISO, AR, and AT. Each of
the profiles p1 and p2 were given the same equivalent width. We

computed the line deviation parameter, Σ, based on the classical
statistical technique of residuals:

Σ(v sin i, vmacro) ≡

√√√
1

N − 1

N∑

j=1

[
p1(λ j) − p2(λ j)

]2
. (1)

This quantity is the standard deviation of the residual profile
|p1 − p2|, averaged over all velocity pixels in the line profile,
expressed in continuum units. It is thus a measure of the fit qual-
ity, directly interpretable in terms of the S/N ratio of measure-
ments. The optimal choice of the parameters (v sin i, vmacro) is
then found by carefully screening the 2-dimensional parameter
space in v sin i and vmacro (in steps of 1 km s−1 for each of v sin i
and vmacro) and by identifying Σm ≡ min(v sin i,vmacro) Σ, where
vmacro can be any of AISO, AR or AT. Moreover, we allowed two
options to fit the pulsationally broadened profile p1: the one such
that the wavelength position of the minimum of p1 and p2 coin-
cide and the one such that their first moments 〈v〉 are in best
agreement. Note that these two options are equivalent only in
the case of symmetric profiles. For each generated profile, we
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Fig. 3. Six pulsationally broadened profiles with different S/N ratio (full lines) are compared with their best fit including both rotation and
macroturbulence (dashed lines) and rotation alone (dotted line). The values for the input rotation velocity, the rotation velocity from a fit without
macroturbulence, and from a fit with isotropic macroturbulence, (v sin i(in), v sin i(fit, vmacro = 0); v sin i(fit), vmacro), are as follows: a): (25, 27; 8, 14),
b): (45, 44; 11, 23), c): (125, 126; 125, 10), d): (65, 64; 49, 24), e): (45, 57; 5, 32), f): (85, 82; 14, 44), where all velocities are expressed in km s−1.
The fits without macroturbulence (dotted lines) lead to more reliable values of v sin i (see text for explanation).

discussion. In this work, we considered an isotropic macroturbu-
lence described by a Gaussian velocity distribution (denoted as
AISO), as well as an anisotropic description for which the radial
and tangential velocity fields in general have a different ampli-
tude denoted as AR and AT (a so-called radial-tangential model –
see Eq. (17.6), p. 433 in Gray 2005). For the anisotropic model
fits, we considered the two extreme cases of allowing AR to be
free while AT = 0 and AR = 0 while AT was allowed to take any
value. In this way, each of the three models for the macroturbu-
lence is described by one free parameter.

For all the simulated profiles, we determined v sin i and the
macroturbulence vmacro, while ignoring the presence of pulsa-
tional broadening, as is done in the literature, by adopting a
goodness-of-fit approach. The normalized profiles broadened
by both rotation and gravity-mode pulsations are denoted by
(λ j, p1(λ j)) and those broadened by rotation and macroturbu-
lence by (λ j, p2(λ j)), with j = 1, . . . ,N an index labelling the
velocity pixels within the profile. For the computation of p2 we
considered each of the three options AISO, AR, and AT. Each of
the profiles p1 and p2 were given the same equivalent width. We

computed the line deviation parameter, Σ, based on the classical
statistical technique of residuals:

Σ(v sin i, vmacro) ≡

√√√
1

N − 1

N∑

j=1

[
p1(λ j) − p2(λ j)

]2
. (1)

This quantity is the standard deviation of the residual profile
|p1 − p2|, averaged over all velocity pixels in the line profile,
expressed in continuum units. It is thus a measure of the fit qual-
ity, directly interpretable in terms of the S/N ratio of measure-
ments. The optimal choice of the parameters (v sin i, vmacro) is
then found by carefully screening the 2-dimensional parameter
space in v sin i and vmacro (in steps of 1 km s−1 for each of v sin i
and vmacro) and by identifying Σm ≡ min(v sin i,vmacro) Σ, where
vmacro can be any of AISO, AR or AT. Moreover, we allowed two
options to fit the pulsationally broadened profile p1: the one such
that the wavelength position of the minimum of p1 and p2 coin-
cide and the one such that their first moments 〈v〉 are in best
agreement. Note that these two options are equivalent only in
the case of symmetric profiles. For each generated profile, we
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Conclusions and future prospects

Dominic Bowman

• Asteroseismology of massive stars yields:

‣ quasi-rigid rotation profiles:  0 → 90% critical

‣ boundary mixing:  0.005 < fCBM < 0.040

‣ envelope mixing:  0 < log(Denv(r)) < 6

‣ near-core magnetic field:  < 500 kG


• Asteroseismology of massive stars requires 
Mahalanobis Distance for precision and accuracy


• SLF variability probes mass and age, but origin 
remains unclear: core and/or envelope?


• Bright future for (magneto)asteroseismology  
thanks to several international projects:

Figure courtesy of A. de Burgos & S. Simón-Díaz
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An asteroseismic view of convective 
boundary mixing in massive stars

Image credit: Hubble Space Telescope, NASA, ESA, STSCI/AURA
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