An asteroseismic view of convective boundary mixing in massive stars

Image credit: Hubble Space Telescope, NASA, ESA, STSCI/AURA

Established by he European

UK Research and Innovation

THE ROYAL SOCIETY

Dominic Bowman

https://research.ncl.ac.uk/symphony/

Importance of massive stars in astrophysics

- Radiative, chemical, kinematic feedback
- Progenitors of gravitational wave sources
- Laboratories for testing physics:
 - winds
 - binarity
 - magnetic fields
 - pulsations
 - rotation

Wewcastle University

2

Unconstrained physics of massive stars: mixing

Uncertainties in **rotation** and **mixing** propagate through evolution and strongly impact predictions of:

- compact remnant mass and spin
- supernova feedback to host galaxy

Edelmann et al. (2019)

Dominic Bowman

Talk Outline

- 1. Asteroseismology: types of pulsations and pulsators
- 2. Insight from stellar pulsations: mixing and rotation
- 3. Magneto-asteroseismology: interior magnetic fields
- 4. Stochastic low-frequency variability: gravity waves and turbulence

Asteroseismology unlocks stellar interiors

Gravity (g) modes:

- n < 0
- low frequency
- probe near-core
- non-radial
- equally-spaced in period

Dominic Bowman

Pressure (p) modes:

- n > 0
- high frequency
- probe near-surface
- radial and non-radial
- equally spaced in frequency

Wewcastle University

Asteroseismology: pressure modes

Non-radial pressure modes probe the envelope physics:

- rotation rate from near-core to near-surface
- first-order caveat: applicable to slow rotators (<15% critical breakup)

e.g. Kurtz et al. (2014) for AF stars e.g. Aerts et al. (2003) for early-B stars

first-order Ledoux splitting: $\omega_{n\ell m} = \omega_{n\ell} + m \left(1 - C_{n\ell}\right) \Omega$

Pressure (p) modes:

- n > 0
- high frequency
- probe near-surface
- radial and non-radial
- equally spaced in frequency

Newcastle
University

Asteroseismology: gravity modes

Prograde dipole gravity modes most common geometry in observations: • rotation and chemical mixing in near-core region Traditional approximation for rotation (TAR) up to ~90% critical breakup

$$P_{n\ell} = \frac{\Pi_0}{\sqrt{\ell \ (\ell+1)}} \left(|n| + \frac{1}{\sqrt{\ell \ (\ell+1)}} \right)$$
$$\Pi_0 = 2\pi^2 \left(\int_{r_1}^{r_2} N(r) \frac{\mathrm{d}r}{r} \right)$$

Gravity (g) modes:

- n < 0
- low frequency
- probe near-core
- non-radial
- equally-spaced in period

Dominic Bowman

Asteroseismology: gravity modes

- 20000
- 15000
- 10000
- 5000

- 20000
- <u>ن</u> 15000
- ΔP 10000
 - 5000

- 20000
- 15000
- 10000
- 5000

Gravity (g) modes:

- n < 0
- low frequency
- probe near-core
- non-radial
- equally-spaced in period

Dominic Bowman

Increased mixing decreases "*dips*" in g-mode period spacing pattern.

Space photometry revolution

Long-term, continuous, high-precision light curves are needed to resolve individual pulsation modes.

Types of pulsating massive stars

- Broad period range between minutes and several days
- Seemingly near-ubiquitous in massive stars

β Cephei stars:

- Periods of order several hours
- Low radial order coherent p and g modes
- Masses above $\sim 8 M_{\odot}$

Slowly Pulsating B stars:

- Periods of order days
- High radial order g modes
- Masses between 3 and 9 M_{\odot}

SLF: Stochastic low-frequency variability

Image credit: P. Degroote

Talk Outline

- 1. Asteroseismology: types of pulsations and pulsators
- 2. Insight from stellar pulsations: mixing and rotation
- 3. Magneto-asteroseismology: interior magnetic fields
- 4. Stochastic low-frequency variability: gravity waves and turbulence

Asteroseismic results for interior mixing

From a large grid of stellar evolution models and their pulsation mode frequencies determine:

- Convective core boundary mixing: f_{ov}
- Stellar parameters: Z, M_★, X_c, M_{cc}
- Envelope Mixing: D_{mix} (r)

Very important for postmain sequence evolution!

What is the shape of the overshooting and the temperature gradient in the boundary mixing region? Bowman & Michielsen (2021) Michielsen, Aerts & Bowman (2021)

 S^{-1}

 $[\mathrm{cm}^2]$

 $D_{
m mix}$

 \log^{10}

 D_0

 $D_{\rm ext}$

 m/M_{\star}

Nordita Workshop 2024

Dominic Bowman

Asteroseismic results for interior mixing: SPB stars

Ensemble modelling of 26 SPBs observed by *Kepler* reveals interior mixing profiles:

- diverse *shape* and *amount* of envelope mixing
- quasi-rigid rotation

Pedersen et al. (2021)

Wewcastle University

HD192575: a new ß Cep star with TESS

Dominic Bowman

Grid of 1D MESA models: pressure mode rotational multiplet 5.0 gravity mode 4.8 rotational multiplet 21.5M 4.6 logL/L₀ 4.4 4.2 12.5N4.0 avoided crossing 3.8 between two $\ell = 2$ gravity-mode 3.6 9.0M rotational multiplets 4.6 4.5 4.4

(e.g. Mazumdar et al. 2006)

Burssens, Bowman et al. (2023)

logT_{eff} [K]

4.3

HD192575: avoided crossing of multiplets

Dominic Bowman

HD192575: forward asteroseismic modelling

Mahalanobis Distance superior to χ^2 as merit function:

- \rightarrow includes theoretical uncertainties
- \rightarrow penalises parameter correlations and degeneracies

2σ confidence intervals:

$Z_{\rm ini}$ [dex]	$0.012\substack{+0.004\\-0.000}$
$M_{\rm ini}~[{ m M}_\odot]$	$12.0^{+1.5}_{-1.5}$
$X_{ m c}$	$0.176\substack{+0.035\\-0.040}$
$f_{\rm CBM}$	$0.030\substack{+0.005\\-0.025}$
Age [Myr]	$17.0\substack{+4.7 \\ -5.4}$
$M_{\rm cc} [{\rm M}_{\odot}]$	$2.9^{+0.5}_{-0.8}$
$R_{\rm cc} \ [{ m R}_\odot]$	$0.91\substack{+0.11 \\ -0.15}$
$R_{\star, m seism}$ $[R_{\odot}]$	$9.1^{+0.8}_{-1.7}$

From only 1-year TESS light curve: 1σ (age) < 15% 1σ (mass) < 10% 1σ (m_{core}) < 15%

Burssens, Bowman et al. (2023)

$$MD_{j} \equiv \left(Y_{j}^{\text{theo}} - Y^{\text{obs}}\right)^{T} (V + \Sigma)^{-1} \left(Y_{j}^{\text{theo}} - Y_{j}^{\text{obs}}\right)^{T} V_{j}^{-1} = 0$$

Burssens, Bowman et al. (2023)

Efficiency of angular momentum transport

Very efficient angular momentum transport compared to rotating models

µ gradient zone most likely shear layer

Burssens, Bowman et al. (2023)

Dominic Bowman

Non-magnetic rotating **GENEC** models from: Georgy et al. (2013)

2D stellar evolution models

Rotation results from forward asteroseismic modelling using 1D MESA models consistent with rotating 2D ESTER models:

- non-rigid rotation profile
- shear layer is the µ-gradient zone

Mombarg, Rieutord, Espinosa Lara (2023)

Asteroseismic results for interior rotation

Dominic Bowman

Talk Outline

- 1. Asteroseismology: types of pulsations and pulsators
- 2. Insight from stellar pulsations: mixing and rotation

3. Magneto-asteroseismology: interior magnetic fields

- 4. Stochastic low-frequency variability: gravity waves and turbulence

What about magnetic fields?

Case study of magnetic SPB star HD 43317:

- perturbation of pulsation frequency
- damping of pulsation standing wave
- suppression of pulsation excitation mechanism

Assuming:

- dipolar magnetic field geometry ($\propto 1/r^3$)
- range of self-excited gravity modes

Upper limit for **near-core magnetic field**: $B_r \simeq 4.7 \times 10^5 {\rm G} {\rm at} r = 0.18 R_{\star}$

> Buysschaert et al. (2018) Lecoanet, Bowman, Van Reeth (2022)

MHD simulations of magnetic SPB star HD43317

Magnetic field needed to damp gravity modes:

- → rotating MHD simulations with the **DEDALUS** code
- eigenvalue problem solved using WKBJ approximation
- High radial order g modes (i.e. |n| >>1) strongly interact with the magnetic field:
 - not possible to set up a standing wave
 - upper limit for magnetic field strength

Upper limit for near-core magnetic field: $B_r \simeq 4.7 \times 10^5 \mathrm{G} \mathrm{at} r = 0.18 R_{\star}$

Lecoanet, Bowman, Van Reeth (2022)

Interior magnetic fields of massive stars

3D spherical Rayleigh MHD simulations:

- **toroidal field** dominates over poloidal field in the core and near core regions
- shear layer is the μ-gradient zone

Ratnasingam et al. (2024, under review)

Wewcastle University

Talk Outline

- 1. Asteroseismology: types of pulsations and pulsators
- 2. Insight from stellar pulsations: mixing and rotation
- 3. Magneto-asteroseismology: interior magnetic fields
- 4. Stochastic low-frequency variability: gravity waves and turbulence

Stochastic Low-Frequency (SLF) variability

Gravity waves from core, surface (both?), and/or winds

(Rogers et al. 2013, 2015; Edelmann et al. 2019; Horst et al. 2020; Ratnasingam et al. 2020; Vanon et al. 2023; Thompson et al. 2024; Lecoanet et al. 2019, 2021; Anders et al. 2023; Krtička & Feldmeier 2021)

Herwig et al. (2023)

Sub-surface convection is metallicity dependent: exist in SMC stars? (Jermyn et al. 2022, Bowman et al. 2024)

10¹

SLF variability across the HR diagram

SLF variability morphology probes mass and age of a massive star:

Dominic Bowman

SLF variability across the HR diagram

SLF variability morphology probes mass and age of a massive star:

New method: light curve fit with Gaussian Process (GP) regression with damped SHO kernel

SLF variability transitions from stochastic to quasi-periodic:

Bowman & Dorn-Wallenstein (2022)

SLF variability and macroturbulence

SLF variability morphology correlates with spectroscopic macroturbulence

- **macroturbulence** = large-scale and anisotropic $(v_h / v_r >> 1)$
- **microturbulence** = small-scale and isotropic

Cantiello et al. (2009)

SLF variability and macroturbulence

SLF variability morphology correlates with spectroscopic macroturbulence

- **macroturbulence** = large-scale and anisotropic ($v_h / v_r >> 1$)
- **microturbulence** = small-scale and isotropic

Bowman et al. (2020)

Acoustic and gravity waves Envelope convective zone Buoyant magnetic flux tubes Microturbulence Clumps Stellar surface **Radiative Layer** Vmacro ~ 50-200 km s⁻¹ **Convective** Zone $v_{micro} \sim 2-15 \text{ km s}^{-1}$ **Radiative Layer** Flux з.5 $\mathcal{Z}_{\mathfrak{S}}^{-3.5}$ л.0 о $\mathfrak{G}_{\mathfrak{S}}^{-3.5}$ Normalized ю. **Rotation** Ο Rotation + V_{macro} -120-60 120 60 0 $v (km s^{-1})$

Conclusions and future prospects

- Asteroseismology of massive stars yields:
 - quasi-rigid rotation profiles: $0 \rightarrow 90\%$ critical
 - **boundary mixing**: 0.005 < f_{CBM} < 0.040
 - envelope mixing: $0 < \log(D_{env}(r)) < 6$
 - near-core magnetic field: < 500 kG
- Asteroseismology of massive stars requires Mahalanobis Distance for precision and accuracy
- SLF variability probes mass and age, but origin remains unclear: core and/or envelope?
- Bright future for (magneto)asteroseismology thanks to several international projects:

Dominic Bowman

Figure courtesy of A. de Burgos & S. Simón-Díaz

An asteroseismic view of convective boundary mixing in massive stars

Thank you for your attention!

Image credit: Hubble Space Telescope, NASA, ESA, STSCI/AURA

Established by he European

UK Research and Innovation

THE ROYAL SOCIETY

Dominic Bowman

https://research.ncl.ac.uk/symphony/

