The Inertial Wave Menagerie

Catherine Blume, University of Colorado-Boulder Brad Hindman, University of Colorado-Boulder Loren Matilsky, UC-Santa Cruz Rekha Jain, University of Sheffield

Stellar Convection: Modeling, Theory, and Observation August 27, 2024

Observed

Modeled

Observed

Modeled

Outline

Part I Simulation background

Part II Equatorial Rossby waves

Part III Other inertial waves in the convection zone

Part IV A unifying model

Simulation Characteristics

7

Simulation characteristics

Wave spectra

Matilsky et. al (2022) Blume et. al (2024)

Classical Rossby waves

Part II

Convection zone

Two wave cavities

In the radiative interior

In the convection zone

Classical Rossby Waves

12

Classical Rossby waves in the radiative interior

RI vs. CZ line profiles

In the radiative interior

In the convection zone

Wave cavities

Equation set and approximations

Mom.
$$\hat{x}$$
 $\frac{\partial}{\partial t}(\rho_0 v_x) - f(\rho_0 v_y) = -\frac{\partial P_1}{\partial x}$ ApproximationsMom. \hat{y} $\frac{\partial}{\partial t}(\rho_0 v_y) + f(\rho_0 v_x) = -\frac{\partial P_1}{\partial y}$ • Beta planeMom. \hat{x} $g\rho_1 = -\frac{\partial P_1}{\partial z}$ • Hydrostatic balanceMom. \hat{x} $\frac{\partial\rho_1}{\partial t} - \frac{N^2}{g}(\rho_0 v_z) - \frac{1}{gH_*}\frac{\partial P_1}{\partial t} = 0$ • Hydrostatic balanceEnergy $\frac{\partial P_1}{\partial t} + H_*N^2(\rho_0 v_z) + gH_*\nabla \cdot (\rho_0 \vec{v}) = 0$

A separable equation

Much algebra later,

$$\frac{\partial^2 \widehat{V_y}}{\partial z^2} + N^2 \left\{ \Lambda - \left[\frac{1}{4H^2 N^2} - \frac{1}{2} \frac{\partial}{\partial z} \left(\frac{1}{HN^2} \right) - \frac{N^2}{4} \left[\frac{\partial}{\partial z} \left(\frac{1}{N^2} \right) \right]^2 + \frac{1}{2} \frac{\partial^2}{\partial z^2} \left(\frac{1}{N^2} \right) \right] \right\} \widehat{V_y} = 0$$

$$\frac{\partial^2 \widehat{V_y}}{\partial z^2} + N^2 (\Lambda - S(z)) \widehat{V_y} = 0$$

Propagation when $N^2(\Lambda - S) > 0$

In the radiative interior

In the convection zone

Wave cavities

Part II

Equatorial Rossby waves

Lots of equatorial Rossby waves throughout the domain

Most dynamically important horizontal phenomena in the radiative interior

Most likely two families of Rossby waves present

Part III Other waves in the convection zone

Thermal Rossby waves

Thermal Rossby waves/mixed mode

HFR modes

Thermal Rossby Waves (prograde)

 $\frac{D}{Dt}\left(\frac{\vec{\zeta}_a \cdot \vec{\Omega}}{\rho L}\right) = \frac{D}{Dt}\left(\frac{\vec{\zeta}_y + 2\Omega}{\rho L}\right) = 0$ A different conservation of potential vorticity Busse mode ($\lambda_{v_{\phi}} = 0$) Roberts mode ($\lambda_{v_{\phi}} = 1$) ۵ب Hindman et. al (2020a) Bekki et. al (2022a) Busse (1970) **Thermal Rossby waves** HFR modes Mixed mode 26

Hindman and

Jain (2022)

Thermal Rossby wave spectra

High-frequency retrograde (HFR) vorticity waves

- Anti-symmetric ($\lambda = 1$)
- Seen near the surface
- 3D motions

No thorough theoretical explanation

Thermal Rossby waves

Mixed mode

Part III Other waves in the convection zone

Thermal Rossby waves

Thermal Rossby waves/mixed mode

HFR modes

Part IV

All waves from the previous section are related to each other

Physical intuition

A theoretical explanation

Mixed modes?

Rossby (n = 1)

Convective $(\zeta_z \text{ antisym})$

1.0

A number of observed and modeled inertial waves can be combined into a single class of mixed modes.

> Prograde branch: thermal Rossby waves

Retrograde branch: 3D modes that include previously noted mixed mode and observed HFR modes

Observed

Modeled

This simulation features equatorial Rossby waves throughout the domain, potentially living in two different wave cavities

A number of observed and modeled inertial waves can be combined into a single class of mixed modes.

Prograde branch: thermal Rossby waves

Retrograde branch: retrograde mixed mode, HFR modes

Papers!

 Inertial Waves in a Nonlinear Simulation of the Sun's Convection Zone and Radiative Interior

- Blume, Hindman, and Matilsky (2024)
- <u>https://doi.org/10.3847/1538-4357/ad27d1</u>.

A Unifying Model of Mixed Inertial Modes in the Sun

- Jain, Hindman, and Blume (2024)
- https://iopscience.iop.org/article/10.3847/2041-8213/ad35c6