### **Dynamo Confinement of the Solar Tachocline**

Loren Matilsky\*

29 August 2024, Nordita

Loren Matilsky







Juri Toomre





Nicholas Brummell

#### COFFIES

Consequences Of Fields and Flows in the Interior and Exterior of the Sun

\*U.S. National Science Foundation Astronomy & Astrophysics Postdoctoral Fellow

**Bradley Hindman** 







#### Paper 1 (shortish letter): Matilsky et al. 2022, ApJL, 940, L50

THE ASTROPHYSICAL JOURNAL LETTERS, 940:L50 (10pp), 2022 December 1 © 2022. The Author(s). Published by the American Astronomical Society

https://doi.org/10.3847/2041-8213/ac93ef





Confinement of the Solar Tachocline by Dynamo Action in the Radiative Interior

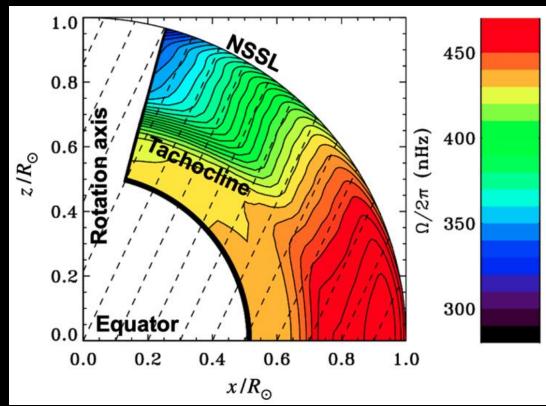
Loren I. Matilsky<sup>1</sup>, Bradley W. Hindman<sup>1,2</sup>, Nicholas A. Featherstone<sup>3</sup>, Catherine C. Blume<sup>1</sup>, and Juri Toomre<sup>1</sup> <sup>1</sup> JILA & Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309-0440, USA: loren.matilsky@gmail.com <sup>2</sup> Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309-0526, USA <sup>3</sup> Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302, USA Received 2022 June 26; revised 2022 September 18; accepted 2022 September 20; published 2022 November 30

#### Paper 2 (longer, in-depth paper): Matilsky et al. 2024, ApJ, 962, 189

THE ASTROPHYSICAL JOURNAL, 962:189 (21pp), 2024 February 20 © 2024. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

https://doi.org/10.3847/1538-4357/ad18b2




Solar Tachocline Confinement by the Nonaxisymmetric Modes of a Dynamo Magnetic Field

Loren I. Matilsky<sup>1,4</sup>, Nicholas H. Brummell<sup>1</sup>, Bradley W. Hindman<sup>2,3</sup>, and Juri Toomre<sup>3</sup> <sup>1</sup>Department of Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 96064-1077, USA; loren.matilsky@gmail.com <sup>2</sup> Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA <sup>3</sup> JILA & Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440, USA Received 2023 November 11; revised 2023 December 22; accepted 2023 December 23; published 2024 February 20

#### The solar rotation rate and tachocline

- Strong (20-30%) surface differential rotation
- ...increases with depth in outer 5% (NSSL)
- ...imprints along contour lines tilted  $\sim 25^{\circ}$  from *z*-axis
- ...until solid-body rotation in radiative interior
- Transition location ( $r_t \sim r_{bcz} \sim 0.7 R_{\odot}$ )
- Transition width  $\Delta \sim 0.05 R_{\odot}$
- Tachocline could be "seat" of the dynamo

Helioseismic rotation rate: Adapted from Howe et al. 2009, LRSP, 6, 1

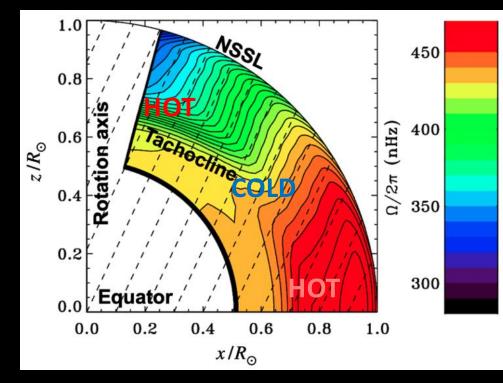


#### Time scales in the radiative zone (RZ)

• Across upper ~2 scale heights of RZ ( $H = 0.2R_{\odot}$ ; recall  $r_t \sim r_{bcz} \sim 0.7R_{\odot}$ ):

- > (Radiative) thermal diffusion time
- Magnetic diffusion time
- Viscous diffusion time
- Eddington-Sweet time

 $H^{2}/\kappa_{rad} \sim 7 \text{ Myr} \qquad \kappa_{rad} \sim 10^{7} \text{ cm}^{2} \text{s}^{-1}$   $H^{2}/\eta \sim 20 \text{ Gyr} \qquad \eta \sim 400 \text{ cm}^{2} \text{s}^{-1}$   $H^{2}/\nu \sim 2 \text{ Tyr} \qquad \nu \sim 4 \text{ cm}^{2} \text{s}^{-1}$   $\text{Bu } H^{2}/\kappa_{rad} \sim 60 \text{ Gyr} \qquad \text{Bu} = (N/2\Omega)^{2} \sim 7 \times 10^{4}$ 


$$\sigma = \left(\frac{\text{Eddington-Sweet time}}{\text{Viscous diffusion time}}\right)^{1/2} = 0.2 \ll 1$$

### Viscous versus "radiative" spread

- Tachocline can spread viscously (lots of  $\nabla \Omega$ )
- Also a "radiative" spreading process:
  - Thermal wind balance in tachocline
    - E.g.,  $\partial \Omega^2 / \partial z < 0$  near poles  $\rightarrow$  hot pole
  - Tachocline has baroclinic latitudinal temperature gradients
  - $\succ$  These diffuse inward via  $\kappa_{rad}$
  - Diffuses meridional circulation inward
  - …and with it, differential rotation

#### Matilsky 2023, MNRASL, 526, L100

$$\frac{\partial \Omega_*^2}{\partial z} = \frac{\overline{g}}{r^2 \sin \theta} \overline{\beta_T} \left( \frac{\partial T'}{\partial \theta} \right)_P$$



# Spiegel & Zahn (1992)

- Viscous spread time: 2 Tyr
- Radiative spread time:  $t_{ES} \sim 60 \text{ Gyr}$
- BUT radiative spread is very fast initially
  - $\succ \Delta(t) \sim (t/t_{ES})^{1/4}$
  - $\succ \Delta = 0.05 R_{\odot}$  at t = 0
  - $\blacktriangleright \Delta = 0.40 R_{\odot}$  at t = 4.6 Gyr
- <u>Must be some other active torque in RZ</u>

#### The solar tachocline

- E. A. Spiegel<sup>1</sup> and J.-P. Zahn<sup>1,2</sup>
- <sup>1</sup> Astronomy Department, Columbia University, New York, NY 10027, USA
   <sup>2</sup> Observatoire Midi-Pyrénées, 14 avenue E. Belin, F-31400 Toulouse, France

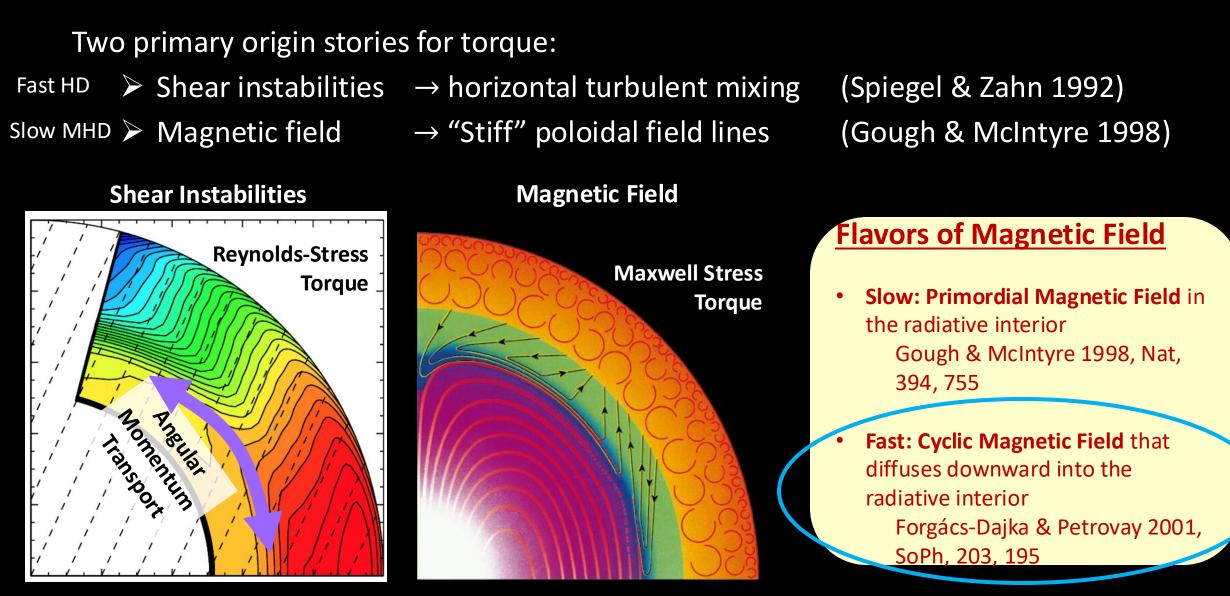
Received June 5, accepted July 20, 1992

#### Spiegel & Zahn 1992, A&A, 265, 106

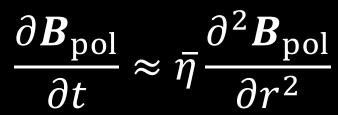
| $r^2 \rho u = \frac{\partial \Psi}{\partial x}, \qquad r \rho \sin \theta  v = \frac{\partial \Psi}{\partial r}$ | (2.7) |
|------------------------------------------------------------------------------------------------------------------|-------|
| with $x = \cos \theta$ .<br>Equations (2.1)–(2.3) are then distilled down to                                     |       |
| $1 \partial \widehat{P}$ $\widehat{T}$                                                                           |       |

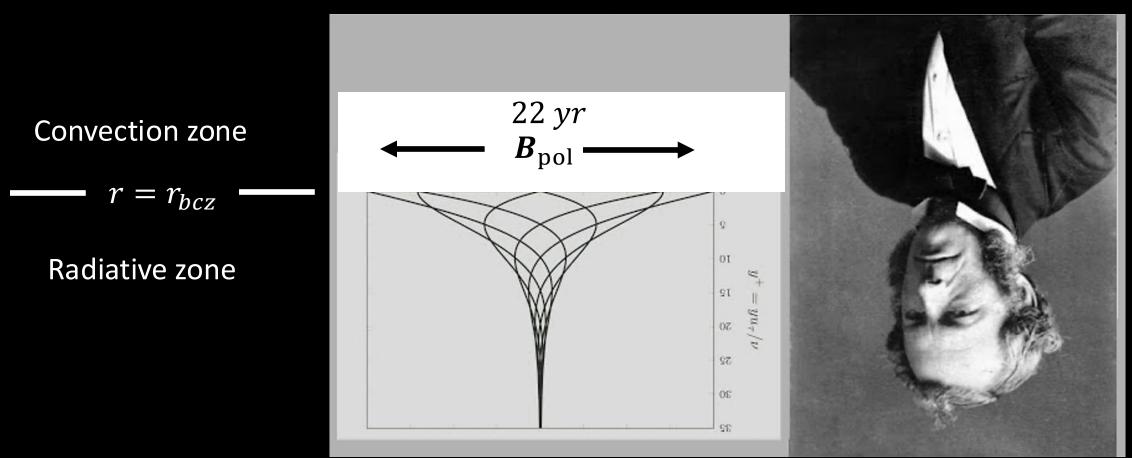
$$-\frac{1}{\rho}\frac{\partial P}{\partial r} + g\frac{T}{T} = 0$$
(2.8)

$$-2\Omega r x \widehat{\Omega} = \frac{1}{\rho r} \frac{\partial \widehat{P}}{\partial x} , \qquad (2.9)$$


$$\rho r^{2}(1-x^{2}) \frac{\partial \widehat{\Omega}}{\partial t} + 2\Omega x \frac{\partial \Psi}{\partial r}$$

$$= \frac{(1-x^{2})}{r^{2}} \frac{\partial}{\partial r} \left[ \rho v_{V} r^{4} \frac{\partial \widehat{\Omega}}{\partial r} \right] + \rho \frac{\partial}{\partial x} \left[ v_{H}(1-x^{2})^{2} \frac{\partial \widehat{\Omega}}{\partial x} \right],$$

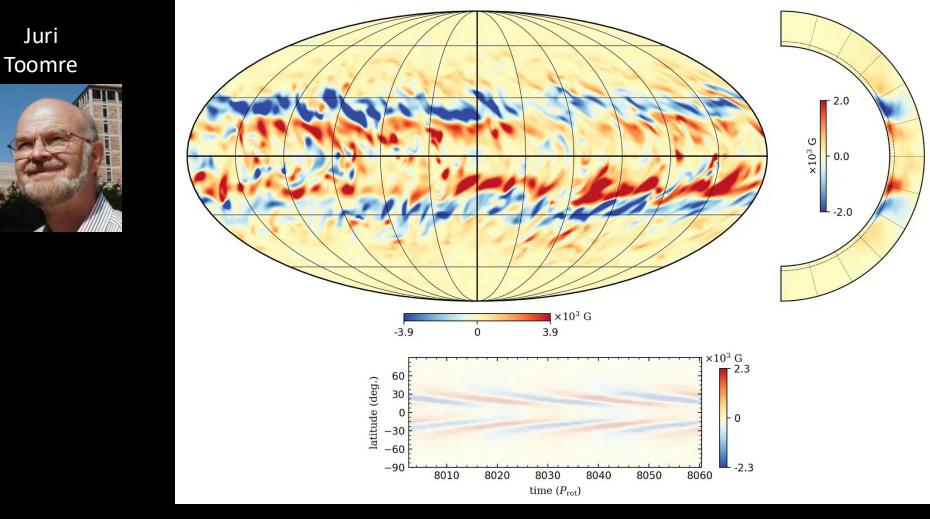

$$\frac{\partial \widehat{T}}{\partial t} + \frac{N^{2}}{g} \frac{T}{\rho r^{2}} \frac{\partial \Psi}{\partial x} = \frac{1}{\rho C_{P} r^{2}} \frac{\partial}{\partial r} \left( \chi r^{2} \frac{\partial \widehat{T}}{\partial r} \right).$$
(2.10)
(2.11)


$$\frac{\partial \widetilde{\Omega}}{\partial t} + \frac{4\Omega^2}{\lambda^2} \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left\{ \frac{g}{N^2 C_P T} \frac{\partial}{\partial r} \left[ \chi \frac{\partial}{\partial r} \left( \frac{r^2 P T}{\rho g} \frac{\partial}{\partial r} \frac{\rho r^2 \widetilde{\Omega}}{P} \right) \right] \right\} - \frac{1}{r^2} \frac{\partial}{\partial r} \left( \rho v_V r^4 \frac{\partial \widetilde{\Omega}}{\partial r} \right) = 0.$$
(4.9)

#### **Confinement Scenarios**



#### Fast magnetic confinement scenario






### Simulated dynamos

#### Matilsky & Toomre (2020), ApJ, 892, 106

 $B_{\phi}$   $r/R_{\odot} = 0.748$   $t = 8002.5 P_{\rm rot}$ 

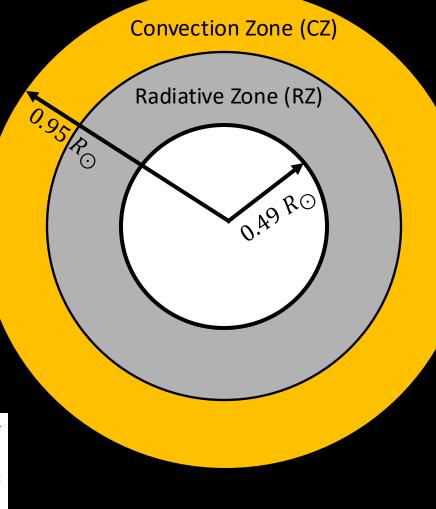




## Numerical setup for tachocline simulations

- Use Rayleigh to simulate CZ-RZ system in MHD
- Allow for tachocline spread
- Dynamo efficiency increases with  $\ensuremath{\Pr_m}$
- Adjust field strength by varying  $\mathrm{Pr}_{\mathrm{m}}$
- Case name = magnetic Prandtl number (e.g., case 4.00)

#### **Input Model Parameters**


| $Ra = 5.7 \times 10^5$    | $\Pr = 1$        |
|---------------------------|------------------|
| $Ek = 1.1 \times 10^{-3}$ | $Pr_{m} = 1 - 8$ |
| $\sigma = 80 \gg 1$       |                  |

THE ASTROPHYSICAL JOURNAL LETTERS, 940:L50 (10pp), 2022 December 1 © 2022. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**  https://doi.org/10.3847/2041-8213/ac93ef



#### Confinement of the Solar Tachocline by Dynamo Action in the Radiative Interior

Loren I. Matilsky<sup>1</sup>, Bradley W. Hindman<sup>1,2</sup>, Nicholas A. Featherstone<sup>3</sup>, Catherine C. Blume<sup>1</sup>, and Juri Toomre<sup>1</sup> JILA & Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309-0440, USA; loren.matilsky@gmail.com <sup>2</sup>Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309-0526, USA <sup>3</sup>Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302, USA *Received 2022 June 26; revised 2022 September 18; accepted 2022 September 20; published 2022 November 30* 



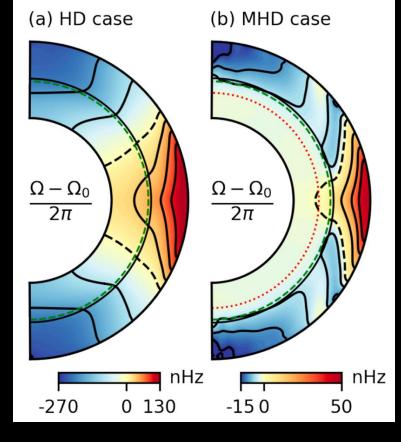
# **Dynamo tachocline confinement**

- Two cases: hydrodynamic (HD) and magnetohydrodynamic (MHD)
- MHD case confined tachocline against viscous spread

Loren Matilsky Bradley Nic Hindman Feath

Nicholas Featherstone Catherine Blume

Juri Toomre










Paper 1 (shortish letter): Matilsky et al. 2022, ApJL, 940, L50



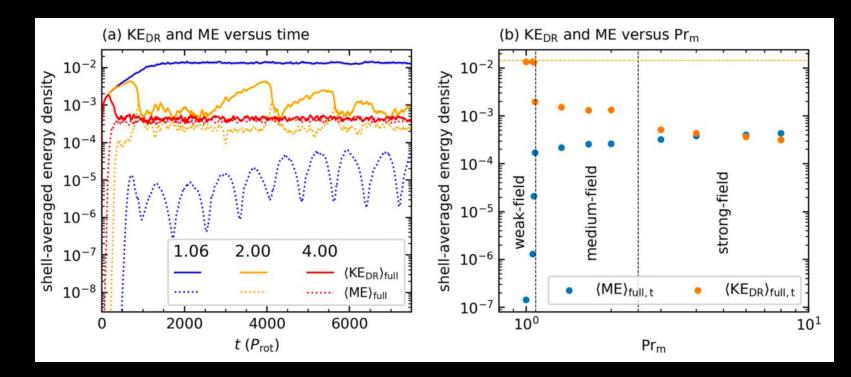
# Natural followup

- Process most similar to fast magnetic confinement scenario:
  - How sensitive is confinement to (many) input parameters?
  - How does confinement depend on field strength?
  - How does confinement depend on cycling behavior?

THE ASTROPHYSICAL JOURNAL, 962:189 (21pp), 2024 February 20 © 2024. The Author(s). Published by the American Astronomical Society.

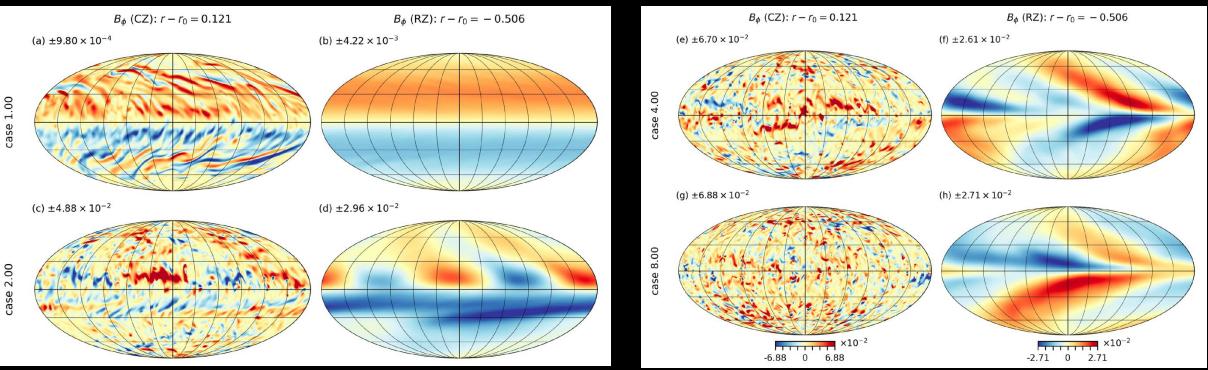
OPEN ACCESS





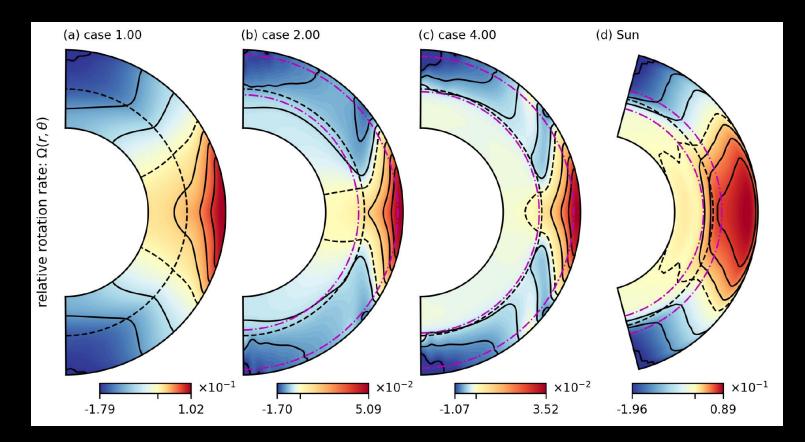

#### Solar Tachocline Confinement by the Nonaxisymmetric Modes of a Dynamo Magnetic Field

Loren I. Matilsky<sup>1,4</sup>, Nicholas H. Brummell<sup>1</sup>, Bradley W. Hindman<sup>2,3</sup>, and Juri Toomre<sup>3</sup> <sup>1</sup>Department of Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 96064-1077, USA; loren.matilsky@gmail.com <sup>2</sup>Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA <sup>3</sup>JILA & Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440, USA *Received 2023 November 11; revised 2023 December 22; accepted 2023 December 23; published 2024 February 20* 


# Followup paper: crank up Prm

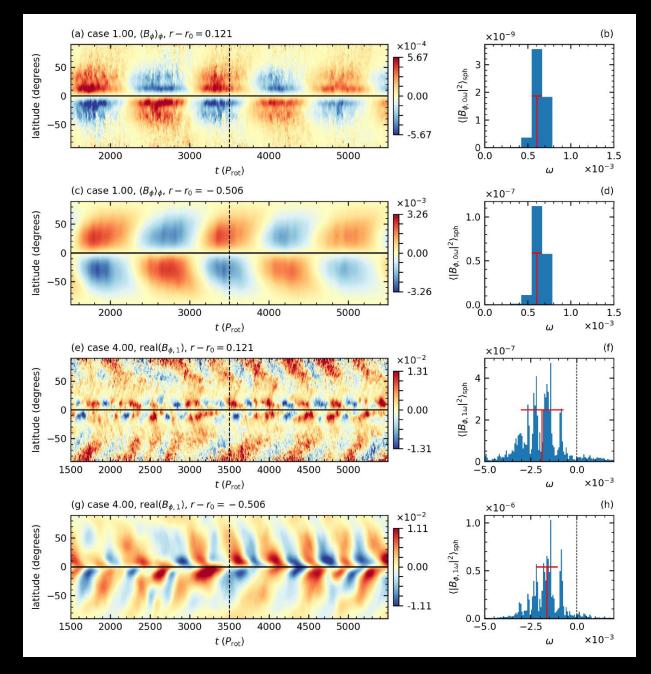
- At low  $\text{Pr}_{\text{m}}$  , weak-field dynamo:  $\text{ME} \ll \text{KE}$ 
  - Highly regular periodic energy cycles
- At high  $Pr_m$  , strong-field dynamo:  $ME \sim KE$ 
  - Irregular, aperiodic cycles
- Maybe medium-field regime as well




# Weak- and strong-field dynamos

- Weak-field modes are mainly axisymmetric
- Strong-field modes are mainly nonaxisymmetric
  - > Still large-scale (m = 1,2)
- In all cases, only largest scales (lowest *m*) print through to stable layer
- Suggestive of diffusive downward spread




### **Tachoclines in strong-field cases**

- Weak-field, axisymmetric fields do not confine tachocline
- Strong-field, non-axisymmetric fields do confine tachocline
  - But substantially diminish differential rotation in CZ as well
- Case 4.00 from tachocline letter  $\geq$  *somewhat* robust!

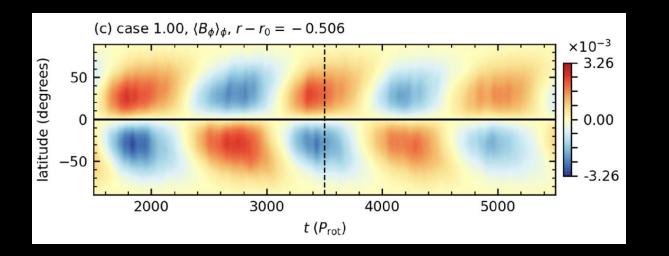


# **Cycling properties**

- Weak field
  - Regular polarity reversals
  - Small spread in frequency
- Strong-field
  - Irregular polarity reversals
  - Large spread in frequency
  - Preferentially *negative* frequency
- In all cases
  - Cycle in RZ occurs after cycle in CZ
  - Higher frequencies less prominent in RZ
  - Again suggestive of diffusive spread



#### Skin effect for axisymmetric fields

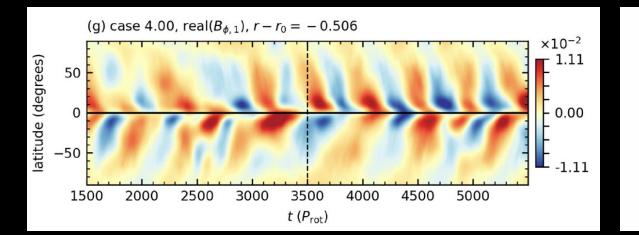

- "Traditional" skin effect:
  - Reversing axisymmetric field at top
  - > Single cycle frequency ( $\omega = 2\pi/22 \text{ yr}$ )
  - > Skin depth:  $\delta = \sqrt{2\bar{\eta}/\omega}$
  - $\blacktriangleright$  Rotation rate of RZ ( $\Omega_{RZ}$ ) does not matter



$$\frac{\partial \boldsymbol{B}_{\text{pol}}}{\partial t} = -i\omega \boldsymbol{B}_{\text{pol}} \approx \bar{\eta} \frac{\partial^2 \boldsymbol{B}_{\text{pol}}}{\partial r^2}$$

Exponential damping of field strength over skin-depth

$$\langle |\boldsymbol{B}_{\text{pol}}|^2 \rangle_{\text{sph}} \approx \langle |\boldsymbol{B}_{\text{pol}}|^2 \rangle_{\text{sph}} \exp[-2(r_0 - r)/\delta]$$

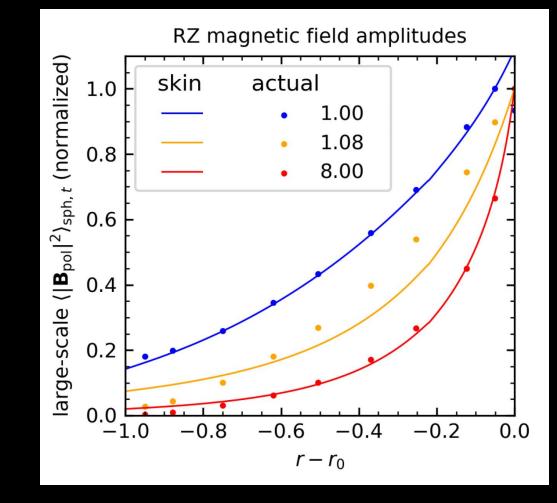



### Skin effect for nonaxisymmetric fields

- Nonaxisymmetric skin effect:
  - $\succ \Omega_{\rm RZ}$  does matter
  - $\succ$  skin depth set by  $\omega m \Omega_{
    m RZ}$
  - Multiple frequencies (aperiodic)

Diffusion-only induction equation (*must* be in frame of RZ):

$$-i(\omega - m\Omega_{\rm RZ})\boldsymbol{B}_{\rm pol,m\omega} \approx \frac{\rm Ek}{\rm Pr_m} \overline{\eta}(r) \frac{\partial^2 \boldsymbol{B}_{\rm pol,m\omega}}{\partial r^2} \quad (17)$$




$$\left\langle |\boldsymbol{B}_{\text{pol},m\omega}|^{2} \right\rangle_{\text{sph}}(r) = \left\langle |\boldsymbol{B}_{\text{pol},m\omega}|^{2} \right\rangle_{\text{sph}}(r_{0}) \times \exp\left[-2\left(\frac{r_{0}-r_{\eta}}{\delta_{m\omega}}\right)\right], \quad (20a)$$
where  $\delta_{m\omega} \equiv \sqrt{\frac{2\text{Ek}\overline{\eta}_{\text{const}}}{\Pr_{m}|\omega-m\Omega_{\text{RZ}}|}}$  (20b)

## Skin-depth explains field strength very well

#### • For all cases

- > Take frequency spectrum of  $|\boldsymbol{B}_{\rm pol}|^2$  at  $r_0$
- $\blacktriangleright$  Compute damping profile for each  $\omega$
- Add weighted profiles
- Magnetic diffusion accounts for most of strong B<sub>pol</sub> in deep interior



### What have we learned?

- The tachocline case of Matilsky et al. (2022) is at least somewhat robust
- The fast magnetic confinement scenario works in a wider context:
  - Include large-scale nonaxisymmetric fields
  - Overall rotation rate of the RZ matters
  - Scenario includes aperiodic dynamos
  - Any field nearly corotating with RZ should penetrate very deeply

#### End of talk; extra slides follow

# **Open question 1: constraints on interior solar field strength**

- Need **B** to halt radiative spread in tachocline
- ...But not disturb balance in CZ

$$0 = \begin{cases} -\frac{4\Omega_{\odot}^2}{\overline{N^2}} r_0^2 \overline{\rho} \ \overline{\kappa} \frac{\partial^4 \langle \mathcal{L} \rangle_t}{\partial r^4} + \tau_{mag} & \text{in the RZ} \\ \tau_{rad} \ (radiative spread) \\ \tau_{rs} + \tau_{mc} & \text{in the CZ}, \end{cases}$$
(23)  
$$\tau_{mag} \sim \tau_{rad} \sim 0.84 \ \text{dyn cm}^{-2} & \text{in the R} \end{cases}$$

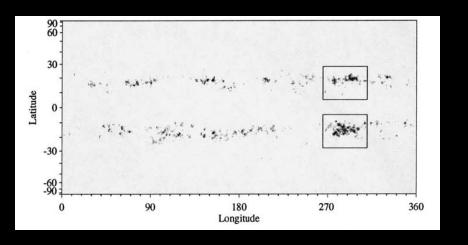
$$\tau_{\rm rs} \sim \tau_{\rm mc} \sim 1.2 \times 10^6 \,\,{\rm dyn}\,\,{\rm cm}^{-2}$$
 in the CZ.

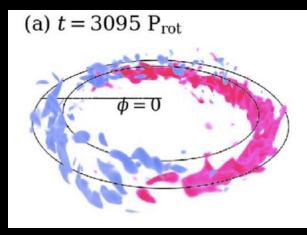
• Lower bound on  ${\it B}$  using observed  $\Delta \sim 0.05 \, R_{\odot}$ 

- Upper bound on **B** using observed circulation torque
- Could solar interior **B** obey (something like) following constraint?

$$4.8 \mathrm{~G} \lesssim |B_{\phi}| \ll 5800 \mathrm{~G}.$$

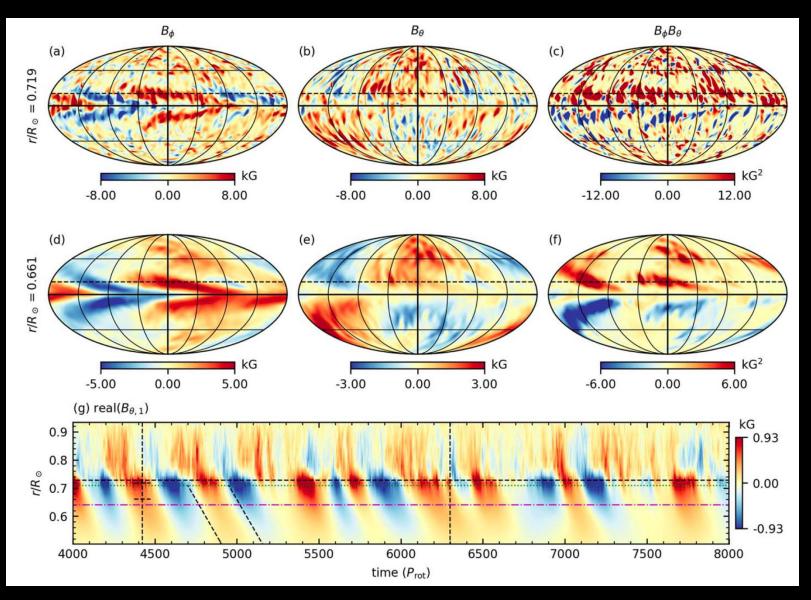
# **Open question 2: Can the dynamo field really penetrate?**


- Formally,  $\eta$  and  $\delta$  are very small in the Sun
  - > 2a: Could  $\eta$  be turbulently enhanced?
  - 2b: Could there be long-lived dynamo component?
    - Either ~permanent axisymmetric field
    - Or corotating nonaxisymmetric field


$$\delta_{m\omega} = \left(\frac{2\langle\eta\rangle_{\rm RZ}}{|\omega - m\Omega_{\rm RZ}|}\right)^{1/2} = (0.027R_{\odot})P_{\rm cyc}^{1/2},\tag{30}$$

where  $P_{\rm cyc} \equiv 2\pi/|\omega - m\Omega_{\rm RZ}|$  and is measured in Gyr. If we require diffusive spread over (say)  $\Gamma_{\odot} = 0.05R_{\odot}$ , we need  $P_{\rm cyc} \sim 1.4$  Gyr. With the solar age at  $t_{\odot} = 4.6$  Gyr, such a high

# Sources of long-lived solar fields


- Where can we get ~Gyr-time-scale fields?
  - Primordial field (Gough + McIntyre 1998)
  - Diffusive field from random (Garaud 1999, A&A, MNRAS, 304, 583)
  - Corotating nonaxisymmetric field (Matilsky et al. 2024)
  - Fun to speculate about "active longitudes"
    - In our models,  $\omega_{cyc} \sim \Omega_{RZ}$
    - Nonaxisymmetric advect , similar to active longitudes
    - Could rotation rate of observed active longitudes *determine* rotation rate of RZ?





# Nonaxisymmetric dynamo cycles

- Primary dynamo mode is nonaxisymmetric (m = 1, 2)
- $B_{\theta}$  and  $B_{\phi}$  are clearly correlated
- Resultant Maxwell stress always opposes differential rotation
  - Result of magnetic tension
- Downward spread of cycle

