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The solar rotation rate and tachocline

Strong (20-30%) surface differential rotation
...increases with depth in outer 5% (NSSL) L ]

Helioseismic rotation rate:
...imprints along contour lines tilted ~ 25° from z-axis Adapted from Howe et al. 2009, LRSP, 6, 1
...until solid-body rotation in radiative interior
Transition location (1 ~ 1., ~ 0.7R))
Transition width A ~ 0.05R;

Tachocline could be “seat” of the dynamo
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Time scales in the radiative zone (RZ)

* Across upper ~2 scale heights of RZ (H = 0.2R; recall v ~ 1., ~ 0.7R):

> (Radiative) thermal diffusion time H? /Ky aq ~ 7 Myr Keag ~ 107cm?s™1

> Magnetic diffusion time H?/n ~ 20 Gyr n ~ 400 cm?s~1

> Viscous diffusion time H?/v ~ 2 Tyr v ~4cm?s™?!

> Eddington-Sweet time Bu H?/K.3q ~ 60 Gyr Bu = (N/2Q)? ~ 7 x 10*

. 3 . 1/2
g = (Eddlngton Sweettlme) — 02 « 1

Viscous diffusion time



Viscous versus “radiative” spread

Matilsky 2023, MNRASL, 526, L100

e Tachocline can spread viscously (lots of V(})

* Also a “radiative” spreading process: . - E
» Thermal wind balance in tachocline

= E.g., 002 /0z < 0 near poles = hot pole

» Tachocline has baroclinic latitudinal temperature
gradients
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» These diffuse inward via K44
> Diffuses meridional circulation inward
» ...and with it, differential rotation
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Spiegel & Zahn (1992)

Spiegel & Zahn 1992, A&A, 265, 106
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* Viscous spread time: 2 Tyr

with x = cos 6.

° Radiative spread time: tES ~ 60 Gyr Equations (2.1)—(2.3) are then distilled down to

* BUT radiative spread is very fast initially ~—%§ +g; =0
> A(t) ~ (t/tgs)™* -
» A=0.05Rpatt =0 i
> A =0.40Rg at t = 4.6 Gyr =) G 420w
e Must be some other active torgue in RZ -2 [pvw“%‘E] +p2

N L dE L ¢ ( ,07T
The solar tachocline g pr2dx  pCpr? r

E. A. Spiegel ! and J.-P. Zahn 12 0Q  4Q% 1 9 g @
N2 CP T or

! Astronomy Department, Columbia University, New York, NY 10027, USA A2 ,07‘2 or
2 Observatoire Midi-Pyrénées, 14 avenue E. Belin, F-31400 Toulouse, France

Received June 5, accepted July 20, 1992



Confinement Scenarios

Two primary origin stories for torque:
FastHD > Shear instabilities — horizontal turbulent mixing (Spiegel & Zahn 1992)
Slow MHD » Magnetic field — “Stiff” poloidal field lines (Gough & Mcintyre 1998)

Shear Instabilities Magnetic Field

lavors of Magnetic Field

Slow: Primordial Magnetic Field in
the radiative interior
Gough & Mclintyre 1998, Nat,
394, 755

Fast: Cyclic Magnetic Field that
diffuses downward into the
radiative interior
Forgacs-Dajka & Petrovay 2001,
SoPh, 203, 195




Fast magnetic confinement scenario

Convection zone

r = Tpcz

Radiative zone




Simulated dynamos

Matilsky & Toomre (2020), ApJ, 892, 106

By 1r/Re = 0.748 t=8002.5 Pret
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Numerical setup for tachocline simulations

* Use Rayleigh to simulate CZ-RZ system in MHD Cervesion 2o (€2
* Allow for tachocline spread
* Dynamo efficiency increases with Prp, Radiative Zone (RZ)

Adjust field strength by varying Pr,y

e Case name = magnetic Prandtl number (e.g., case 4.00)
Input Model Parameters

Ra = 5.7 X 10° Pr=1

Ek = 1.1 x 1073 Pr,=1—8
oc=80>1
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Dynamo tachocline confinement

(a) HD case (b) MHD case

e Two cases: hydrodynamic (HD) and magnetohydrodynamic (MHD)
 MHD case confined tachocline against viscous spread

Loren Bradley Nicholas Catherine Juri
Matilsky Hindman  Featherstone  Blume Toomre
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.: Paper 1 (shortish letter):
Matilsky et al. 2022, ApJL, 940, L50
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Natural followup

Process most similar to fast magnetic confinement scenario:
» How sensitive is confinement to (many) input parameters?
» How does confinement depend on field strength?
» How does confinement depend on cycling behavior?
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Followup paper: crank up Pr,,

* Atlow Pry,, weak-field dynamo: ME K KE
* Highly regular periodic energy cycles

* At high Pry,, strong-field dynamo: ME ~ KE
* Irregular, aperiodic cycles

* Maybe medium-field regime as well

(a) KEpr and ME versus time
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Weak- and strong-field dynamos

Weak-field modes are mainly axisymmetric

Strong-field modes are mainly nonaxisymmetric
» Still large-scale (m = 1,2)

In all cases, only largest scales (lowest m) print through to stable layer

Suggestive of diffusive downward spread

By (CZ): r—ro=0.121 By (RZ): r—ro= — 0.506 By (CZ): r—ro=0.121 By (RZ): r—ro= —0.506

(a) £9.80x 1071 (b) £4.22 x 1073 (e) £6.70 x 1072 (f) £2.61x 1072

case 1.00
case 4.00
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Tachoclines in strong-field cases

* Weak-field, axisymmetric fields do not confine tachocline
 Strong-field, non-axisymmetric fields do confine tachocline

» But substantially diminish differential rotation in CZ as well
* Case 4.00 from tachocline letter = somewhat robust!

(a) case 1.00 (b) case 2.00 (c) case 4.00
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(a) case 1.00, (Bg)g, r—ro=0.121

Cycling properties
* Weak field
» Regular polarity reversals

latitude (degrees)

2000 3000

» Small spread in frequency ¢ Pr

(c) case 1.00, (By)g, r—ro= —0.506

e Strong-field
» lIrregular polarity reversals

latitude (degrees)

» Large spread in frequency

» Preferentially negative frequency
* Inall cases

» Cycle in RZ occurs after cycle in CZ
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» Higher frequencies less prominent in RZ

3000 4000

» Again suggestive of diffusive spread £ (Pro)

(g) case 4.00, real(By,1), r—ro= —0.506

latitude (degrees)

1500 2000 2500 3000 3500 4000 4500 5000
t (Prot)
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Skin effect for axisymmetric fields

I)I

‘Traditional” skin effect:

» Reversing axisymmetric field at top

» Single cycle frequency (w = 2m /22 yr)
» Skin depth: § = m

» Rotation rate of RZ (Lg7) does not matter

(c) case 1.00, (Bg)g, r—ro = —0.506

” “
0 0.00
~50
3.26

2000 3000 4000 5000
t (Prot)

Diffusion-only induction equation:

0B 0°B
pol _ _inpol ~ 17 pol
ot dr?

Exponential damping of field strength over skin-depth

<|Bp01|2>sph ~ (pr01|2>SpheXp[_2(TO —1)/8]
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Skin effect for nonaxisymmetric fields

* Nonaxisymmetric skin effect:
Diffusion-only induction equation (must be in frame of RZ):
» (lpy does matter
> skin depth set by w — mQgy —i(w — mQRz) Bpotmw & 5T(r) 22T (17)

» Multiple frequencies (aperiodic)

(g) case 4.00, real(By,1), r—ro= —0.506 )
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Skin-depth explains field strength very well

RZ magnetic field amplitudes
* Forall cases

skin actual

— e« 1.00
1.08
8.00

2
» Take frequency spectrum of |Bp01| at

» Compute damping profile for each w
» Add weighted profiles

» Magnetic diffusion accounts for most of
strong B, in deep interior
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What have we learned?

* The tachocline case of Matilsky et al. (2022) is at least somewhat robust
* The fast magnetic confinement scenario works in a wider context:

» Include large-scale nonaxisymmetric fields

» Overall rotation rate of the RZ matters

» Scenario includes aperiodic dynamos

» Any field nearly corotating with RZ should penetrate very deeply

19



End of talk; extra slides follow
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Open question 1: constraints on interior solar field strength

Need B to halt radiative spread in tachocline

...But not disturb balance in CZ : |
in the RZ

Trad (radiative spread)

y R in the CZ,

(23)
Lower bound on B using observed A ~ 0.05 R

. —9 .
Tmag ~ Trad ~ 0.84 dyn cm™* in the RZ.

Upper bound on B using observed circulation torque

Tes ~ Tme ~ 1.2 x 10° dyn cm in the CZ.

Could solar interior B obey (something like) following constraint?

18 G < |By| < 5800 G.

21



Open question 2: Can the dynamo field really penetrate?

* Formally, n and 6 are very small in the Sun
» 2a: Could 1 be turbulently enhanced?
» 2b: Could there be long-lived dynamo component?
= Either “permanent axisymmetric field
= Or corotating nonaxisymmetric field

Y imher  \72 .7
Smo = (H&) — (0.027R.)PL/2, (30)

w — mSrz| -

where Py = 27/|w — mQgz| and is measured in Gyr. If we
require diffusive spread over (say) ', =0.05R., we need
Pcye ~ 1.4 Gyr. With the solar age at 7., = 4.6 Gyr, such a high

22



Sources of long-lived solar fields

 Where can we get ~Gyr-time-scale fields?
» Primordial field (Gough + Mclntyre 1998)
» Diffusive field from random (Garaud 1999, A&A, MNRAS, 304, 583)
» Corotating nonaxisymmetric field (Matilsky et al. 2024)
» Fun to speculate about “active longitudes”
" In our models, w¢ye ~ Qg2
= Nonaxisymmetric advect , similar to active longitudes
= Could rotation rate of observed active longitudes determine rotation rate of RZ?

(a) t=3095 Pt

23



Nonaxisymmetric dynamo cycles

(TR (TR LB
A nzoih NI AL

Primary dynamo mode is
nonaxisymmetric(m = 1, 2)
Bg and By, are clearly correlated

Resultant Maxwell stress always
opposes differential rotation

» Result of magnetic tension
Downward spread of cycle

\ ]
5000 5500 6000 6500
time (Prot)
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