Dynamo Confinement of the Solar Tachocline

Loren Matilsky*

29 August 2024, Nordita

Paper 1 (shortish letter): Matilsky et al. 2022, ApJL, 940, L50

THE ASTROPHYSICAL JOURNAL LETTERS, 940:L50 (10pp), 2022 December 1 © 2022. The Author(s). Published by the American Astronomical Society **OPEN ACCESS**

https://doi.org/10.3847/2041-8213/ac93ef

Confinement of the Solar Tachocline by Dynamo Action in the Radiative Interior

Loren I. Matilsky¹ **.** Bradley W. Hindman^{1,2} **.** Nicholas A. Featherstone³ **.** Catherine C. Blume¹, and Juri Toomre¹ ¹ JILA & Department of Astrophysical and Planetary Sciences. University of Colorado Boulder, Boulder, CO 80309-0440, USA; loren,matilsky@gmail.com α Department of Applied Mathematics. University of Colorado Boulder, Boulder, CO 80309-0526, USA ³ Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302, USA Received 2022 June 26; revised 2022 September 18; accepted 2022 September 20; published 2022 November 30

Paper 2 (longer, in-depth paper): Matilsky et al. 2024, ApJ, 962, 189

THE ASTROPHYSICAL JOURNAL, 962:189 (21pp), 2024 February 20 © 2024. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

https://doi.org/10.3847/1538-4357/ad18b2

Solar Tachocline Confinement by the Nonaxisymmetric Modes of a Dynamo Magnetic Field

Loren I. Matilsky^{1,4}⁽⁰), Nicholas H. Brummell¹⁽⁰), Bradley W. Hindman^{2,3}⁽⁰), and Juri Toomre³⁽⁰) ¹ Department of Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 96064-1077, USA; loren.matilsky@gmail.com ² Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA ³ JILA & Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440, USA Received 2023 November 11; revised 2023 December 22; accepted 2023 December 23; published 2024 February 20

J.S. National Science Foundation ERE DISCOVERIES

COFFIES

Consequences Of Fields and Flows in the Interior and Exterior of the Sun

*U.S. National Science Foundation Astronomy & Astrophysics Postdoctoral Fellow

The solar rotation rate and tachocline

- Strong (20-30%) surface differential rotation
- ...increases with depth in outer 5% (NSSL)
- ...imprints along contour lines tilted $\sim 25^{\circ}$ from z-axis
- ...until solid-body rotation in radiative interior
- Transition location ($r_t \sim r_{bcz} \sim 0.7 R_{\odot}$)
- Transition width $\Delta \sim 0.05 R_{\odot}$
- Tachocline could be "seat" of the dynamo

Helioseismic rotation rate: Adapted from Howe et al. 2009, LRSP, 6, 1

Time scales in the radiative zone (RZ)

• Across upper ~2 scale heights of RZ ($H = 0.2R_{\odot}$; recall $r_t \sim r_{bcz} \sim 0.7R_{\odot}$):

- \triangleright (Radiative) thermal diffusion time
- \triangleright Magnetic diffusion time
- \triangleright Viscous diffusion time
- Eddington-Sweet time

²/ $\kappa_{\rm rad} \sim 7$ Myr $\kappa_{\rm rad} \sim 10^7$ cm²s⁻¹ ²/η ~ 20 Gyr η ~ 400 cm²s⁻¹ $^{2}/v \sim 2$ Tyr $v \sim 4$ cm²s⁻¹ ²/ $\kappa_{\rm rad}$ ~ 60 Gyr Bu = (N/2Ω)² ~ 7 × 10⁴

$$
\sigma = \left(\frac{\text{Eddington-Sweet time}}{\text{Viscous diffusion time}}\right)^{1/2} = 0.2 \ll 1
$$

Viscous versus "radiative" spread

- Tachocline can spread viscously (lots of $\nabla \Omega$)
- Also a "radiative" spreading process:
	- \triangleright Thermal wind balance in tachocline
		- E.g., $\partial \Omega^2/\partial z < 0$ near poles \rightarrow hot pole
	- ➢ Tachocline has baroclinic latitudinal temperature gradients
	- These diffuse inward via κ_{rad}
	- ➢ Diffuses meridional circulation inward
	- ➢ …and with it, differential rotation

Matilsky 2023, MNRASL, 526, L100

Spiegel & Zahn (1992)

- Viscous spread time: 2 Tyr
- Radiative spread time: $t_{ES} \sim 60$ Gyr
- BUT radiative spread is very fast initially
	- $\triangleright \Delta(t) \sim (t/t_{ES})^{1/4}$
	- \triangleright $\Delta = 0.05 R_{\odot}$ at $t = 0$
	- \triangleright $\Delta = 0.40 R_{\odot}$ at $t = 4.6$ Gyr
- Must be some other active torque in RZ

The solar tachocline

- E. A. Spiegel 1 and J.-P. Zahn $1,2$
- ¹ Astronomy Department, Columbia University, New York, NY 10027, USA ² Observatoire Midi-Pyrénées, 14 avenue E. Belin, F-31400 Toulouse, France

Received June 5, accepted July 20, 1992

Spiegel & Zahn 1992, A&A, 265, 106

 $-2\Omega r x \widehat{\Omega} = \frac{1}{\rho r} \frac{\partial r}{\partial x} ,$ (2.9)

$$
\rho r^{2}(1-x^{2}) \frac{\partial \widehat{\Omega}}{\partial t} + 2\Omega x \frac{\partial \Psi}{\partial r}
$$
\n
$$
= \frac{(1-x^{2})}{r^{2}} \frac{\partial}{\partial r} \left[\rho v_{V} r^{4} \frac{\partial \widehat{\Omega}}{\partial r} \right] + \rho \frac{\partial}{\partial x} \left[v_{H} (1-x^{2})^{2} \frac{\partial \widehat{\Omega}}{\partial x} \right],
$$
\n
$$
\frac{\partial \widehat{T}}{\partial t} + \frac{N^{2}}{g} \frac{T}{\rho r^{2}} \frac{\partial \Psi}{\partial x} = \frac{1}{\rho C_{P} r^{2}} \frac{\partial}{\partial r} \left(\chi r^{2} \frac{\partial \widehat{T}}{\partial r} \right).
$$
\n(2.11)

$$
\frac{\partial \widetilde{\Omega}}{\partial t} + \frac{4\Omega^2}{\lambda^2} \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left\{ \frac{g}{N^2 C_P T} \frac{\partial}{\partial r} \left[\chi \frac{\partial}{\partial r} \left(\frac{r^2 P T}{\rho g} \frac{\partial}{\partial r} \frac{\rho r^2 \widetilde{\Omega}}{P} \right) \right] \right\} - \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho v_V r^4 \frac{\partial \widetilde{\Omega}}{\partial r} \right) = 0.
$$
\n(4.9)

Confinement Scenarios

Fast magnetic confinement scenario

Simulated dynamos

Matilsky & Toomre (2020), ApJ, 892, 106

 $r/R_{\odot} = 0.748$ $t = 8002.5 P_{\rm rot}$ B_{ϕ}

Juri

Numerical setup for tachocline simulations

- Use Rayleigh to simulate CZ-RZ system in MHD
- Allow for tachocline spread
- Dynamo efficiency increases with Pr_m
- Adjust field strength by varying Pr_{m}
- Case name = magnetic Prandtl number (e.g., case 4.00)

Input Model Parameters

THE ASTROPHYSICAL JOURNAL LETTERS, 940:L50 (10pp), 2022 December 1 © 2022. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS**

https://doi.org/10.3847/2041-8213/ac93ef

Confinement of the Solar Tachocline by Dynamo Action in the Radiative Interior

Loren I. Matilsky¹ Φ , Bradley W. Hindman^{1,2} Φ , Nicholas A. Featherstone³ Φ , Catherine C. Blume¹, and Juri Toomre¹ Φ ¹ JILA & Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309-0440, USA; loren.matilsky@gmail.com \sim Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO 80309-0526, USA ³ Southwest Research Institute, 1050 Walnut Street Suite 400, Boulder, CO 80302, USA Received 2022 June 26: revised 2022 September 18: accepted 2022 September 20: published 2022 November 30

Dynamo tachocline confinement

- Two cases: hydrodynamic (HD) and magnetohydrodynamic (MHD)
- MHD case confined tachocline against viscous spread

Loren Matilsky

Bradley Hindman

Nicholas Featherstone **Catherine** Blume

Juri Toomre

Paper 1 (shortish letter): Matilsky et al. 2022, ApJL, 940, L50

Natural followup

- Process most similar to fast magnetic confinement scenario:
	- \triangleright How sensitive is confinement to (many) input parameters?
	- How does confinement depend on field strength?
	- How does confinement depend on cycling behavior?

THE ASTROPHYSICAL JOURNAL, 962:189 (21pp), 2024 February 20 © 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Solar Tachocline Confinement by the Nonaxisymmetric Modes of a Dynamo Magnetic Field

Loren I. Matilsky^{1,4} \bullet , Nicholas H. Brummell¹ \bullet , Bradley W. Hindman^{2,3} \bullet , and Juri Toomre³ \bullet ¹ Department of Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 96064-1077, USA; loren.matilsky@gmail.com ² Department of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526, USA ³ JILA & Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309-0440, USA Received 2023 November 11; revised 2023 December 22; accepted 2023 December 23; published 2024 February 20

Followup paper: crank up

- At low Pr_m , weak-field dynamo: ME \ll KE
	- Highly regular periodic energy cycles
- At high Pr_m , strong-field dynamo: ME \sim KE
	- Irregular, aperiodic cycles
- Maybe medium-field regime as well

Weak- and strong-field dynamos

- Weak-field modes are mainly axisymmetric
- Strong-field modes are mainly nonaxisymmetric
	- \triangleright Still large-scale ($m = 1,2$)
- In all cases, only largest scales (lowest m) print through to stable layer
- Suggestive of diffusive downward spread

Tachoclines in strong-field cases

- Weak-field, axisymmetric fields do not confine tachocline
- Strong-field, non-axisymmetric fields do confine tachocline
	- \triangleright But substantially diminish differential rotation in CZ as well
- Case 4.00 from tachocline letter ≥ *somewhat* robust!

Cycling properties

- Weak field
	- \triangleright Regular polarity reversals
	- ➢ Small spread in frequency
- Strong-field
	- \triangleright Irregular polarity reversals
	- \triangleright Large spread in frequency
	- ➢ Preferentially *negative* frequency
- In all cases
	- ➢ Cycle in RZ occurs *after* cycle in CZ
	- \triangleright Higher frequencies less prominent in RZ
	- \triangleright Again suggestive of diffusive spread

Skin effect for axisymmetric fields

- "Traditional" skin effect:
	- \triangleright Reversing axisymmetric field at top
	- \triangleright Single cycle frequency ($\omega = 2\pi/22$ yr)
	- ρ Skin depth: δ = $\sqrt{2\bar{\eta}/\omega}$
	- \triangleright Rotation rate of RZ (Ω_{RZ}) does not matter

$$
\frac{\partial \boldsymbol{B}_{\text{pol}}}{\partial t} = -i\omega \boldsymbol{B}_{\text{pol}} \approx \bar{\eta} \frac{\partial^2 \boldsymbol{B}_{\text{pol}}}{\partial r^2}
$$

Exponential damping of field strength over skin-depth

$$
\langle |\boldsymbol{B}_{\text{pol}}|^2 \rangle_{\text{sph}} \approx \langle |\boldsymbol{B}_{\text{pol}}|^2 \rangle_{\text{sph}} \exp[-2(r_0 - r)/\delta]
$$

Skin effect for nonaxisymmetric fields

- Nonaxisymmetric skin effect:
	- $\sqrt{P_{RZ}}$ *does* matter
	- \triangleright skin depth set by $\omega m\Omega_{RZ}$
	- ➢ Multiple frequencies (aperiodic)

Diffusion-only induction equation (*must* be in frame of RZ)*:*

$$
-i(\omega - m\Omega_{\rm RZ})\boldsymbol{B}_{\rm pol,m\omega} \approx \frac{\rm Ek}{\rm Pr_m} \overline{\eta}(r) \frac{\partial^2 \boldsymbol{B}_{\rm pol,m\omega}}{\partial r^2} \qquad (17)
$$

$$
\langle |\mathbf{B}_{\text{pol},m\omega}|^2 \rangle_{\text{sph}}(r) = \langle |\mathbf{B}_{\text{pol},m\omega}|^2 \rangle_{\text{sph}}(r_0) \times
$$

$$
\exp\left[-2\left(\frac{r_0 - r_\eta}{\delta_{m\omega}}\right)\right], \qquad (20a)
$$

where
$$
\delta_{m\omega} \equiv \sqrt{\frac{2Ek\overline{\eta}_{\text{const}}}{Pr_m|\omega - m\Omega_{\text{RZ}}|}} \qquad (20b)
$$

Skin-depth explains field strength very well

• For all cases

- \triangleright Take frequency spectrum of $|\boldsymbol{B}_{\rm pol}|$ 2 at r_0
- Compute damping profile for each ω
- \triangleright Add weighted profiles
- ➢ Magnetic diffusion accounts for most of strong B_{pol} in deep interior

What have we learned?

- The tachocline case of Matilsky et al. (2022) is at least somewhat robust
- The fast magnetic confinement scenario works in a wider context:
	- ➢ Include large-scale **nonaxisymmetric fields**
	- \triangleright Overall rotation rate of the RZ matters
	- \triangleright Scenario includes aperiodic dynamos
	- \triangleright Any field nearly corotating with RZ should penetrate very deeply

End of talk; extra slides follow

Open question 1: constraints on interior solar field strength

- Need \bm{B} to halt radiative spread in tachocline
- …But not disturb balance in CZ

$$
0 = \begin{cases}\n-\frac{4\Omega_{\odot}^{2}}{N^{2}} r_{0}^{2} \overline{\rho} \frac{\partial^{4} \langle \mathcal{L} \rangle_{t}}{\partial r^{4}} + \tau_{\text{mag}} & \text{in the RZ} \\
\frac{1}{\tau_{\text{rad (radiative spread)}}} & \text{in the CZ,} \\
\tau_{\text{rs}} + \tau_{\text{mc}} & \text{in the CZ,} \\
\tau_{\text{mag}} \sim \tau_{\text{rad}} \sim 0.84 \text{ dyn cm}^{-2} & \text{in the RZ} \\
\tau_{\text{rs}} \sim \tau_{\text{mc}} \sim 1.2 \times 10^{6} \text{ dyn cm}^{-2} & \text{in the CZ.} \\
\end{cases}
$$

• Lower bound on **B** using observed $\Delta \sim 0.05 R_{\odot}$

- Upper bound on \bm{B} using observed circulation torque
- Could solar interior \bm{B} obey (something like) following constraint?

$$
4.8 \text{ G} \lesssim |B_{\phi}| \ll 5800 \text{ G}.
$$

Open question 2: Can the dynamo field really penetrate?

- Formally, η and δ are very small in the Sun
	- \triangleright 2a: Could η be turbulently enhanced?
	- ➢ 2b: Could there be long-lived dynamo component?
		- Either γ permanent axisymmetric field
		- Or corotating nonaxisymmetric field

$$
\delta_{m\omega} = \left(\frac{2\langle \eta \rangle_{\rm RZ}}{|\omega - m\Omega_{\rm RZ}|}\right)^{1/2} = (0.027 R_{\odot}) P_{\rm cyc}^{1/2},\tag{30}
$$

where $P_{\rm cyc} \equiv 2\pi/|\omega - m\Omega_{\rm RZ}|$ and is measured in Gyr. If we require diffusive spread over (say) $\Gamma_{\odot} = 0.05 R_{\odot}$, we need $P_{\rm cyc} \sim 1.4$ Gyr. With the solar age at $t_{\odot} = 4.6$ Gyr, such a high

Sources of long-lived solar fields

- Where can we get ~Gyr-time-scale fields?
	- ➢ Primordial field (Gough + McIntyre 1998)
	- ➢ Diffusive field from random (Garaud 1999, A&A, MNRAS, 304, 583)
	- ➢ Corotating nonaxisymmetric field (Matilsky et al. 2024)
	- Fun to speculate about "active longitudes"
		- In our models, $\omega_{cyc} \sim \Omega_{RZ}$
		- Nonaxisymmetric advect, similar to active longitudes
		- Could rotation rate of observed active longitudes *determine* rotation rate of RZ?

Nonaxisymmetric dynamo cycles

- Primary dynamo mode is nonaxisymmetric ($m = 1, 2$)
- B_{θ} and B_{ϕ} are clearly correlated
- Resultant Maxwell stress always opposes differential rotation
	- \triangleright Result of magnetic tension
- Downward spread of cycle

