SPHERLS: STELLAR CONVECTION AND PULSATION

Catherine Lovekin

August 28, 2024

CLASSICAL VARIABLE STARS

CEPHEID VARIABLES

- Up to 3 crossings of instability strip
- Significant differences between evolution and dynamical masses

Evans et al., 2018

RR LYRA VARIABLES

Evolved low mass stars

HV 12644 Fundamental mode pulsator

Espinoza-Aranciba et al., 2024

Double mode RR Lyra variables

Olech & Moskalsik, 2009

AMPLITUDE MODULATION

No clear mechanism

Variation time scale different for short and long period Cepheids Anderson et al. 2014

SPHERLS

- Stellar Pulsation with a Horizontal Eulerian Radial Lagrangian Scheme (Geroux and Deupree, 2011; 2013; 2014; 2015)
- 1, 2, or 3D calculations
- Calculation divided into radial regions and distributed among processors
- Periodic boundary conditions
- Initialize with eigenfunction from ID calculation
- Toroidal perturbation to break spherical symmetry

CONVECTION AND PULSATION

Written to explore connection between surface convection zones and stellar pulsation in RR Lyra stars

Model contracts ------ Convective flux grows Model expands ------ Convective flux shrinks

COMPARISON TO OBSERVATIONS

- Used model T and log g to calculate synthetic light curves
- Compared to several observed RR Lyrae
- VI20 (Cacciari et al., 2005), RRab star with $T_{eff} = 6300$
- Able to reproduce broad features of light curve with 2D models

2D VS. 3D

2D and 3D calculations are broadly similar Can map pulsation properties in 2D (faster!)

Geroux & Deupree, 2015

RESOLUTION STUDY

Table 3 Angular Resolution Study of the 6400 K Model

Case	Zones	Extent	Conv. Cells	A_V	$L_{\rm conv.}/L_{\rm tot.}$	ϕ_L	$\Delta \langle T \rangle / \langle T \rangle$	ϕ_T	$v_{\rm conv.}$	ϕ_v	$v_{\rm amp.}$
				(mag)					$({\rm km}{\rm s}^{-1})$		(km s^{-1})
Baseline	20	6°	1	0.64	0.65 ± 0.01	0.73	0.65 ± 0.02	0.76	20 ± 2	0.71	82 ± 1
А	40	6°	1	0.83	0.61 ± 0.04	0.74	0.68 ± 0.01	0.75	25 ± 2	0.73	91 ± 3
В	40	12°	2	0.78	0.64 ± 0.03	0.73	0.68 ± 0.01	0.76	31 ± 1	0.72	88 ± 1
С	80	12°	2	0.94	0.56 ± 0.05	0.75	0.69 ± 0.01	0.76	31 ± 3	0.74	95 ± 1

Geroux & Deupree 2015

Growth rates essentially the same in all four cases Minor differences in shape of light curve Low radial resolution Peak performance @ 16 cores

CEPHEID VARIABLES

7sm, Luminosity Phased Plot, day 250 - 260, period = 1.58 days

J.Allison, BSc thesis (2023)

CEPHEID VARIABLES

J.Allison, BSc thesis (2023)

Long simulation times required to

UPDATING SPHERLS

- Updated outdated libraries
- Updated code to be compatible with modern libraries
- Streamlined calculations object oriented design
- New version (hopefully) more efficient: Longer runs, larger simulations
- Less computation time required to reach full amplitude
- Easier to update with new physics in the future

RESULTS

FUTURE PLANS

- Verify new version reproduces results from Geroux & Deupree
- Theoretical instability strips for Cepheids and RR Lyrae
- Investigate double mode Cepheid driving

Alliance de recherche numérique du Canada

THANK YOU!

Collaborators: Padraic Odesse, Jay Allison, Duncan MacIsaac,