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The outer third Convection and The Sun rotates
with a period of

Rotation roughly a month.

of the Sun is
convecting.
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Differential rotation in the convection zone
Solid-body rotation in the radiative interior
Tachocline width A < 0.05 R,

Rotation Rate of the Sun (from Helioseismology)
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Differential Rotation in Other Stars

Differential rotation has been detected in other
stars with a variety of techniques

Solar-Like Differential Rotation

* Many main-sequence stars appear to have solar-like
differential rotation (e.g., Marsden et al. 2006, 2011;
Reiners 2006; Benomar et al. 2018, Bazot et al. 2019)

* The observations are difficult so . .. arguments ensue

Antisolar Differential Rotation

* A few evolved stars (giants and subgiants) appear to
have antisolar differential rotation (Strassmeier et
al. 2003; K6vari et al. 2015, 2017; Harutyunyan et
al. 2016; Benomar et al. 2018)
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The Ice Giants Have “Antisolar”
Differential Rotation

Uranus

Soderlund et al. 2013, Icarus, 224, 97



Current Puzzles Concerning the Sun’s

Differential Rotation
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1) Why does the Sun’s convection 08 |
zone have solar-like differential — |
rotation? < 06 1
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2) Why does the Sun’s radiative 07 |
interior rotate like a solid body? Wl
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Current Puzzles Concerning the Sun’s
Differential Rotation
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Turbulence == Antisolar Differential Rotation

Solid Body Rotation ( ) ) Q
(Q = constant) Isotropic turbulence

Rotation Rate

QL) = L/22

L(A) = 120

Rotation !
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Uniform Angular
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There Must be an Additional Torque !

Miesch & Hindman (2011)

Torque producing
outward transport of
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The Sun’s Angular momentum density is NOT uniform
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What are the Potential Torques?
Torque Balance Viscous Stress
: Advection
azimuthal mean of the by the Reynolds Stresses Magnetic Stresses
zonal momentum eqn  preridional Flow (Turbulent Transport)
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What are the Potential Torques?

To rque Balance Viscous Stress
Advection
by the Reynolds Stresses Magnetic Stresses
Meridional Flow (Turbulent Transport)
Steady State | | l p

20) = —(pUy,) - V(A*Q) + V - [(p/lu;nuép) /— ﬁ(ABBcp)]

Azimuthal Mean KA canonically held view is thus: A [Ll,lrc,;?:e'::,: ! ]
of the - 1) Turbulent transport is balanced
Mass Density by meridional advection
Specific Angular 2) The turbulence has a significant

Momentum Density anisotropic component
L = 2%0Q \ J




Meridional
Advection

Turbulent
Diffusion

Current Paradigm

Three-way balance between
isotropic Reynolds stresses
anisotropic Reynolds stress
meridional advection

. Reynolds stresses come from two types of flows:
Anisotropic _
Reynolds Isotropic turbulence:

Stresses * small spatial scales

: . U
e rotationally unconstrained (Ro = oL > 1)

* mixes angular momentum
* inward transport of angular momentum

Anisotropic convective columns
* larger spatial scales

* Rotationally constrained (Ro < 1)
* outward transport of angular momentum




Thermal Rossby Waves
Low-Frequency Prograde Waves
Convective Taylor Columns
Columnar Convective Modes
Busse Columns

Banana Cells

Giant Cells




Angular Momentum Transport

Pressure and Mass Flux
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Model FF4-3

Rayleigh Number: Ra = 1.07 x 10°
Ekman Number: Ek =9.23 x 10™*
Rossby Number: Ro = 2.46 x 1072
Reynolds Number: Re = 22.4

/ Prograde flows move up
~ ‘ Retrograde flows move down
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Differential Rotation 4= Thermal Gradients

For low Rossby number flows, like the Sun’s ( Solar-like differential )
differential rotation, we expect geostrophic r°tat'l°“ req”"e: both )

. . . . . anguiar momentum an
balance in the latitudinal direction.  heat transport )

1 a(P)
r 00
Pressure = Coriolis

High
Pressure

= {(p)e(Q — Qy)7r? sin 26

x10° K

Geostrophic Balance &
Hydrostatic Balance

Q/2n

Pressure

Matilsky 2022




Poleward Enthalpy Flux by Convective Columns

Radial Velocit Enthalpy Fl .
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Outstanding Problems

* Thermal Rossby Waves (or Busse Columns): Where are they?
e Could they be hiding? (perhaps they don’t extend to the surface)
* Could they have a smaller spatial scale than expected? (next slide)
e Could they be malarkey (or more likely, they are low amplitude)?

* Geostrophic Balance: Where’s the temperature gradient?
* Perhaps there’s an equator-to-pole contrast at the photosphere of 1.5 K
(Kuhn et al. 1997)
* Could the contrast be 10K below the photosphere?

7.5

x10% K
o
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Velocity Power

Size of the Convective Structures
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* Spectral peak moves with Rossby number

e Convective columns shrink as the Rossby
number decreases

North Pole




Adapted from Hotta et al. 2022
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Current Puzzles Concerning the Sun’s
Differential Rotation

/

1) Why does the Sun’s convection
zone have solar-like differential
rotation?

2) Why does the Sun’s radiative
interior rotate like a solid body?

(i.e., no differential rotation)

(i.e., why does the equator rotate fast?)
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Current Puzzles Concerning the Sun’s
Differential Rotation
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Why does the radiative interior lack shear?

oo

Without opposition, diffusion 1.0[7
acting over the lifetime of the io
Sun should have broadened 0.8
the tachocline:

4.6 billion years » A = 0.4 R 0.6 ' E 400
’ | &
| &
0.4 Q
| 4 350
4 R | ©
A torque must exist that ]
thwarts the diffusive spread 0N
of the tachocline. 300
. . 0.0




Current Paradigm

(Tachocline Confinement Scenarios)

There are two primary propositions for the nature of the confining torque:
* Shear instabilities — horizontal turbulent mixing (e.g., Spiegel & Zahn 1992)
* Magnetic field — Magnetic torque (e.g., Gough & Mcintyre 1998)

Shear Instabilities

Magnetic Field

T T T T T T T

Gavors of Magnetic Field \

* Primordial Magnetic Field in the
radiative zone
Gough & Mcintyre (1998)

* Cyclic Magnetic Field that diffuses
downward into the radiative zone
Forgdcs-Dajka & Petrovay (2001)

\ Barnabé et al. (2017)




Outstanding Problems

Which Mechanism?

1. Anisotropic turbulence: What’s its source?

* Speigel & Zahn (1981) argued shear instabilities operating in a highly
stratified fluid generates enhanced horizontal diffusion

* But there is a lack of validation of this model by simulations
* | personally have wondered about stochastically excited Rossby waves

2. Primordial magnetic field: Why hasn’t the field bled into the
convection zone

3. Dynamo field: The skin depth is too short to explain the tachocline




Recent Suggestion:
Nonaxisymmetric, Quasi-periodic Dynamo Field

In a 3D MHD simulation, Matilsky et al. (2022) achieved:

Solid-body rotation
of the radiative
interior of a
numerical MHD
simulation.

\_ J

* Tachocline formation
e Narrow: A = 0.08 R@
* Occurs spontaneously

* Tachocline confinement by a cycling magnetic dynamo
* The field diffuses downward into the radiative interior.
* Viscous spread is halted by magnetic torques.

* The magnetic field is quasi-periodic (with many
frequency components)

* Solid-body rotation of the radiative interior 0.9 f TR ' T 2 o.03
* The magnetic field is primarily nonaxisymmetric. =~ 0.8 L = | | 4
 The magnetic field “stiffens” the interior and = o7 ¥ "' .' ! "‘"“ ""' "-" S

inhibits differential rotation. 0.6 ‘“"i" . T"‘ B A\ ¥
: W - . 1 -0.93
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Outstanding Issues

Spectra at r=0.96R

1 High case

ASH at r=0.98R
Miesch et al., 2008

This study

Hotta et al. 2022

Differential Rotation in the Convection Zone Y100
 The models of Hotta et al. 2021,2022 do a fine jobof £
reproducing the Sun’s differential rotation profile S 10’
>
* Can these results be reproduced in models with a different &
diffusion scheme? 5 o7
L
* Is magnetism truly necessary to restructure the meridional £
circulation in a fruitful way? (Geostrophic turbulence?) E ‘
* The convective spectrum is still wrong — the surface S 10 3100

amplitude is still too large.

* Where is the latitudinal temperature gradient
expected from thermal wind balance?
* Perhaps the balance fails in the Near-Surface Shear Layer?
e ...orinthe radiative boundary layer?

10°
Spherical Harmonic Degree #

10




Outstanding Issues

1420

Differential Rotation in the Radiative Interior

* Magnetic torques can stop the diffusive spread of the 1410

tachocline
* Does the mechanism of Matilsky et al. 2022 (quasi-periodic,

nonaxisymmetric dynamo field) work in more realistic
parameter regimes (thermal instead of viscous diffusion)?

1400

1390

« While the current models have a self-consistent tachocline 1380
(yeah!), they don’t look particularly solar-like (boo!).
* Too broad with latitudinal variation in the width

* Weak differential rotation in the convection zone

Rotation frequency (nHz)

1370

1360




Nice Review !

Dynamics of Large-Scale Solar Flows

by Hideyuki Hotta, Yuto Bekki, Laurent Gizon,
Quentin Noraz, Mark Rast
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Abstract

The Sun’s axisymmetric large-scale flows, differential rotation and meridional circulation,
are thought to be maintained by the influence of rotation on the thermal-convective mo-
tions in the solar convection zone. These large-scale flows are crucial for maintaining the
Sun’s global magnetic field. Over the last several decades, our understanding of large-scale
motions in the Sun has significantly improved, both through observational and theoretical
efforts. Helioseismology has constrained the flow topology in the solar interior, and the
growth of supercomputers has enabled simulations that can self-consistently generate large-
scale flows in rotating spherical convective shells. In this article, we review our current
understanding of solar convection and the large-scale flows present in the Sun, including
those associated with the recently discovered inertial modes of oscillation. We discuss some
issues still outstanding. and provide an outline of future efforts needed to address these.

Keywords Convection - Differential rotation - Meridional flow - Helioseismology -
Numerical simulation






