Empirical constraints on convection: Stellar magnetic fields and solar convective blueshift

Ansgar Reiners

Georg-August Universität Göttingen

Stellar Convection: Modelling, Theory and Observations – Aug 29

Spectral lines vary with wavelength, time, and limb position

Plots show models that desperately want to be compared to observations!

Ē 0.6 Eel $\lambda = 608.271$ [nm] 04 $x = 2.223$ [eV] $log qf = -3.573$ 0.2 log $\epsilon = 7.50$ 0.01 608.250 608.260 608.270 608.280 608.290 Wavelenath [nm] $1.0₊$ ≥ 0.8 0.6 $\begin{bmatrix} 1 \\ 2 \\ 6 \\ 0.4 \end{bmatrix}$ 0.2 Asplund et al., 2000 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 Velocity [km/s]

three lines at different limb positions one line variable in time

A&A 662, A41 (2022) https://doi.org/10.1051/0004-6361/202243251 C ESO 2022

Magnetism, rotation, and nonthermal emission in cool stars

Average magnetic field measurements in 292 M dwarfs*

A. Reiners¹, D. Shulyak², P. J. Käpylä¹, I. Ribas^{3,4}, E. Nagel⁵, M. Zechmeister¹, J. A. Caballero⁶, Y. Shan^{1,7}, B. Fuhrmeister⁵, A. Quirrenbach⁸, P. J. Amado², D. Montes⁹, S. V. Jeffers¹⁰, M. Azzaro¹¹, V. J. S. Béjar^{12,13}, P. Chaturvedi¹⁴, Th. Henning¹⁵, M. Kürster¹⁵, and E. Pallé^{12,13}

unpolarized visible and near-IR light (Stokes I)

Co-additions of 15,085 individual spectra (btwn. 4 and 514 per star, median 32)

Correction for telluric lines

Multi-component polarized radiative transfer model

Example

Field measurements cover a large area in the mass-period diagram

– no B fields (rotation from Newton et al., 2017)

 – our results – literature

We see a relation btw. non-thermal $\boldsymbol{\mathsf{heating}}$ and $\boldsymbol{\phi}_{B}$ …but this may partly be due to $R^2 \propto R^2$

Pevtsov et al., 2003

**In our sample, we observe a relation between non-th. heating and **

 $H\alpha$

X-ray

Ca H&K shows some sort of saturation

The average field-rotation relation is very similar to the "rotation-activity relation" (e.g., X-rays)

The average field-rotation relation is very similar to the "rotation-activity relation" (e.g., X-rays)

Slow rotation ($Ro > 0.13$) $\langle B \rangle = 199 \,\mathrm{G} \times Ro^{-1.26 \pm 0.10}$ Fast rotation ($Ro < 0.13$) $\langle B \rangle = 2050\,\text{G}\times Ro^{-0.11\pm0.03}$

Magnetic flux grows with rotation, and field strength saturates at Bkin (convection)

This is analog to B ∝ Ro because

$$
\tau \,\propto\, \frac{1}{\sqrt{L_{bol}}}
$$

Balance btw. Coriolis, buoyancy, and Lorentz forces may be expected in fast rotators (blue)

Force balance predicts: $\overline{E_B} \propto E_{kin}/Ro$

Solar Observations @ IAG

INSTITUT FÜR **ASTROPHYSIK & GEOPHYSIK**

 $10R$

50cm Siderostat

Fourier Transform Spectrometer (FTS)

Wavelength coverage (each simultaneous): VIS: 420 – 1000 nm NIR: 1000 – 2300 nm

Resolution \sim 10⁶

Standard FTS solar flux atlases (disc-integrated)

ATORY

SOLAR FLUX ATLAS FROM 296 TO 1300 nm

McMath-Pierce (Kitt Peak) and Göttingen (IAG)

Data from Kitt Peak and IAG match very well

Solar Observations @ IAG

A&A 587, A65 (2016) DOI: 10.1051/0004-6361/201527530 @ ESO 2016

Astronomy Astrophysics

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247:24 (14pp), 2020 March C 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4365/ab6a1c

The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra*

A. Reiners, N. Mrotzek, U. Lemke, J. Hinrichs, and K. Reinsch

https://www.astro.physik.uni-goettingen.de/research/flux_atlas/

The IAG Solar Flux Atlas: Telluric Correction with a Semiempirical Model

Ashley D. Baker¹^{(D}, Cullen H. Blake¹^{(D}), and Ansgar Reiners² ¹ University of Pennsylvania, Department of Physics and Astronomy, 209 S. 33rd St., Philadelphia, PA 19104, USA; ashbaker@sas.upenn.edu ² Georg-August Universität Göttingen, Institut für Astrophysik, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany Received 2019 November 10; revised 2019 December 26; accepted 2019 December 29; published 2020 March 5

A&A 673, A19 (2023) https://doi.org/10.1051/0004-6361/202245612 The Authors 2023

A&A 680, A62 (2023) https://doi.org/10.1051/0004-6361/202347615 C The Authors 2023

Astronomy Astrophysics

The IAG spectral atlas of the spatially resolved Sun: Centre-to-limb observations^{*}

M. Ellwarth, S. Schäfer, A. Reiners, and M. Zechmeister

Convective characteristics of Ferlines across the solar disc

M. Ellwarth[®], B. Ehmann, S. Schäfer, and A. Reiners[®]

<https://www.astro.physik.uni-goettingen.de/research/solar-lib/>

The IAG spectral atlas of the spatially resolved Sun: Centre-to-limb observations

Wavelength range 4200–8000 Å (continuous)

 $R = 700,000 \omega 6000 \text{ Å}$

The IAG spectral atlas of the spatially resolved Sun: Centre-to-limb observations

Wavelength range 4200–8000 Å (continuous)

 $R = 700,000 \ @ 6000 \AA$

Ellwarth et al. (2023)

Detailed models excellently match and were used to redetermine solar oxygen abundance

Bergemann et al., 2021

Magg et al., 2022 New values appear to resolve inconsistency with helioseismology

Validate models using the observed CLV in many spectral lines see Lind & Amarsi, 2024

Our spectra provide comprehensive information about convective blueshift across the solar disc and for different formation heights

Disc-integrated solar atlas (Reiners et al., 2016)

Solar atlas at different μ -angles (Ellwarth et al., 2023)

Our spectra provide comprehensive information about convective blueshift across the solar disc and for different formation heights

ongoing:

observations for different magnetic field strengths to determine influence of activity on RVs

Ellwarth et al., 2023

Back to the stars…

Disc-integrated solar atlas (Reiners et al., 2016)

Convective signature **S** from stellar observations (Liebing et al., 2021)

The convective signature scales with surface properties, e.g., temperature

810 F- to M-type dwarf stars observed HARPS (Liebing et al., 2021)

The convective signature scales with surface properties, e.g., temperature and gravity

242 evolved stars observed HARPS (Liebing et al., 2023)

Summary

- 1. In very active stars, convection determines stellar magnetic activity. In slow rotators, surface magnetic flux is proportional to P. Coronal and chromospheric heating is proportional to magnetism.
- 2. Accurate solar spectral line measurements map convection in 3-D.
- 3. Convective velocities in different stars depend on temperature and gravity.